Open Access
Review
Issue
4open
Volume 1, 2018
Article Number 3
Number of page(s) 23
Section Physics – Applied Physics
DOI https://doi.org/10.1051/fopen/2018003
Published online 10 August 2018
  1. Pile D (2011), X-rays: first light from SACLA. Nat Photonics 5, 456–457. [CrossRef] [Google Scholar]
  2. Altarelli M (2011), The European X-ray free-electron laser facility in Hamburg. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms 269, 2845–2849. [CrossRef] [Google Scholar]
  3. Allaria E, Appio R, Badano L, Barletta WA, Bassanese S, Biedron SG, Borga A, Busetto E, Castronovo D, Cinquegrana P, Cleva S, Cocco D, Cornacchia M, Craievich P, Cudin I, D’Auria G, Dal Forno M, Danailov MB, De Monte R, De Ninno G, Delgiusto P, Demidovich A, Di Mitri S, Diviacco B, Fabris A, Fabris R, Fawley W, Ferianis M, Ferrari E, Ferry S, Froehlich L, Furlan P, Gaio G, Gelmetti F, Giannessi L, Giannini M, Cocco D, Cornacchia M, Craievich P, Cudin I, D’Auria G, Dal Forno M, Danailov MB, De Monte R, De Ninno G, Delgiusto P, Demidovich A, Di Mitri S, Diviacco B, Fabris A, Fabris R, Fawley W, Ferianis M, Ferrari E, Ferry S, Froehlich L, Furlan P, Gaio G, Gelmetti F, Giannessi L, Giannini M, Gobessi R, Ivanov R, Karantzoulis E, Lonza M, Lutman A, Mahieu B, Milloch M, Milton SV, Musardo M, Nikolov I, Noe S, Parmigiani F, Penco G, Petronio M, Pivetta L, Predonzani M, Rossi F, Rumiz L, Salom A, Scafuri C, Serpico C, Sigalotti P, Spampinati S, Spezzani C, Svandrlik M, Svetina C, Tazzari S, Trovo M, Umer R, Vascotto A, Veronese M, Visintini R, Zaccaria M, Zangrando D, Zangrando M (2012), Highly coherent and stable pulses from the FERMI seeded 700 free-electron laser in the extreme ultraviolet. Nat Photonics 6, 699–704. [CrossRef] [Google Scholar]
  4. Schreiber S, Faatz B (2015), The free-electron laser FLASH. High Power Laser Sci Eng 3, e20. [CrossRef] [Google Scholar]
  5. Bostedt C, Boutet S, Fritz DM, Huang Z, Lee HJ, Lemke HT, Robert A, Schlotter WF, Turner JJ, Williams GJ (2016), Linac Coherent Light Source: the first five years. Rev Mod Phys 88, 015007. [CrossRef] [Google Scholar]
  6. Kang HS, Min CK, Heo H, Kim C, Yang H, Kim G, Nam I, Baek SY, Choi HJ, Mun G, Park BR, Suh YJ, Shin DC, Hu J, Hong J, Jung S, Kim SH, Kim K, Na D, Park SS, Park YJ, Han JH, Jung YG, Jeong SH, Lee HG, Lee S, Lee S, Lee WW, Oh B, Suh HS, Parc YW, Park SJ, Kim MH, Jung NS, Kim YC, Lee MS, Lee BH, Sung CW, Mok IS, Yang JM, Lee CS, Shin H, Kim JH, Kim Y, Lee JH, Park SY, Kim J, Park J, Eom I, Rah S, Kim S, Nam KH, Park J, Park J, Kim S, Kwon S, Park SH, Kim KS, Hyun H, Kim SN, Kim S, Hwang Sm, Kim MJ, Lim Cy, Yu CJ, Kim BS, Kang TH, Kim KW, Kim SH, Lee HS, Lee HS, Park KH, Koo TY, Kim DE, Ko IS (2017), Hard X-ray free-electron 716 laser with femtosecond-scale timing jitter. Nat Photonics 11, 708–713. [CrossRef] [Google Scholar]
  7. Gahl C, Azima A, Beye M, Deppe M, Döbrich K, Hasslinger U, Hennies F, Melnikov A, Nagasono M, Pietzsch A, Wolf M, Wurth W, Föhlisch A (2008), A femtosecond X-ray/optical cross-correlator. Nat Photonics 2, 165–169. [CrossRef] [Google Scholar]
  8. Hau-Riege SP, Pardini T (2012), Effect of high-intensity X-ray radiation on Bragg diffraction in silicon and diamond. J Appl Phys 112, 114904. [CrossRef] [Google Scholar]
  9. Harmand M, Coffee R, Bionta M, Chollet M, French D, Zhu DM, Fritz DT, Lemke H, Medvedev N, Ziaja B, Toleikis S, Cammarata M (2013), Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers. Nat Photon 7, 215–218. [CrossRef] [Google Scholar]
  10. Tavella F, Höppner H, Tkachenko V, Medvedev N, Capotondi F, Golz T, Kai Y, Manfredda M, Pedersoli E, Prandolini MJ, Stojanovic N, Tanikawa T, Teubner U, Toleikis S, Ziaja B (2017), Soft X-ray induced femtosecond solid-to-solid phase transition. High Energy Density Phys 24 22–27. [CrossRef] [Google Scholar]
  11. Krzywinski J, Sobierajski R, Jurek M, Nietubyc R, Pelka JB, Juha L, Bittner M, Létal V, Vorlíček V, Andrejczuk A, Feldhaus J, Keitel B, Saldin EL, Schneidmiller EA, Treusch R, Yurkov MV (2007), Conductors, semiconductors, and insulators irradiated with short-wavelength free-electron laser. J Appl Phys 101, 043107. [CrossRef] [Google Scholar]
