Volume 3, 2020
Gravitational waves and the advent of multi-messenger astronomy
Article Number 14
Number of page(s) 8
Section Physics - Applied Physics
Published online 20 October 2020
  1. [Google Scholar]
  2. Strathern P (2001), Mendeleev’s Dream, Penguin Books, London. This excellent book traces the history of the elements until the Periodic Table with a rich and informative narrative. [Google Scholar]
  3. Wagoner RV, Fowler WA, Hoyle F (1967), On the synthesis of elments at very high temperatures. Astrophys J 148, 3. [Google Scholar]
  4. Schramm DN, Turner MS (1998), Big-bang nucleosynthesis enters the precision era. Rev Mod Phys 70, 303. [Google Scholar]
  5. Coc A, Vangioni E (2017), Primordial nucleosynthesis. Int J Mod Phys E 26, 1741002. [NASA ADS] [CrossRef] [Google Scholar]
  6. Burbidge EM, Burbidge GR, Fowler WA, Hoyle F (1957), Synthesis of the elements in stars. Rev Mod Phys 29, 547. [Google Scholar]
  7. Cameron AGW (1957), Nuclear reactions in stars and nucleogenesis. Pub Astro Soc Pac 69, 408. [Google Scholar]
  8. Gibney E (2018), How to blow up a star. Nature 556, 287 – this excellent news article cites the research references: Melson T, Janka H-T, Marek A (2015), Astrophys J 801, L24 and Lenz EJ, et al. (2015), Astrophys J 807, L31. [PubMed] [Google Scholar]
  9. Arnould M, Goriely S (2020), Astronuclear Physics: A tale of the atomic nuclei in the skies. Prog Part Nucl Phys 112, 103766. [Google Scholar]
  10. Lattimer J, Schramn D (1974), Black-hole-neutron-star-collisions. ApJL 192, L145–L147. [NASA ADS] [CrossRef] [Google Scholar]
  11. Li L-X, Paczynski B (1998), Transient events from neutron star mergers. ApJL 507, L59. [NASA ADS] [CrossRef] [Google Scholar]
  12. Rosswog S, Liebendörfer M, Thielemann F-K, Davies MB, Benz W, Piran T (1999), Mass ejection in neutron star mergers. Astron Astrophys 341, 499. [Google Scholar]
  13. Freiburghaus C, Rosswog S, Thielemann F-K (1999), r-Process in neutron star mergers. Astrophys J 525, L121. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  14. Aston FW (1937), A second-order focusing mass spectrograph and isotopic weights by the Doublet Method. Proc Royal Soc London A 163, 391. [Google Scholar]
  15. Eddington AS (1920), The internal constitution of the stars. The Scientific Monthly 11, 297. [Google Scholar]
  16. Elsasser W (1934), Sur le principe de Pauli dans les noyaux - II. J Phys Radium 5, 389. [CrossRef] [EDP Sciences] [Google Scholar]
  17. Lunney D, Pearson JM, Thibault C (2003), Recent trends in the determination of nuclear masses. Rev Mod Phys 75, 1099. [Google Scholar]
  18. Lunney D (2005), Eur Phys J A 25, 3. [CrossRef] [EDP Sciences] [Google Scholar]
  19. Lunney D (2006), Proc. Science (NIC-IX) 010, 2344. [Google Scholar]
  20. Lunney D (2015), JPS Conf. Proc. 6, 010018. [Google Scholar]
  21. 100 Years of Mass Spectrometry Special Issue (2013), Int J Mass Spectrom 349–350. [Google Scholar]
  22. Samyn M, Goriely S, Heenen P-H, Pearson JM, Tondeur F (2002), A Hartree-Fock-Bogoliubov mass formula. Nucl Phys A 700, 142. [Google Scholar]
  23. Goriely S, Chamel N, Pearson JM (2016), Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XVI. Inclusion of self-energy effects in pairing. Phys Rev C 93, 034337. [Google Scholar]
  24. Goriely S, Hilaire S, Girod M, Péru S (2009), First Gogny-Hartree-Fock-Bogoliubov nuclear mass model. Phys Rev Lett 102, 242501. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  25. Peña-Arteaga D, Goriely S, Chamel N (2016), Relativistic mean-field mass models. Eur Phys J A 52, 320. [CrossRef] [EDP Sciences] [Google Scholar]
  26. Goriely S, Samyn M, Pearson JM, Onsi M (2005), Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. IV: Neutron-matter constraint. Nucl Phys A 750, 425. [Google Scholar]
  27. Samyn M, Goriely S, Pearson JM (2005), Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. V. Extension to fission barriers. Phys Rev C 72, 044316. [Google Scholar]
  28. Goriely S, Sida J-L, Lematre J-F, Panebianco S, Dubray N, Hilaire S, Bauswein A, Janka H-T (2013), New fission fragment distributions and r-process origin of the rare-earth elements. Phys Rev Lett 111, 242502. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  29. Ravenhall DG, Bennett CD, Pethick CJ (1972), Nuclear surface energy and neutron-star matter. Phys Rev Lett 28, 978. [Google Scholar]
  30. Chabanat E, Bonche P, Haensel P, Meyer J, Schaeffer R (1997), A Skyrme parametrization from subnuclear to neutron star densities. Nucl Phys A 627, 710. [Google Scholar]
