Issue
4open
Volume 3, 2020
Gravitational waves and the advent of multi-messenger astronomy
Article Number 4
Number of page(s) 9
Section Physics - Applied Physics
DOI https://doi.org/10.1051/fopen/2020004
Published online 26 May 2020
  1. Linsley J (1963), Evidence for a primary cosmic-ray particle with energy 1020 eV. Phys Rev Lett 10, 146–148. [Google Scholar]
  2. Pierre Auger Collaboration (2010), Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory. Phys Lett B 685, 4–5, 239–246. [Google Scholar]
  3. Pierre Auger, Ehrenfest P, Maze R, Daudin J, Fréon Robley A (1939), Extensive cosmic ray showers. Rev. Mod. Phys. 11, 288–291. [Google Scholar]
  4. Matthews J (2005), A Heitler model of extensive air showers. Astropart Phys 22, 5, 387–397. [CrossRef] [Google Scholar]
  5. Clark GW, Earl J, Kraushaar WL, Linsley J, Rossi BB, Scherb F, Scott DW (1961), Cosmic-ray air showers at sea level. Phys Rev 122, 637–654. [Google Scholar]
  6. Dembinski HP, Arteaga-Velázquez JC, Cazon L, Conceição R, Gonzalez J, Itow Y, Ivanov D, Kalmykov NN, Karpikov I, Müller S, Pierog T, Riehn F, Roth M, Sako T, Soldin D, Takeishi R, Thompson G, Troitsky S, Yashin I, Zadeba E, Zhezher Y, EAS-MSU, IceCube, KASCADE-Grande, NEVOD-DECOR, Pierre Auger, SUGAR, Telescope Array, Yakutsk EAS Array collaborations (2019), Report on tests and measurements of hadronic interaction properties with air showers. EPJ Web Conf 210, 02004. [Google Scholar]
  7. Abbasi RU, Abe M, Abu-Zayyad T, Allen M, Azuma R, Barcikowski E, Belz JW, Bergman DR, Blake SA, Cady R, et al. (2016), The energy spectrum of cosmic rays above 1017.2 eV measured by the fluorescence detectors of the Telescope Array experiment in seven years. Astropart Phys 80, 131–140. [CrossRef] [Google Scholar]
  8. Chiavassa A, Apel WD, Arteaga-Velázquez JC, Bekk K, Bertaina M, Blümer J, Bozdog H, Brancus IM, Cantoni E, Cossavella F, Daumiller K, de Souza V, Di Pierro F, Doll P, Engel R, Fuhrmann D, Gherghel-Lascu A, Gils HJ, Glasstetter R, Grupen C, Haungs A, Heck D, Hörandel JR, Huber D, Huege T, Kampert K-H, Kang D, Klages HO, Link K, Luczak P, Mathes HJ, Mayer HJ, Milke J, Mitrica B, Morello C, Oehlschläger J, Ostapchenko S, Palmieri N, Pierog T, Rebel H, Roth M, Schieler H, Schoo S, Schröder FG, Sima O, Toma G, Trinchero GC, Ulrich H, Weindl A, Wochele J, Zabierowski J (2019), Summary of the main results of the KASCADE and KASCADE-Grande experiments. EPJ Web Conf 208, 03002. [Google Scholar]
  9. Yoshida S, Hayashida N, Honda K, Honda M, Imaizumi S, Inoue N, Kadota K, Kakimoto F, Kamata K, Kawaguchi S, Kawasumi N, Matsubara Y, Murakami K, Nagano M, Ohoka H, Teshima M, Tsushima I, Yoshii H (1995), The cosmic ray energy spectrum above 3 × 1018 eV measured by the Akeno Giant Air Shower Array. Astropart Phys 3, 2, 105–123. [NASA ADS] [CrossRef] [Google Scholar]
  10. Yakutsk collaboration (2004), The spectrum features of UHECRs below and surrounding GZK. Nucl Phys B Proc Suppl 136, 3–11. CRIS 2004 Proceedings of the Cosmic Ray International Seminars: GZK and Surroundings. [CrossRef] [Google Scholar]
  11. High Resolution Fly’s Eye Collaboration (2008), First observation of the Greisen-Zatsepin-Kuzmin suppression. Phys Rev Lett 100, 101101. [CrossRef] [PubMed] [Google Scholar]