  12. Barty A, Boutet S, Bogan MJ, Hau-Riege S, Marchesini S, Sokolowski-Tinten K, Stojanovic N, Tobey R, Ehrke H, Cavalleri A, Düsterer S, Frank M, Bajt S, Woods BW, Seibert MM, Hajdu J, Treusch R, Chapman HN (2008), Ultrafast single-shot diffraction imaging of nanoscale dynamics. Nat Photonics 2, 415–419. [CrossRef] [Google Scholar]
  13. Gaudin J, Medvedev N, Chalupský J, Burian T, Dastjani-Farahani S, Hájková V, Harmand M, Jeschke HO, Juha L, Jurek M, Klinger D, Krzywinski J, Loch RA, Moeller S, Nagasono M, Ozkan C, Saksl K, Sinn H, Sobierajski R, Sovák P, Toleikis S, Tiedtke K, Toufarová M, Tschentscher T, Vorlíček V, Vyšín L, Wabnitz H, Ziaja B, et al. (2013), Photon energy dependence of graphitization threshold for diamond irradiated with an intense XUV FEL pulse. Phys Rev B 88, 060101. [CrossRef] [Google Scholar]
  14. van Thor JJ, Madsen A (2015), A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography. Struct Dyn 2, 0–21. [Google Scholar]
  15. Aquila A, Hunter MS, Doak RB, Kirian RA, Fromme P, White TA, Andreasson J, Arnlund D, Bajt S, Barends TRM, Barthelmess M, Bogan MJ, Bostedt C, Bottin H, Bozek JD, Caleman C, Coppola N, Davidsson J, DePonte DP, Elser V, Epp SW, Erk B, Fleckenstein H, Foucar L, Frank M, Fromme R, Graafsma H, Grotjohann I, Gumprecht L, Hajdu J, Hampton CY, Hartmann A, Hartmann R, Hau-Riege S, Hauser G, Hirsemann H, Holl P, Holton JM, Hömke A, Johansson L, Kimmel N, Kassemeyer S, Krasniqi F, Kühnel K-U, Liang M, Lomb L, Malmerberg E, Marchesini S, Martin AV, Maia FRNC, Messerschmidt M, Nass K, Reich C, Neutze R, Rolles D, Rudek B, Rudenko A, Schlichting I, Schmidt C, Schmidt KE, Schulz J, Seibert MM, Shoeman RL, Sierra R, Soltau H, Starodub D, Stellato F, Stern S, Strüder L, Timneanu N, Ullrich J, Wang X, Williams GJ, Weidenspointner G, Weierstall U, Wunderer C, Barty A, Spence JCH, Chapman HN (2012), Time-resolved protein nanocrystallography using an X-ray free-electron laser. Opt Express 20, 2706–2716. [CrossRef] [PubMed] [Google Scholar]
  16. David C, Karvinen P, Sikorski M, Song S, Vartiainen I, Milne CJ, Mozzanica A, Kayser Y, Diaz A, Mohacsi I, Carini GA, Herrmann S, Färm E, Ritala M, Fritz DM, Robert A, Sokolowski-Tinten K, Elsaesser T, Woerner T, Rundquist A, Schoenlein RW, Ackermann W, Emma P, Ishikawa T, Bressler C, Fritz DM, Johnson SL, Vinko SM, Glownia JM, Tavella F, Löhl F, Harmand M, Sorgenfrei F, Castagna JC, Roseker W, Roseker W, Villoresi P, Robert A, Sciaini G, Chapman HN, Barty A, David C, Vila-Comamala J, Aaltonen T, Mozzanica A, Herrmann S, David C (2015), Following the dynamics of matter with femtosecond precision using the X-ray streaking method. Sci Rep 5, 7644. [CrossRef] [PubMed] [Google Scholar]
  17. Polli D, Altoè P, Weingart O, Spillane KM, Manzoni C, Brida D, Tomasello G, Orlandi G, Kukura P, Mathies R A, Garavelli M, Cerullo G (2010), Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467, 440–443. [CrossRef] [PubMed] [Google Scholar]
  18. Li Z, Madjet ME-A, Vendrell O (2013), Non-Born-Oppenheimer dynamics of the photoionized Zundel cation: a quantum wavepacket and surface-hopping study. J Chem Phys 138, 094313. [CrossRef] [Google Scholar]
  19. Zastrau U, Burian T, Chalupsky J, Döppner T, Dzelzainis TWJ, Fäustlin RR, Fortmann C, Galtier E, Glenzer SH, Gregori G, Juha L, Lee HJ, Lee RW, Lewis CLS, Medvedev N, Nagler B, Nelson AJ, Riley D, Rosmej FB, Toleikis S, Tschentscher T, Uschmann I, Vinko SM, Wark JS, Whitcher T, Förster E (2012), XUV spectroscopic characterization of warm dense aluminum plasmas generated by the free-electron-laser FLASH. Laser Part Beams 30, 45–56. [CrossRef] [Google Scholar]
  20. Cho BI, Ogitsu T, Engelhorn K, Correa AA, Ping Y, Lee JW, Bae LJ, Prendergast D, Falcone RW, Heimann PA, Daligault J, Gupta S, Glenzer SH, Chan J W, Huser T, Risbud S, Lee RW, Ng A, Ao T, Perrot F, Dharma-wardana MWC, Foord ME, Ao T, Ping Y, Dyer GM, Ernstorfer R, Mančić A, Cho BI, White TG, Chen Z, Dharma-wardana MWC, Perrot F, Vorberger J, Gericke DO, Bornath T, Schlanges M, Reimann U, Toepffer C, Ng A, Celliers P, Xu G, Forsman A, Riley D, Lin Z, Zhigilei LV, Celli V, Cho BI, Johnson S, Hohlfeld J, Wellershoff S, Güdde J, Conrad U, Elsayed-Ali H, Norris T, Pessot M, McMillan WL, Grimvall G, Wohlfarth E, Fletcher LB, Gorman MG, Gaudin J, Dorchies F, Paolo G, Prendergast D, Galli G (2016), Measurement of Electron-Ion relaxation in warm Dense Copper. Sci Rep 6, 18843. [CrossRef] [PubMed] [Google Scholar]
