Open Access
Issue
4open
Volume 4, 2021
Article Number 1
Number of page(s) 21
Section Life Sciences - Medicine
DOI https://doi.org/10.1051/fopen/2021001
Published online 15 February 2021
  1. Wong T, Mcgrath JA, Navsaria H (2007), The role of fibroblasts in tissue engineering and regeneration. Br J Dermatol 156, 6, 1149–1155. [PubMed] [Google Scholar]
  2. Stark HJ, Szabowski A, Fusenig NE, Maas-Szabowski N (2004), Organotypic cocultures as skin equivalents: A complex and sophisticated in vitro system. Biol Proced Online 6, 55–60. [PubMed] [Google Scholar]
  3. El Ghalbzouri A, Gibbs S, Lamme E, Van Blitterswijk C, Ponec M (2002), Effect of fibroblasts on epidermal regeneration. Br J Dermatol 1472, 230–243. [PubMed] [Google Scholar]
  4. Sun T, Jackson S, Haycock JW, MacNeil S (2006), Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J Biotechnol 122, 3, 372–381. [PubMed] [Google Scholar]
  5. Mertsching H, Weimer M, Kersen S, Brunner H (2008), Human skin equivalent as an alternative to animal testing. GMS Krankenhhyg Interdiszip 3, 1, Doc11. PMC2831516. [Google Scholar]
  6. Ponec M (2002), Skin constructs for replacement of skin tissues for in vitro testing. Adv Drug Deliv Rev 54, 1, 19–30. [Google Scholar]
  7. Ponec M, Boelsma E, Gibbs S, Mommaas M (2002), Characterization of reconstructed skin models. Skin Pharmacol Appl Skin Physiol 15, 1, 14–17. [Google Scholar]
  8. Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K (2011), Skin tissue engineering – in vivo and in vitro applications. Adv Drug Deliv Rev 63, 4–5, 352–366. [PubMed] [Google Scholar]
  9. Khorshid FA (2005), Comparative study of keloid formation in humans and laboratory animals. Med Sci Monit 11, 7, BR212–219. [PubMed] [Google Scholar]
  10. European Commission, SCCS (Scientific Committee on Consumer Safety) (2016), SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation 9th revision. SCCS 1564, 15, 1–151. [Google Scholar]
  11. Becker RA, Borgert CJ, Webb S, Ansell J, Amundson S, Portier CJ, Goldberg A, Bruner LH, Rowan A, Curren RD (2006), Report of an ISRTP Workshop: Progress and barriers to incorporating alternative toxicological methods in the US. Regul Toxicol Pharmacol 46, 1, 18–22. [PubMed] [Google Scholar]
  12. Cukierman E, Pankov R, Stevens DR, Yamada KM (2001), Taking cell-matrix adhesions to the third dimension. Science 294, 5547, 1708–1712. [Google Scholar]
  13. Grinnell F (1976), Biochemical analysis of cell adhesion to a substratum and its possible relevance to cell metastasis. Prog Clin Biol Res 9, 227–236. [PubMed] [Google Scholar]
  14. Bissell MJ, Hall HG, Parry G (1982), How does the extracellular matrix direct gene expression? J Theor Biol 99, 1, 31–68. [CrossRef] [PubMed] [Google Scholar]
  15. Yang J, Balakrishnan A, Hamamoto S, Beattie CW, Gupta TK, Wellings SR, Nandi S (1986), Different mitogenic and phenotypic responses of human breast epithelial cells grown in two versus three dimensions. Exp Cell Res 167, 2, 563–569. [PubMed] [Google Scholar]
  16. Lin CQ, Bissell MJ (1993), Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J 7, 9, 737–743. [PubMed] [Google Scholar]
  17. Smalley KS, Lioni M, Herlyn M (2006), Life ins’t flat: Taking cancer biology to the next dimension. In Vitro Cell Dev Biol Anim 42, 8–9, 242–247. [PubMed] [Google Scholar]
  18. Grinnell F (2008), Fibroblast mechanics in three-dimensional collagen matrices. J Bodyw Mov Ther 12, 3, 191–193. [Google Scholar]
  19. Horning JL, Sahoo SK, Vijayaraghavalu S, Dimitrijevic S, Vasir JK, Jain TK, Panda AK, Labhasetwar V (2008), 3-D tumor model for in vitro evaluation of anticancer drugs. Mol Pharm 5, 5, 849–862. [PubMed] [Google Scholar]
  20. Brücher BLDM, Jamall IS (2019), Synopsis: Special Issue on “Disruption of signaling homeostasis induced crosstalk in the carcinogenesis paradigm Epistemology of the origin of cancer”. 4open 2, 28, 1–30. [CrossRef] [EDP Sciences] [Google Scholar]
