Open Access

## Table 6

Probabilities applied to ditsets and qudit spaces.

“Classical” Logical Entropy Quantum Logical Entropy
Pure state density matrix, e.g., ρ(0U) Pure state density matrix ρ(ψ)
U = {u1, …, un} ON basis simultaneous eigenvectors F, G
p × p on U × U ρ(ψ)⊗ρ(ψ) on V ⊗ V
h(0U) = 1 − tr[ρ(0U)2] = 0 h(ρ(ψ)) = 1 − tr[ρ(ψ)2] = 0
h(π) = p × p(dit(π)) h(F:ψ) = tr[P[qudit(F)] ρ(ψ) ⊗ ρ(ψ)]
h(π, σ) = p × p(dit(π) ∪ dit(σ)) h(F,G:ψ) = tr[P[qudit(F) ∪ qudit(G)] ρ(ψ)⊗ρ(ψ)]
h(π|σ) = p × p(dit(π) − dit(σ)) h(F|G:ψ) = tr[P[qudit(F) − qudit(G)] ρ(ψ) ⊗ ρ(ψ)]
m(π, σ) = p × p(dit(π) ∩ dit(σ)) m(F,G:ψ) = tr[P[qudit(F) ∩ qudit(G)] ρ(ψ) ⊗ ρ(ψ)]
h(π) = h(π|σ) + m(π,σ) h(F:ψ) = h(F|G:ψ) + m(F,G:ψ)
h(π) = 2-draw prob. diff. f-values h(F:ψ) = 2-meas. prob. diff. F-eigenvalues  h(π) = 1 − tr[ρ(π)2] h(π) = sum sq. zeroed h(F:ψ) = sum ab. sq. zeroed Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.