  21. Hau-Riege SP (2011), High-Intensity X-rays - Interaction with Matter: Processes in Plasmas, Clusters, Molecules and Solids, Willey-VCH Verlag, Weinheim, Germany. [CrossRef] [Google Scholar]
  22. Ziaja B, Jurek Z, Medvedev N, Thiele R, Toleikis S (2013), A review of environment-dependent processes within FEL excited matter. High Energy Density 9, 462–472. [CrossRef] [Google Scholar]
  23. Graziani F, Desjarlais MP, Redmer R, Trickey SB (2014), Frontiers and challenges in warm dense matter, Springer-Verlag New York Inc, New York. [CrossRef] [Google Scholar]
  24. Jurek Z, Son S-K, Ziaja B, Santra R (2016), XMDYN and XATOM: versatile simulation tools for quantitative modeling of X-ray free-electron laser induced dynamics of matter. J Appl Crystallogr 49, 1048–1056. [Google Scholar]
  25. Vinko SM, Zastrau U, Mazevet S, Andreasson J, Bajt S, Burian T, Chalupsky J, Chapman HN, Cihelka J, Doria D, Döppner T, Düsterer S, Dzelzainis T, Fäustlin RR, Fortmann C, Förster E, Galtier E, Glenzer SH, Göde S, Gregori G, Hajdu J, Hajkova V, Heimann PA, Irsig R, Juha L, Jurek M, Krzywinski J, Laarmann T, Lee HJ, Lee RW, Li B, Meiwes-Broer K-H, Mithen JP, Nagler B, Nelson AJ, Przystawik A, Redmer R, Riley D, Rosmej F, Sobierajski R, Tavella F, Thiele R, Tiggesbäumker J, Toleikis S, Tschentscher T, Vysin L, Whitcher TJ, White S, Wark JS (2010), Electronic Structure of an XUV Photogenerated Solid-Density Aluminum Plasma. Phys Rev Lett 104, 225001. [CrossRef] [PubMed] [Google Scholar]
  26. Bernardi M, Vigil-Fowler D, Ong CS, Neaton J B, Louie SG, Macdonald AH (2015), Ab initio study of hot electrons in GaAs. PNAS 112, 5291–5296. [CrossRef] [Google Scholar]
  27. Dharma-wardana M, Chandre MW (2016), Current issues in finite-t density-functional theory and warm-correlated matter Computation 4, 16. [CrossRef] [Google Scholar]
  28. Kabeer FC, Zijlstra ES, Garcia ME (2014), Road of warm dense noble metals to the plasma state: Ab initio theory of the ultrafast structural dynamics in warm dense matter. Phys Rev B 89, 100301. [CrossRef] [Google Scholar]
  29. Lambert F, Clérouin J, Zérah G (2006), Very-high-temperature molecular dynamics. Phys Rev E 73, 016403. [CrossRef] [PubMed] [Google Scholar]
  30. Lambert F, Clérouin J, Mazevet S (2006), Structural and dynamical properties of hot dense matter by a Thomas-Fermi-Dirac molecular dynamics. Europhys Lett (EPL) 75, 681–687. [CrossRef] [Google Scholar]
  31. Danel J-F, Kazandjian L, Zérah G (2012), Equation of state of dense plasmas by ab initio simulations: bridging the gap between quantum molecular dynamics and orbital-free molecular dynamics at high temperature. Phys Plasmas 19, 122712. [CrossRef] [Google Scholar]
  32. White TG, Richardson S, Crowley BJB, Pattison LK, Harris JWO, Gregori G (2013), Orbital-free density-functional theory simulations of the dynamic structure factor of warm dense aluminum. Phys Rev Lett 111, 175002. [CrossRef] [PubMed] [Google Scholar]
  33. Lin Z, Zhigilei L, Celli V (2008), Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys Rev B 77, 075133. [CrossRef] [Google Scholar]
  34. Giustino F (2017), Electron-phonon interactions from first principles. Rev Mod Phys 89, 015003. [CrossRef] [Google Scholar]
  35. Worth GA, Cederbaum LS (2004), Beyond Born-Oppenheimer: molecular dynamics through a conical intersection. Annu Rev Phys Chem 55 127–158. [CrossRef] [PubMed] [Google Scholar]
  36. McEniry EJ, Wang Y, Dundas D, Todorov TN, Stella L, Miranda RP, Fisher AJ, Horsfield AP, Race CP, Mason DR, Foulkes WMC, Sutton AP (2010), Modelling non-adiabatic processes using correlated electron-ion dynamics. Eur Phys J B 77 305–329. [CrossRef] [EDP Sciences] [Google Scholar]