  21. Mazzoleni G, Di Lorenzo D, Steimberg N (2009), Modelling tissues in 3D: the next future of pharmaco-toxicology and food research? Genes Nutr 4, 1, 13–22. [PubMed] [Google Scholar]
  22. Mathes SH, Ruffner H, Graf-Hausner U (2014), The use of skin models in drug development. Adv Drug Deliv Rev 69–70, 81–102. [PubMed] [Google Scholar]
  23. Bilousova G, Chen J, Roop DR (2011), Differentiation of mouse induced pluripotent stem cells into a multipotent keratinocyte lineage. J Invest Dermatol 131, 4, 857–864. [PubMed] [Google Scholar]
  24. Itoh M, Umegaki-Arao N, Guo Z, Liu L, Higgins CA, Christiano AM (2013), Generation of 3D Skin Equivalents Fully Reconstituted from Human Induced Pluripotent Stem Cells (iPSCs). PLoS One 8, 10, e77673. https://doi.org/10.1371/journal.pone.0077673. [Google Scholar]
  25. Randall MJ, Jüngel A, Rimann M, Wuertz-Kozak K (2018), Advances in the biofabrication of 3D skin in vitro: Healthy and pathological models. Front Bioeng. Biotechnol 6, 154. https://doi.org/10.3389/journal.fbioe.2018.00154. [Google Scholar]
  26. Brohlin M, Kelk P, Wiberg M, Kingham PJ (2017), Effects of a defined xeno-free medium on the growth and neurotrophic and angiogenic properties of human adult stem cells. Cytotherapy 19, 5, 629–639. [PubMed] [Google Scholar]
  27. De Corte P, Verween G, Verbeken G, Rose T, Jennes S, De Coninck A, Roseeuw D, Vanderkelen A, Kets E, Haddow D (2012), Feeder layer- and animal product-free culture of neonatal foreskin keratinocytes: improved performance, usability, quality and safety. Cell Tissue Bank 131, 175–189. [PubMed] [Google Scholar]
  28. Freshney RI (2016), Culture of animal cells: a manual of basic techniques and specialized applications, Wiley, New Jersey. [Google Scholar]
  29. Boehnke K, Mirancea N, Pavesio A, Fusenig NE, Boukamp P, Stark HJ (2007), Effects of fibroblasts and microenvironment on epidermal regeneration and tissue function in long-term skin equivalents. Eur J Cell Biol 86, 11–12, 731–746. [PubMed] [Google Scholar]
  30. Balasubramani M, Kumar TR, Babu M (2001), Skin substitutes: a review. Burns 27, 5, 534–544. [PubMed] [Google Scholar]
  31. El Ghalbzouri A, Lamme E, Ponec M (2002), Crucial role of fibroblasts in regulating epidermal morphogenesis. Cell Tissue Res 310, 189–199. [Google Scholar]
  32. El Ghalbzouri A, Jonkman MF, Dijkman R, Ponec M (2005), Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes. J Invest Dermatol 124, 1, 79–86. [PubMed] [Google Scholar]
  33. Andriani F, Margulis A, Lin N, Griffey S, Garlick JA (2003), Analysis of microenvironmental factors contributing to basement membrane assembly and normalized epidermal phenotype. J Invest Dermatol 120, 6, 923–931. [PubMed] [Google Scholar]
  34. Lee DY, Cho KH (2005), The effects of epidermal keratinocytes and dermal fibroblasts on the formation of cutaneous basement membrane in three-dimensional culture systems. Arch Dermatol Res 296, 7, 296–302. [PubMed] [Google Scholar]
  35. Maas-Szabowski N, Shimotoyodome A, Fusenig NE (1999), Keratinocyte growth regulation in fibroblast cocultures via a double paracrine mechanism. J Cell Sci 112, 12, 1843–1853. [Google Scholar]
  36. Maas-Szabowski N, Stark HJ, Fusenig NE (2000), Keratinocyte growth regulation in defined organotypic cultures through IL-1-induced keratinocyte growth factor expression in resting fibroblasts. J Invest Dermatol 114, 6, 1075–1084. [PubMed] [Google Scholar]
  37. Sampias C, Rolls G (2019), H&E Staining Overview: A Guide to Best Practices, Richmond, Leica Biosystems. [Google Scholar]
  38. Nagashima K, Zheng J, Parmiter D, Patri AK (2011), Biological tissue and cell culture specimen preparation for TEM nanoparticle characterization. Methods Mol Biol 697, 83–91. [PubMed] [Google Scholar]