  31. Rayet M, Arnould M, Tondeur F, Paulus G (1982), Nuclear forces and the properties of matter at high temperature and density. Aston Astrophys 116, 183. [Google Scholar]
  32. Yakovlev DG, Haensel P, Baym G, Pethick Ch (2013), Physics-Uspekhi 56, 289. [CrossRef] [Google Scholar]
  33. Baade W, Zwicky F (1934), Supernovae and Cosmic Rays. Phys Rev 45, 138. [Google Scholar]
  34. Oppenheimer JR, Volkoff GM (1939), On massive neutron cores. Phys Rev 55, 374. [Google Scholar]
  35. Oppenheimer JR, Snyder H (1939), On continued gravitational contraction. Phys Rev 56, 455. [Google Scholar]
  36. Misner CW, Thorne KS, Wheeler JA (1973), Gravitation, W.H. Freeman and Co., San Francisco, CA. [Google Scholar]
  37. Laplace P-S, Exposition du système du monde, Imprimerie du Cercle-Social, Paris, IV – note that Year IV of the French Republic corresponds to 1795. [Google Scholar]
  38. Michell RJ (1784), VII. On the means of discovering the distance, magnitude, &c. of the fixed stars, in consequence of the diminution of the velocity of their light, in case such a diminution should be found to take place in any of them, and such other data should be procured from observations, as would be farther necessary for that purpose. Phil Trans Royal Soc London 74, 34. [Google Scholar]
  39. Hewish A, Bell SJ, Pilkington JDH, et al. (1968), Observation of a rapidly pulsating radio source. Nature 217, 709. [Google Scholar]
  40. Lattimer JM, Prakash M (2004), The physics of neutron stars. Science 304, 536. [Google Scholar]
  41. Vidaña I (2018), A short walk through the physics of neutron stars. Eur Phys J Plus 133, 445. [Google Scholar]
  42. The Physics and Astrophysics of Neutron Stars (2018), Astrophysics and Space Science Library, Vol. 457, Springer, Cham. [Google Scholar]
  43. Ozel F, Freire P (2016), Masses, radii, and the equation of state of neutron stars. An Rev Astron Astrophys 54, 401. [NASA ADS] [CrossRef] [Google Scholar]
  44. Hulse RA, Taylor JH (1975), Discovery of a pulsar in a binary system. Astrophys J 195, L51. [Google Scholar]
  45. Caplan ME, Horowitz CJ (2017), Colloquium: Astromaterial science and nuclear pasta. Rev Mod Phys 89, 041002. [Google Scholar]
  46. Tolman RC (1939), Static solutions of Einstein’s field equations for spheres of fluid. Phys Rev 55, 364. [Google Scholar]
  47. Chamel N, Haensel P (2008), Physics of neutron star crusts. Living Rev Relativ 11, 10. [CrossRef] [PubMed] [Google Scholar]
  48. Tondeur F (1971), Mass formula and properties of matter at subnuclear densities. Astron Astrophys 14, 451. [Google Scholar]
  49. Baym G, Pethick Ch, Sutherland P (1971), The ground state of matter at high densities: equation of state and stellar models. ApJ 170, 299. [Google Scholar]
  50. Pearson JM, Goriely S, Chamel N (2011), Properties of the outer crust of neutron stars from Hartree-Fock-Bogoliubov mass models. Phys Rev C 83, 065810. [Google Scholar]
  51. Goriely S, Chamel N, Janka H-T, Pearson JM (2011), The decompression of the outer neutron star crust and r-process nucleosynthesis. Astro Astron 531, A78. [Google Scholar]
  52. Ruester SB, Hempel M, Schaffner-Bielich J (2006), Outer crust of nonaccreting cold neutron stars. Phys Rev C 73, 035804. [Google Scholar]
  53. Roca-Maza X, Piekarewicz J (2008), Impact of the symmetry energy on the outer crust of nonaccreting neutron stars. Phys Rev C 78, 025807. [Google Scholar]
  54. Kreim S, Hempel M, Lunney D, Schaffner-Bielich J (2013), Nuclear masses and neutron stars. Int J Mass Spectrom 349, 63. [Google Scholar]
  55. Utama R, Piekarewicz J, Prosper HB (2016), Nuclear mass predictions for the crustal composition of neutron stars: A Bayesian neural network approach. Phys Rev C 93, 014311. [Google Scholar]
  56. Chamel N (2020), Analytical determination of the structure of the outer crust of a cold nonaccreted neutron star. Phys Rev C 101, 032801(R). [Google Scholar]
  57. Goriely S, Chamel N, Pearson JM (2010), Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XII. Stiffness and stability of neutron-star matterPhys Rev C 82, 035804. [Google Scholar]
  58. Wolf RN, Beck D, Blaum K, et al. (2013), Plumbing neutron stars to new depths with the binding energy of the exotic nuclide 82Zn. Phys Rev Lett 110, 041101. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  59. Welker A, Althubiti NAS, Atanasov D, et al. (2017), Binding energy of 79Cu: Probing the structure of the doubly magic 78Ni from only one proton away. Phys Rev Lett 119, 192502. [CrossRef] [PubMed] [Google Scholar]