  37. Zhigilei LV, Lin Z, Ivanov DS (2006), Molecular Dynamics Study of Short-Pulse Laser Melting, Recrystallization, Spallation, and Ablation of Metal Targets. In Volume 2 Heat Transfer, ASME, pp. 725–733. [Google Scholar]
  38. Zhigilei LV, Lin Z, Ivanov DS (2009), Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion. J Phys Chem C 113, 11892–11906. [Google Scholar]
  39. Eckhardt W, Heinecke A, Bader R, Brehm M, Hammer N, Huber H, Kleinhenz H-G, Vrabec J, Hasse H, Horsch M, Bernreuther M, Glass CW, Niethammer C, Bode A, Bungartz H-J (2013), 591 TFLOPS Multi-trillion Particles Simulation on SuperMUC, Springer, Berlin, Heidelberg, pp. 1–12. [Google Scholar]
  40. Wu C, Zhigilei LV (2014), Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations. Appl Phys A 114, 11–32. [Google Scholar]
  41. Khakshouri S, Alfè D, Duffy DM (2008), Development of an electron-temperature-dependent interatomic potential for molecular dynamics simulation of tungsten under electronic excitation. Phys Rev B 78, 224304. [CrossRef] [Google Scholar]
  42. Shokeen L, Schelling PK (2010), An empirical potential for silicon under conditions of strong electronic excitation. Appl Phys Lett 97, 151907. [CrossRef] [Google Scholar]
  43. Jenkins TM, Nelson WR, Rindi A, (Eds.) (1988), Monte Carlo transport of electrons and photons, Springer US, Boston, MA. [CrossRef] [Google Scholar]
  44. Ziaja B, Wabnitz H, Weckert E, Möller T (2008), Femtosecond non-equilibrium dynamics of clusters irradiated with short intense VUV pulses. J Phys 10, 043003. [Google Scholar]
  45. Rethfeld B, Kaiser A, Vicanek M, Simon G (2002), Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys Rev B 65, 214303. [CrossRef] [Google Scholar]
  46. Mueller BY, Rethfeld B (2013), Relaxation dynamics in laser-excited metals under nonequilibrium conditions. Phys Rev B 87, 035139. [CrossRef] [Google Scholar]
  47. Hau-Riege SP, London RA, Szoke A (2004), Dynamics of biological molecules irradiated by short X-ray pulses. Phys Rev E 69, 051906. [CrossRef] [Google Scholar]
  48. Inogamov NA, Faenov AY, Zhakhovsky VV, Pikuz TA, Skobelev IY, Petrov YV, Khokhlov VA, Shepelev V V, Anisimov SI, Fortov VE, Fukuda Y, Kando M, Kawachi T, Nagasono M, Ohashi H, Yabashi M, Tono K, Senda Y, Togashi T, Ishikawa T (2011), Two-Temperature Warm Dense Matter Produced by Ultrashort Extreme Vacuum Ultraviolet-Free Electron Laser (EUV-FEL) Pulse. Contrib Plasma Phys 51, 419–426. [CrossRef] [Google Scholar]
  49. Peyrusse O (2012), Coupling of detailed configuration kinetics and hydrodynamics in materials submitted to x-ray free-electron-laser irradiation. Phys Rev E 86, 036403-1–036403-10. [CrossRef] [Google Scholar]
  50. Peyrusse O, André J-M, Jonnard P, Gaudin J (2017), Modeling of the interaction of an X-ray free-electron laser with large finite samples. Phys Rev E 96, 043205. [CrossRef] [PubMed] [Google Scholar]
  51. van Driel H (1987), Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses. Phys Rev B 35, 8166–8176. [CrossRef] [Google Scholar]
  52. March NH, Tosi MP (1991), Atomic Dynamics in Liquids, Courier Corporation. [Google Scholar]
  53. Rethfeld B, Ivanov DS, Garcia ME, Anisimov SI (2017), Modelling ultrafast laser ablation. J Phys D: Appl Phys 50, 193001. [CrossRef] [Google Scholar]
  54. Ivanov D, Zhigilei L (2003), Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys Rev B 68, 064114. [CrossRef] [Google Scholar]
  55. Ivanov DS, Lipp VP, Blumenstein A, Kleinwort F, Veiko VP, Yakovlev E, Roddatis V, Garcia ME, Rethfeld B, Ihlemann J, et al. (2015), Experimental and theoretical investigation of periodic nanostructuring of Au with ultrashort UV laser pulses near the damage threshold. Phys Rev Appl 4, 064006. [CrossRef] [Google Scholar]
  56. Murphy BF, Osipov T, Jurek Z, Fang L, Son S-K, Mucke M, Eland JHD, Zhaunerchyk V, Feifel R, Avaldi L, Bolognesi P, Bostedt C, Bozek JD, Grilj J, Guehr M, Frasinski LJ, Glownia J, Ha DT, Hoffmann K, Kukk E, McFarland BK, Miron C, Sistrunk E, Squibb RJ, Ueda K, Santra R, Berrah N (2014), Femtosecond X-ray-induced explosion of C60 at extreme intensity. Nat Commun 5. [Google Scholar]
  57. Siders CW (1999), Detection of nonthermal melting by ultrafast X-ray diffraction. Science 286, 1340–1342. [CrossRef] [PubMed] [Google Scholar]