  39. Sharma S, Poddar R, Sen P, Andrews J (2008), Effect of vitamin C on collagen biosynthesis and degree of birefringence in polarization sensitive optical coherence tomography (PS-OCT). Afr J Biotechnol 7, 12, 2049–2054. [Google Scholar]
  40. Chapman JA (1985), The banding pattern of collagen, in: R. Garrone (Ed.), Biology of Invertebrate and Lower Vertebrate Collagens Bairati A, Springer, Boston. [Google Scholar]
  41. Duplan-Perrat F, Damour O, Montrocher C, Peyrol S, Grenier G, Jacob MP, Braye F (2000), Keratinocytes influence the maturation and organization of the elastin network in a skin equivalent. J Invest Dermatol 114, 2, 365–370. [PubMed] [Google Scholar]
  42. Ehrlich HP, Krummel TM (1996), Regulation of wound healing from a connective tissue perspective. Wound Repair Regen 4, 2, 203–210. [CrossRef] [PubMed] [Google Scholar]
  43. Hur GY, Seo DK, Lee JW (2014), Contracture of skin graft in human burns: effect of artificial dermis. Burns 40, 8, 1497–1503. [CrossRef] [PubMed] [Google Scholar]
  44. Jackson SM, Williams ML, Feingold KR, Elias PM (1993), Pathobiology of the stratum corneum. West J Med 158, 3, 279–285. [Google Scholar]
  45. Casale C, Imparato G, Urciuolo F, Netti PA (2016), Endogenous human skin equivalent promotes in vitro morphogenesis of follicle-like structures. Biomaterials 101, 86–95. [CrossRef] [PubMed] [Google Scholar]
  46. Segal N, Andriani F, Pfeiffer L, Kamath P, Lin N, Satyamurthy K, Egles C, Garlick JA (2008), The basement membrane microenvironment directs the normalization and survival of bioengineered human skin equivalents. Matrix Biol 27, 3, 163–170. [CrossRef] [PubMed] [Google Scholar]
  47. Idrees A, Chiono V, Ciardelli G, Shah S, Viebahn R, Zhang X, Salber J (2018), Validation of in vitro assays in three-dimensional human dermal constructs. Int J Artif Organs 41, 11, 779–788. [CrossRef] [PubMed] [Google Scholar]
  48. Bikle DD, Xie Z, Tu CL (2012), Calcium regulation of keratinocyte differentiation. Expert Rev Endocrinol Metab 7, 4, 461–472. [CrossRef] [PubMed] [Google Scholar]
  49. Menon GK, Grayson S, Elias PM (1985), Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J Invest Dermatol 84, 6, 508–512. [CrossRef] [PubMed] [Google Scholar]
  50. Ponec M, Weerheim A, Kempenaar J, Mommaas AM, Nugteren DH (1988), Lipid composition of cultured human keratinocytes in relation to their differentiation. J Lipid Res 29, 7, 949–961. [CrossRef] [PubMed] [Google Scholar]
  51. Grubauer G, Elias PM, Feingold KR (1989), Transepidermal water loss: the signal for recovery of barrier structure and function. J Lipid Res 30, 3, 323–333. [CrossRef] [PubMed] [Google Scholar]
  52. Kopan R, Traska G, Fuchs E (1987), Retinoids as important regulators of terminal differentiation: examining keratin expression in individual epidermal cells at various stages of keratinization. J Cell Biol 105, 1, 427–440. [CrossRef] [PubMed] [Google Scholar]
  53. Kolli S, Lako M, Figueiredo F, Mudhar H, Ahmad S (2008), Loss of corneal epithelial stem cell properties in outgrowths from human limbal explants cultured on intact amniotic membrane. Regen Med 3, 3, 329–342. [CrossRef] [PubMed] [Google Scholar]
  54. Meller D, Pires R, Tseng S (2002), Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. Br J Ophthalmol 86, 4, 463–471. [CrossRef] [PubMed] [Google Scholar]
  55. Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M (1997), Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349, 9057, 990–993. [CrossRef] [PubMed] [Google Scholar]
  56. Tsai RJF, Li LM, Chen JK (2000), Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343, 2, 86–93. [Google Scholar]
  57. Rheinwald JG, Green H (1975), Serial cultivation of strains of human epidemal keratinocytes: The formation of keratinizin colonies from single cells. Cell 6, 3, 331–343. [CrossRef] [PubMed] [Google Scholar]
  58. Hayashi I, Larner J, Sato G (1978), Hormonal growth control of cells in culture. In Vitro 14, 1, 23–30. [CrossRef] [PubMed] [Google Scholar]