  12. Blasi P (2013), The origin of galactic cosmic rays. Astron Astrophys Rev 21, 1, 70. [NASA ADS] [CrossRef] [Google Scholar]
  13. Settimo M (2016), Review on extragalactic cosmic rays detection, in: XXV European Cosmic Ray Symposium, Turin, September 4–9, 2016. [Google Scholar]
  14. Hillas AM (1984), The Origin of Ultra-High-Energy Cosmic Rays. Annu Rev Astron Astrophys 22, 425–444. [Google Scholar]
  15. Alves Batista R, Biteau J, Bustamante M, Dolag K, Engel R, Ke Fang K, Karl-Heinz K, Kostunin D, Mostafa M, Murase K, Oikonomou F, Olinto AV, Panasyuk MI, Sigl G, Taylor AM, Unger M (2019), Open questions in cosmic-ray research at ultrahigh energies. Front Astron Space Sci 6, 23. [CrossRef] [Google Scholar]
  16. Kotera K, Silk J (2016), Ultrahigh Energy cosmic rays and black hole mergers. Astrophys J 823, 2, L29. [Google Scholar]
  17. Semikoz D.V (2007), Constraints on top-down models for the origin of UHECRs from the Pierre Auger Observatory data, in: Proceedings, 30th International Cosmic Ray Conference (ICRC 2007): Merida, Yucatan, Mexico, July 3–11, 2007 4, pp. 433–436. [Google Scholar]
  18. Murase K, Kashiyama K, Mészáros P, Shoemaker I, Senno N (2016), Ultrafast outflows from black hole mergers with a minidisk. Astrophys J 822, 1, L9. [Google Scholar]
  19. Pierre Auger Collaboration (2015), The Pierre Auger Cosmic Ray Observatory. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 798, 172–213. [NASA ADS] [CrossRef] [Google Scholar]
  20. Pierre Auger Collaboration (2016), Energy estimation of cosmic rays with the engineering radio array of the Pierre Auger Observatory. Phys Rev D 93, 12, 122005. [Google Scholar]
  21. Pierre Auger Collaboration (2017), Muon counting using silicon photomultipliers in the AMIGA detector of the Pierre Auger Observatory. JINST 12, 3, P03002. [CrossRef] [Google Scholar]
  22. Pierre Auger Collaboration (2008), Upper limit on the cosmic-ray photon flux above 1019 eV using the surface detector of the Pierre Auger Observatory. Astropart Phys 29, 243–256. [NASA ADS] [CrossRef] [Google Scholar]
  23. Gelmini GB, Kalashev OE, Semikoz DV (2008), GZK photons as ultra high energy cosmic rays. J Exp Theor Phys 106, 1061–1082. [NASA ADS] [CrossRef] [Google Scholar]
  24. Aloisio R, Blasi P, Ghia PL, Grillo AF (2000), Probing the structure of space-time with cosmic rays. Phys Rev D 62, 053010. [Google Scholar]
  25. Guedes Lang R, Martínez-Huerta H, de Souza V (2018), Limits on the Lorentz invariance violation from UHECR astrophysics. Astrophys J 853, 1, 23. [Google Scholar]
  26. Zatsepin GT, Kuzmin VA (1966), Upper limit of the spectrum of cosmic rays. JETP Lett 4, 78–80. [Pisma Zh. Eksp. Teor. Fiz. 4, 114 (1966)]. [Google Scholar]
  27. Greisen K (1966), End to the cosmic-ray spectrum? Phys Rev Lett 16, 748–750. [Google Scholar]
  28. Pierre Auger Collaboration (2017), Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory. JCAP 1704, 4, 038. [Erratum: JCAP 1803, no. 03, E02 (2018)]. [Google Scholar]
  29. Cazon L (2019), Probing high-energy hadronic interactions with extensive air showers. PoS ICRC2019, 005. [Google Scholar]