  58. Sundaram SK, Mazur E (2002), Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat Mater 1, 217–224. [CrossRef] [PubMed] [Google Scholar]
  59. Inoue I, Inubushi Y, Sato T, Tono K, Katayama T, Kameshima T, Ogawa K, Togashi T, Owada S, Amemiya Y, Tanaka T, Hara T, Yabashi M (2016), Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme, Proceedings of the National Academy of Sciences of the United States of America 113, 1492. [Google Scholar]
  60. Medvedev N, Jeschke HO, Ziaja B (2013), Nonthermal phase transitions in semiconductors induced by a femtosecond extreme ultraviolet laser pulse. J Phys 15, 015016. [Google Scholar]
  61. Chapman DA, Gericke DO (2011), Analysis of Thomson Scattering from Nonequilibrium Plasmas. Phys Rev Lett 107, 165004. [CrossRef] [PubMed] [Google Scholar]
  62. Fäustlin RR, Bornath Th, Döppner T, Düsterer S, Förster E, Fortmann C, Glenzer SH, Göde S, Gregori G, Irsig R, Laarmann T, Lee HJ, Li B, Meiwes-Broer K-H, Mithen J, Nagler B, Przystawik A, Redlin H, Redmer R, Reinholz H, Röpke G, Tavella F, Thiele R, Tiggesbäumker J, Toleikis S, Uschmann I, Vinko SM, Whitcher T, Zastrau U, Ziaja B, Tschentscher Th (2010), Observation of ultrafast nonequilibrium collective dynamics in warm dense hydrogen. Phys Rev Lett 104, 125002. [CrossRef] [PubMed] [Google Scholar]
  63. Medvedev N, Zastrau U, Förster E, Gericke DO, Rethfeld B (2011), Short-time electron dynamics in Aluminum excited by femtosecond extreme Ultraviolet radiation. Phys Rev Lett 107, 165003. [CrossRef] [PubMed] [Google Scholar]
  64. Hau-Riege SP (2013), Nonequilibrium electron dynamics in materials driven by high-intensity X-ray pulses. Phys Rev E 87, 053102. [CrossRef] [Google Scholar]
  65. Bisio F, Principi E, Magnozzi M, Simoncig A, Giangrisostomi E, Mincigrucci R, Pasquali L, Masciovecchio C, Boscherini F, Canepa M (2017), Long-lived nonthermal electron distribution in aluminum excited by femtosecond extreme ultraviolet radiation. Phys Rev B 96, 081119. [CrossRef] [Google Scholar]
  66. Medvedev N, Jeschke HO, Ziaja B (2013), Nonthermal graphitization of diamond induced by a femtosecond X-ray laser pulse. Phys Rev B 88, 224304. [CrossRef] [Google Scholar]
  67. Medvedev N, Li Z, Ziaja B (2015), Thermal and nonthermal melting of silicon under femtosecond X-ray irradiation. Phys Rev B 91, 054113. [CrossRef] [Google Scholar]
  68. Medvedev N, Li Z, Tkachenko V, Ziaja B (2017), Electron-ion coupling in semiconductors beyond Fermi’s golden rule. Phys Rev B 95, 014309. [CrossRef] [Google Scholar]
  69. Jacoboni C, Reggiani L (1983), The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev Mod Phys 55, 645–705. [Google Scholar]
  70. Akkerman A, Boutboul T, Breskin A, Chechik R, Gibrekhterman A, Lifshitz Y (1996), Inelastic Electron interactions in the Energy Range 50 eV to 10 keV in insulators: Alkali Halides and Metal Oxides. Phys Status Solidi B 198, 769–784. [CrossRef] [Google Scholar]
  71. Medvedev N, Rethfeld B (2010), Transient dynamics of the electronic subsystem of semiconductors irradiated with an ultrashort vacuum ultraviolet laser pulse. New J Phys 12, 073037. [CrossRef] [Google Scholar]
  72. Cullen DE, Hubbell JH, Kissel L (1997), EPDL97: the Evaluated Photon Data Library, ’97 version. Lawrence Livermore National Laboratory, UCRL–50400, Livermore, CA, vol. 6, re edition. [CrossRef] [Google Scholar]
  73. Palik ED (1985), Handbook of Optical Constants of Solids, volume 1 of Academic Press handbook series, Academic Press, San Diego. [Google Scholar]
  74. Perkins ST (1991), Tables and Graphs of Atomic Subshell and Relaxation Data Derived from the LLNL Evaluated Atomic Data Library (EADL). Z = 1–100. Lawrence Livermore National Laboratory, Livermore, CA, vol. 30 edition. [Google Scholar]
  75. Medvedev N, Tkachenko V, Ziaja B (2015), Modeling of Nonthermal Solid-to-Solid Phase Transition in Diamond Irradiated 912 with Femtosecond X-ray FEL Pulse. Contrib Plasma Phys 55, 12–34. [CrossRef] [Google Scholar]
  76. Ritchie RH, Howie A (1977), Electron excitation and the optical potential in electron microscopy. Philos Mag 36, 463–481. [CrossRef] [Google Scholar]