  60. Pearson JM, Chamel N, Potekhin AY, Fantina AF, Ducoin C, Dutta AK, Goriely S (2018), Unified equations of state for cold non-accreting neutron stars with Brussels–Montreal functionals – I. Role of symmetry energy. MNRAS 481, 2994. [Google Scholar]
  61. Chamel N, Fantina AF, Pearson JM, Goriely S (2011), Masses of neutron stars and nuclei. Phys Rev C 84, 062802(R). [Google Scholar]
  62. Lattimer JM (2012), Astrophysical and laboratory constraints for the dense matter equation of state. AIP Conf Proc 1484, 319. [Google Scholar]
  63. Lattimer JM (2020), Equation of state from neutron star mass and radius measurements. JPS Conf Proc 31, 011021. [Google Scholar]
  64. This website shows a neutron-star mass-radius plot for several different EoS, the data for which are also available [Google Scholar]
  65. Demorest PB, Pennucci T, Ransom SM, Roberts MSE, Hessels JWT (2010), A two-solar-mass neutron star measured using Shapiro delay. Nature 467, 1080. [Google Scholar]
  66. Fonseca E, Pennucci TT, Ellis JA, et al. (2016), The nanograv nine-year data set: mass and geometric measurements of binary millisecond pulsars. ApJ 832, 167. [Google Scholar]
  67. Antoniadis J, Freire PCC, Wex N, et al. (2013), A massive pulsar in a compact relativistic binary. Science 340, 1233232. [Google Scholar]
  68. Cromartie HT, Fonseca E, Ransom SM, et al. (2020), Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat Astron 4, 72. [Google Scholar]
  69. Perot L, Chamel N, Sourie A (2019), Role of the symmetry energy and the neutron-matter stiffness on the tidal deformability of a neutron star with unified equations of state. Phys Rev C 100, 035801. [Google Scholar]
  70. Tews I, Margueron J, Reddy S (2018), Critical examination of constraints on the equation of state of dense matter obtained from GW170817. Phys Rev C 98, 045804. [Google Scholar]
  71. Bauswein A, Janka H-T (2012), Measuring neutron-star properties via gravitational waves from neutron-star mergers. Phys Rev Lett 108, 011101. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  72. Oertel M, Hempel M, Klähn T, Typel S (2017), Equations of state for supernovae and compact stars. Rev Mod Phys 89, 015007. [Google Scholar]
  73. The video of the National Science Foundation press release announcing GW170817 features presentations by astronomers and astrophysicists representing each “messenger” ( [Google Scholar]
  74. LIGO Scientific Collaboration and Virgo Collaboration, Fermi GBM, INTEGRAL, IceCube Collaboration, et al., (2017), Multi-messenger observations of a binary neutron star merger. ApJL 848, L12. [NASA ADS] [CrossRef] [Google Scholar]
  75. Abbott R, Abbott TD, Abraham S, et al. (2020), GW190814: Gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. ApJL 896, L44. [CrossRef] [Google Scholar]
  76. Berger E, Ed. (2018), Focus issue on the Electromagnetic Counterpart of the Neutron Star Binary Merger GW170817. ApJL 848. [Google Scholar]
  77. Rosswog S (2005), Mergers of neutron star-black hole binaries with small mass ratios: nucleosynthesis, gamma-ray bursts, and electromagnetic transients. Astrophys J 634, 1202–1213. [Google Scholar]
  78. Metzger BD, Martínez-Pinedo G, Darbha S, et al. (2010), Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon Not R Astron Soc 406, 2650–2662. [Google Scholar]
  79. Tanvir NR, Levan AJ, Fruchter AS, et al. (2013), A “kilonova” associated with the short-duration γ-ray burst GRB 130603B. Nature 500, 547. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  80. Berger E, Fong W, Chornock R (2013), An r-process Kilonova Associated with the Short-hard GRB 130603B. ApJL 774, L23. [NASA ADS] [CrossRef] [Google Scholar]
  81. Metzger BD (2020), Kilonovae. Liv Rev Relativ 23, 1. [CrossRef] [Google Scholar]
  82. Arcavi I, Hosseinzadeh G, Howell DA, et al. (2017), Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 551, 64. [Google Scholar]
  83. Kasen D, Metzger B, Barnes J, et al. (2017), Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551, 80. [Google Scholar]
  84. Watson D, Hansen CJ, Selsing J, et al. (2019), Identification of strontium in the merger of two neutron stars. Nature 574, 497. [PubMed] [Google Scholar]
  85. Just O, Bauswein A, Ardevol-Pulpillo R, Goriely S, Janka H-Th (2015), Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers. MNRAS 448, 541. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.