  30. Domenico M De, Settimo M, Riggi S, Bertin E (2013), Reinterpreting the development of extensive air showers initiated by nuclei and photons. JCAP 1307, 050. [CrossRef] [Google Scholar]
  31. Bleve C (2016), Updates on the neutrino and photon limits from the Pierre Auger Observatory. PoS ICRC2015, 1103. [Google Scholar]
  32. Collaboration IceCube (2017), The IceCube Neutrino Observatory: instrumentation and online systems. JINST 12, 3, P03012. [CrossRef] [Google Scholar]
  33. ANTARES Collaboration (2011), ANTARES: the first undersea neutrino telescope. Nucl Instrum Methods Phys Res A 656, 1, 11–38. [Google Scholar]
  34. Aiello S, Akrame SE, Ameli F, Anassontzis EG, Andre M, Androulakis G, Anghinolfi M, Anton G, Ardid M, Aublin J, Avgitas T, Bagatelas C, Barbarino G, Baret B, Barrios-Martí J, Belias A, Berbee E, Van Den Berg A, Bertin V, Biagi S, Biagioni A, Biernoth C, Boumaaza J, Bourret S, Bouta M, Bouwhuis M, Bozza C, Brânzaş H, Bruchner M, Bruijn R, Brunner J, Buis E, Buompane R, Busto J, Calvo D, Capone A, Celli S, Chabab M, Chau N, Cherubini S, Chiarella V, Chiarusi T, Circella M, Cocimano R, Coelho JAB, Coleiro A, Colomer Molla M, Coniglione R, Coyle P, Creusot A, Cuttone G, D'Onofrio A, Dallier R, Distefano C, Domi A, Donà R, Donzaud C, Dornic D, Dörr M, Durocher M, Eberl T, Van Eijk D, El Bojaddaini I, Eljarrari H, Elsaesser D, Enzenhöfer A, Fermani P, Ferrara G, Filipović MD, Fusco LA, Gal T, Garcia A, Garufi F, Gialanella L, Giorgio E, Giuliante A, Gozzini SR, Gracia R, Graf K, Grasso D, Grégoire T, Grella G, Hallmann S, Hamdaoui H, Van Haren H, Heid T, Heijboer A, Hekalo A, Hernández-Rey JJ, Hofestädt J, Illuminati G, James CW, Jongen M, De Jong M, De Jong P, Kadler M, Kalaczyński P, Kalekin O, Katz UF, Khan Chowdhury NR, Kießling D, Koffeman EN, Kooijman P, Kouchner A, Kreter M, Kulikovskiy V, Kunhikannan Kannichankandy M, Lahmann R, Larosa G, Le Breton R, Leone F, Leonora E, Levi G, Lincetto M, Lonardo A, Longhitano F, Lopez Coto D, Lotze M, Maderer L, Maggi G, Mańczak J, Mannheim K, Margiotta A, Marinelli A, Markou C, Martin L, Martínez-Mora JA, Martini A, Marzaioli F, Mele R, Melis KW, Migliozzi P, Migneco E, Mijakowski P, Miranda LS, Mollo CM, Morganti M, Moser M, Moussa A, Muller R, Musumeci M, Nauta L, Navas S, Nicolau CA, Nielsen C, Ó Fearraigh B, Organokov M, Orlando A, Ottonello S, Panagopoulos V, Papalashvili G, Papaleo R, Păvălas GE, Pellegrino C, Perrin-Terrin M, Piattelli P, Pikounis K, Pisanti O, Poirè C, Polydefki G, Popa V, Post M, Pradier T, Pühlhofer G, Pulvirenti S, Quinn L, Raffaelli F, Randazzo N, Razzaque S, Real D, Resvanis L, Reubelt J, Riccobene G, Richer M, Rigalleau L, Rovelli A, Saffer M, Salvadori I, Samtleben DFE, Sánchez Losa A, Sanguineti M, Santangelo A, Santonocito D, Sapienza P, Schumann J, Sciacca V, Seneca J, Sgura I, Shanidze R, Sharma A, Simeone F, Sinopoulou A, Spisso B, Spurio M, Stavropoulos D, Steijger J, Stellacci SM, Strandberg B, Stransky D, Stüven T, Taiuti M, Tatone F, Tayalati Y, Tenllado E, Thakore T, Trovato A, Tzamariudaki E, Tzanetatos D, Van Elewyck V, Versari F, Viola S, Vivolo D, Wilms J, De Wolf E, Zaborov D, Zornoza JD, Zúñiga J (2019), Neutrino telescope to point-like neutrino sources. Astropart. Phys. 111, 100–110. [CrossRef] [Google Scholar]