  77. Medvedev N (2015), Femtosecond X-ray induced electron kinetics in dielectrics: application for FEL-pulse-duration monitor. Appl Phys B 118, 417–429. [CrossRef] [Google Scholar]
  78. Powell CJ, Jablonski A (1999), Evaluation of Calculated and Measured Electron Inelastic Mean Free Paths Near Solid Surfaces. J Phys Chem Ref Data 28, 19. [CrossRef] [Google Scholar]
  79. Lorazo P, Lewis L, Meunier M (2006), Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation. Phys Rev B 73, 134108. [CrossRef] [Google Scholar]
  80. Keski-Rahkonen O, Krause MO (1974), Total and partial atomic-level widths. At Data Nucl Data Tables 14, 139–149. [CrossRef] [Google Scholar]
  81. Landau LD, Lifshitz LM (1975), Statistical Physics, Third Edition, Part 1: Volume 5. Butterworth-Heinemann, Institute of Physical Problems, USSR Academy of Sciences, Moscow, 3rd edition. [Google Scholar]
  82. Ziaja B, LondonRA, Hajdu J (2005), Uni fied model of secondary electron cascades in diamond. J Appl Phys 97, 064905. [CrossRef] [Google Scholar]
  83. Tkachenko V, Medvedev N, Lipp V, Ziaja B (2017), Picosecond relaxation of X-ray excited GaAs. High Energy Density Phys 24, 15–21. [CrossRef] [Google Scholar]
  84. Xu CH, Wang CZ, Chan CT, Ho KM (1992), A transferable tight-binding potential for carbon. J Phys: Condens Matter 4, 6047–6054. [CrossRef] [Google Scholar]
  85. Kwon I, Biswas R, Wang C, Ho K, Soukoulis C (1994), Transferable tight-binding models for silicon. Phys Rev B 49, 7242–7250. [CrossRef] [Google Scholar]
  86. Jeschke HO (2000), Theory for optically created nonequilibrium in covalent solids. PhD thesis, Technical University of Berlin. [Google Scholar]
  87. Parrinello M, Rahman A (1980), Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys Rev Lett 45, 1196–1199. [CrossRef] [Google Scholar]
  88. Toufarová M, Hájková V, Chalupský J, Burian T, Yabashi J, Vorlíček V, Vyšín L, Gaudin J, Medvedev N, Ziaja B, Nagasono M, Yabashi M, Sobierajski R, Krzywinski J, Sinn H, Störmer M, Koláček K, Tiedtke K, Toleikis S, Juha L (2017), Contrasting behavior of covalent and molecular carbon allotropes exposed to extreme ultraviolet and soft X-ray free-electron laser radiation. Phys Rev B 96, 214101. [CrossRef] [Google Scholar]
  89. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, Streek JVD, Wood PA, IUCr (2008), Mercury CSD 2.0 new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41, 466–470. [CrossRef] [Google Scholar]
  90. Praprotnik M, Janeži D, Mavri J (2004), Temperature dependence of water vibrational spectrum: a molecular dynamics simulation study. J Phys Chem A 108, 11056. [CrossRef] [Google Scholar]
  91. Thomas M, Brehm M, Fligg R, Vöhringer P, Kirchner B (2013), Computing vibrational spectra from ab initio molecular dynamics. Phys Chem Chem Phys 15, 6608. [Google Scholar]
  92. Mishra P, Vendrell O, Santra R (2015), Ultrafast energy transfer from solvent to solute induced by subpicosecond highly intense thz pulses. J Phys Chem B 119, 8080–8086. [CrossRef] [PubMed] [Google Scholar]
  93. Maltezopoulos T, Cunovic S, Wieland M, Beye M, Azima A, Redlin H, Krikunova M, Kalms R, Frühling U, Budzyn F, Wurth W, Föhlisch A, Drescher M (2008), Single-shot timing measurement of extreme-ultraviolet free-electron laser pulses. New J Phys 10, 033026. [CrossRef] [Google Scholar]
  94. Ehrenreich H, Cohen MH (1959), Self-consistent field approach to the many-electron problem. Phys Rev 115, 786. [CrossRef] [MathSciNet] [Google Scholar]
  95. Trani F, Cantele G, Ninno D, Iadonisi G (2005), Tight-binding calculation of the optical absorption cross section of spherical and ellipsoidal silicon nanocrystals. Phys Rev B 72, 075423. [CrossRef] [Google Scholar]
  96. Tkachenko V, Medvedev N, Li Z, Piekarz P, Ziaja B (2016), Transient optical properties of semiconductors under femtosecond X-ray irradiation. Phys Rev B 93, 144101. [CrossRef] [Google Scholar]
  97. Klingshirn CF (1997), Semiconductor optics, Springer, Berlin. [Google Scholar]
  98. Medvedev N, Lipp V (2017), Influence of model parameters on a simulation of X-ray irradiated materials: example of XTANT code, 102360I, International Society for Optics and Photonics. [Google Scholar]
  99. Yeh P (2005), Optical Waves in Layered Media, Wiley. [Google Scholar]
  100. Medvedev N, Ziaja B, Cammarata M, Harmand M, Toleikis S (2013), Electron Kinetics in Femtosecond X-Ray irradiated SiO2. Contrib Plasma Phys 53, 347–354. [CrossRef] [Google Scholar]
  101. Lu K, Li Y (1998), Homogeneous Nucleation Catastrophe as a Kinetic Stability Limit for Superheated Crystal. Phys Rev Lett 80, 4474–4477. [CrossRef] [Google Scholar]
  102. Rethfeld B, Sokolowski-Tinten K, von der Linde D, Anisimov S (2002), Ultrafast thermal melting of laser-excited solids by homogeneous nucleation. Phys Rev B 65, 092103. [CrossRef] [Google Scholar]
  103. Zeiger HJ, Vidal J, Cheng TK, Ippen EP, Dresselhaus G, Dresselhaus MS (1992), Theory for displacive excitation of coherent phonons. Phys Rev B 45, 768–778. [CrossRef] [Google Scholar]
  104. Grigoryan NS, Zier T, Garcia ME, Zijlstra ES (2014), Ultrafast structural phenomena: theory of phonon frequency changes and simulations with code for highly excited valence electron systems. J Opt Soc Am B 31, C22. [CrossRef] [Google Scholar]
  105. Al-Jishi R, Dresselhaus G (1982), Lattice-dynamical model for graphite. Phys Rev B 26, 4514–4522. [CrossRef] [Google Scholar]
  106. Maultzsch J, Reich S, Thomsen C, Requardt H, Ordejón P (2004), Phonon dispersion in graphite. Phys Rev Lett 92, 075501. [Google Scholar]
  107. Al-Jishi R, Dresselhaus G (1982), Lattice-dynamical model for graphite. Phys Rev B 26, 4514–4522. [CrossRef] [Google Scholar]
  108. Ionin AA, Kudryashov SI, Seleznev LV, Sinitsyn DV, Bunkin AF, Lednev VN, Pershin SM (2013), Thermal melting and ablation of silicon by femtosecond laser radiation. J Exp Theor Phys 116, 347–362. [CrossRef] [Google Scholar]
  109. Sokolowski-Tinten K, Bialkowski J, von der Linde D (1995), Ultrafast laser-induced order-disorder transitions in semiconductors. Phys Rev B 51, 14186–14198. [CrossRef] [Google Scholar]
  110. Wei S, Chou MY (1994), Phonon dispersions of silicon and germanium from first-principles calculations. Phys Rev B 50, 2221–2226. [CrossRef] [Google Scholar]
  111. Letcher JJ, Kang K, Cahill DG, Dlott DD (2007), Effects of high carrier densities on phonon and carrier lifetimes in si by time-resolved anti-stokes raman scattering. Appl Phys Lett 90, 252104. [Google Scholar]
  112. Hunsche S, Wienecke K, Dekorsy T, Kurz H (1996), Laser-Induced Softening of Coherent Phonons: Pathway to Nonthermal Melting, 459–460, Springer, Berlin, Heidelberg. [Google Scholar]
  113. Beye M, Sorgenfrei F, Schlotter WF, Wurth W, Föhlisch A (2010), The liquid-liquid phase transition in silicon revealed by snapshots of valence electrons. Proc Natl Acad Sci USA 107, 16772–16776. [CrossRef] [Google Scholar]
  114. Tkachenko V, Medvedev N, Ziaja B (2016), Transient Changes of Optical Properties in Semiconductors in Response to Femtosecond Laser Pulses. Appl Sci 6, 238. [CrossRef] [Google Scholar]
  115. Ziaja B, Medvedev N, Tkachenko V, Maltezopoulos T, Wurth W (2015), Time-resolved observation of band-gap shrinking and electron-lattice thermalization within X-ray excited gallium arsenide. Sci Rep 5, 18068. [CrossRef] [PubMed] [Google Scholar]
  116. Lu JP, Li X-P, Martin RM (1992), Ground state and phase transitions in solid C60. Phys Rev Lett 68, 1551–1554. [CrossRef] [PubMed] [Google Scholar]
  117. Smith W, Forester TR, Todorov IT (2010), The DL POLY Classic User Manual. STFC Daresbury Laboratory Daresbury, Warrington WA4 4AD Cheshire, UK. [Google Scholar]
  118. Zijlstra E, Kalitsov A, Zier T, Garcia M (2013), Squeezed Thermal Phonons Precurse Nonthermal Melting of Silicon as a Function of Fluence. Phys Rev X 3, 011005. [Google Scholar]
  119. Harb M, Ernstorfer R, Hebeisen C, Sciaini G, Peng W, Dartigalongue T, Eriksson M, Lagally M, Kruglik S, Miller R (2008), Electronically Driven Structure Changes of Si Captured by Femtosecond Electron Diffraction. Phys Rev Lett 100, 155504. [CrossRef] [PubMed] [Google Scholar]