  35. Pierre Auger Collaboration (2015), Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory. Phys Rev D 91, 9, 092008. [Google Scholar]
  36. LIGO Scientific Collaboration and Virgo Collaboration (2016), Binary black hole mergers in the first advanced LIGO observing run. Phys Rev X 6, 041015. [Google Scholar]
  37. Biermann PL, Caramete LI, Fraschetti F, Gergely LA, Harms BC, Kun E, Lundquist JP, Meli A, Nath BB, Seo E-S, Stanev T, Tjus JB (2017), The nature and origin of ultra-high energy cosmic ray particles. Frascati Phys Ser 64, 103–121. [Google Scholar]
  38. Mészáros P (2006), Gamma-ray bursts. Rep Prog Phys 69, 8, 2259–2321. [Google Scholar]
  39. ANTARES Collaboration, IceCube Collaboration, LIGO Scientific Collaboration, Virgo Collaboration (2016), High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Phys Rev D 93, 12, 122010. [Google Scholar]
  40. BOOTES Collaboration, MWA, The CALET Collaboration, IKI-GW Follow-up Collaboration, H.E.S.S. Collaboration, LOFAR Collaboration, LWA, HAWC Collaboration, The Pierre Auger Collaboration, ALMA Collaboration, Euro VLBI Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN, ATLAS, High Time Resolution Universe Survey, RIMAS, RATIR, SKA South Africa/MeerKAT (2017), Multi-messenger observations of a binary neutron star merger. Astrophys J 848, 2, L12. [Google Scholar]
  41. ANTARES Collaboration, IceCube Collaboration, Pierre Auger Collaboration (2017), Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophys J 850, 2, L35. [Google Scholar]
  42. Castellina A (2019), AugerPrime: the Pierre Auger Observatory upgrade. EPJ Web Conf 210, 06002. [Google Scholar]
  43. Ayala Solares HA, Coutu S, Cowen DF, Delaunay JJ, Fox DB, Keivani A, Mostafá M, Murase K, Oikonomou F, Seglar-Arroyo M, et al. (2020), The astrophysical multimessenger observatory network (AMON): performance and science program. Astropart Phys 114, 68–76. [CrossRef] [Google Scholar]
  44. Particle Data Group (2018), Review of particle physics. Phys Rev D 98, 3, 030001. [Google Scholar]
  45. Beatty J, Westerhoff S (2009), The highest-energy cosmic rays. Annu Rev Nucl Part Sci 59, 319–345. [CrossRef] [Google Scholar]
  46. Pierre Auger Collaboration (2017), Search for photons with energies above 1018 eV using the hybrid detector of the Pierre Auger Observatory. JCAP 1704, 4, 009. [Google Scholar]
  47. Pierre Auger Collaboration (2019), Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory. JCAP 10, 10, 022. [Google Scholar]
  48. Pierre Auger Collaboration (2016), Ultrahigh-energy neutrino follow-up of gravitational wave events GW150914 and GW151226 with the Pierre Auger Observatory. Phys Rev D 94, 12, 122007. [Google Scholar]
  49. LIGO Scientific Collaboration and Virgo Collaboration (2019), GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys Rev X9, 3, 031040. [Google Scholar]
  50. LIGO Scientific Collaboration, Virgo Collaboration, Abbott R, et al. Gravitationnal Wave Open Science Center. Arxiv eprint: arXiv:1912.11716 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.