  120. Jeschke HO, Garcia ME, Lenzner M, Bonse J, Krüger J, Kautek W (2002), Laser ablation thresholds of silicon for different pulse durations: theory and experiment. Appl Surf Sci 197, 839–844. [CrossRef] [Google Scholar]
  121. Medvedev N, Ziaja B (2018), Multistep transition of diamond to warm dense matter state revealed by femtosecond X-ray diffraction. Sci Rep 8, 5284. [CrossRef] [PubMed] [Google Scholar]
  122. Farahani SD (2017), Structural modi cation of solids by ultra-short X-ray laser pulses. Phd thesis, University of Hamburg. [Google Scholar]
  123. Thompson A, Vaughan D, Kirz J, Attwood D, Gullikson E, Howells M, Kim K-J, Kortright J, LindauI, Pianetta P, Robinson A, Underwood J, Williams G, Winick H (2009), X-Ray Data Booklet, Center for X-ray Optics and Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. [Google Scholar]
  124. Henke BL, Gullikson EM, Davis JC (1993), X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50–30, 000 eV, Z = 1–92. At Data Nucl Data Tables 54, 181–342. [Google Scholar]
  125. van den Berg QY, Fernandez-Tello EV, Burian T, Chalupský J, Chung H-K, Ciricosta O, Dakovski GL, Hájková V, Hollebon P, Juha L, Krzywinski J, Lee RW, Minitti MP, Preston TR, de la Varga AG, Vozda V, Zastrau U, Wark JS, Velarde P, Vinko SM (2018), Clocking Femtosecond Collisional Dynamics via Resonant X-Ray Spectroscopy. Phys Rev Lett 120, 055002. [Google Scholar]
  126. Vinko SM, Ciricosta O, Cho BI, Engelhorn K, Chung H-K, Brown CRD, Burian T, Chalupský J, Falcone RW, Graves C, Hájková V, Higginbotham A, Juha L, Krzywinski J, Lee HJ, Messerschmidt M, Murphy CD, Ping Y, Scherz A, Schlotter W, Toleikis S, Turner JJ, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee RW, Heimann P A, Nagler B, Wark JS (2012), Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. Nature 482, 59–62. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  127. Son S-K, Thiele R, Jurek Z, Ziaja B, Santra R (2014), Quantum-Mechanical Calculation of Ionization-Potential Lowering in Dense Plasmas. Phys Rev X 4, 031004. [Google Scholar]
  128. Ziaja B, Jurek Z, Medvedev N, Son S-K, Thiele R, Toleikis S (2013), Photoelectron spectroscopy method to reveal ionization potential lowering in nanoplasmas. J Phys B: At Mol Opt Phys 46, 164009. [CrossRef] [Google Scholar]
  129. Ernstorfer R, Harb M, Hebeisen CT, Sciaini G, Dartigalongue T, Dwayne Miller RJ (2009), The formation of warm dense matter: experimental evidence for electronic bond hardening in gold. Science 323, 1033–1037. [CrossRef] [PubMed] [Google Scholar]
  130. Grigoryan NS, Zijlstra ES, Garcia ME (2014), Electronic origin of bond softening and hardening in femtosecond-laser-excited magnesium. New J Phys 16, 013002. [CrossRef] [Google Scholar]
  131. Liu T-H, Zhou J, Liao B, Singh DJ, Chen G (2017), First-principles mode-by-mode analysis for electron-phonon scattering channels and mean free path spectra in GaAs. Phys Rev B 95, 075206. [CrossRef] [Google Scholar]
  132. Mehl MJ, Papaconstantopoulos DA (1996), Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals. Phys Rev B 54, 4519–4530. [CrossRef] [Google Scholar]
  133. Lipp V, Medvedev N, Ziaja B (2017), Classical Monte-Carlo simulations of x-ray induced electron cascades in various materials. In Proc. SPIE 10236, Damage to VUV, EUV, and X-ray Optics VI, 102360H–102360H–9, International Society for Optics and Photonics. [Google Scholar]
  134. Hao Y, Inhester L, Hanasaki K, Son S-K, Santra R (2015), Efficient electronic structure calculation for molecular ionization dynamics at high X-ray intensity. Struct Dyn 2, 041707 [Google Scholar]
  135. Ercolessi F, Adams JB (1994), Interatomic potentials from first-principles calculations: the force-matching method. Europhys Lett (EPL) 26, 583. [CrossRef] [Google Scholar]
  136. Porezag D, Frauenheim Th, Köhler Th, Seifert G, Kaschner R (1995), Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. Phys Rev B 51, 12947–12957. [CrossRef] [Google Scholar]
  137. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim Th, Suhai S, Seifert G (1998), Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58, 7260–7268. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.