  59. Okada N, Kitano Y, Ichihara K (1982), Effects of cholera toxin on proliferation of cultured human keratinocytes in relation to intracellular cyclic AMP levels. J Invest Dermatol 79, 1, 42–47. [CrossRef] [PubMed] [Google Scholar]
  60. Allen-Hoffmann BL, Rheinwald JG (1984), Polycyclic aromatic hydrocarbon mutagenesis of human epidermal keratinocytes in culture. Proc Natl Acad Sci USA 81, 24, 7802–7806. [CrossRef] [Google Scholar]
  61. Flaxman BA, Harper RA (1975), In vitro analysis of the control of keratinocyte proliferation in human epidermis by physiologic and pharmacologic agents. J Invest Dermatol 65, 1, 52–59. [CrossRef] [PubMed] [Google Scholar]
  62. Yu M, Bojic S, Figueiredo GS, Rooney P, De Havilland J, Dickinson A, Figueiredo FC, Lako M (2016), An important role for adenine, cholera toxin, hydrocortisone and triiodothyronine in the proliferation, self-renewal and differentiation of limbal stem cells in vitro. Exp Eye Res 152, 113–122. [CrossRef] [PubMed] [Google Scholar]
  63. Savini I, Rossi A, Duranti G, Avigliano L, Catani MV, Melino G (2002), Characterization of keratinocyte differentiation induced by ascorbic acid: Protein kinase C involvement and vitamin C homeostasis 1. J Invest Dermatol 118, 2, 372–379. [CrossRef] [PubMed] [Google Scholar]
  64. Pullar J, Carr A, Vissers M (2017), The roles of vitamin C in skin health. Nutrients 9, 8, 866. https://doi.org/10.3390/nu9080866. [Google Scholar]
  65. Carlson MW, Alt-Holland A, Egles C, Garlick JA (2008), Three-dimensional tissue models of normal and diseased skin. Curr Protoc Cell Biol 41, 1, 19.9.1–19.9.17. [Google Scholar]
  66. Egles C, Garlick JA, Shamis Y (2010), Three-dimensional human tissue models of wounded skin. Methods Mol Biol 585, 345–359. [PubMed] [Google Scholar]
  67. Black AF, Bouez C, Perrier E, Schlotmann K, Chapuis F, Damour O (2005), Optimization and characterization of an engineered human skin equivalent. Tissue Eng 11, 5–6, 723–733. [Google Scholar]
  68. Greenwald HS, Friedman EB, Osman I (2012), Superficial spreading and nodular melanoma are distinct biological entities: a challenge to the linear progression model. Melanoma Res 22, 1, 1–8. [CrossRef] [PubMed] [Google Scholar]
  69. Hill DS, Robinson ND, Caley MP, Chen M, O’toole EA, Armstrong JL, Przyborski S, Lovat PE (2015), A novel fully-humanised 3D skin equivalent to model early melanoma invasion. Mol Cancer Ther 1411, 2665–2673. [Google Scholar]
  70. Park JH, Park YJ, Kim SK, Kwon JE, Kang HY, Lee ES, Choi JH, Kim YC (2016), Histopathological differential diagnosis of psoriasis and seborrheic dermatitis of the scalp. Ann Dermatol 28, 4, 427–432. [PubMed] [Google Scholar]
  71. Dimarco RL, Su J, Yan KS, Dewi R, Kuo CJ, Heilshorn SC (2014), Engineering of three-dimensional microenvironments to promote contractile behavior in primary intestinal organoids. Integr Biol (Camb) 6, 2, 127–142. [CrossRef] [PubMed] [Google Scholar]
  72. Sugihara H, Toda S, Miyabara S, Kusaba Y, Minami Y (1991), Reconstruction of the skin in three-dimensional collagen gel matrix culture. Vitro Cell Dev Biol 27A, 2, 142–146. [CrossRef] [Google Scholar]
  73. Santos M, Paramio JM, Bravo A, Ramirez A, Jorcano JL (2002), The expression of keratin k10 in the basal layer of the epidermis inhibits cell proliferation and prevents skin tumorigenesis. J Biol Chem 277, 21, 19122–19130. [CrossRef] [PubMed] [Google Scholar]
  74. Coulombe PA, Kopan R, Fuchs E (1989), Expression of keratin K14 in the epidermis and hair follicle: insights into complex programs of differentiation. J Cell Biol 109, 5, 2295–2312. [CrossRef] [PubMed] [Google Scholar]
  75. Fuchs E, Green H (1980), Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19,4, 1033–1042. [CrossRef] [PubMed] [Google Scholar]
  76. Al Saif F (2016), Dermatopathia pigmentosa reticularis: report of a new cases and literature review. Indian J Dermatol 61, 4, 468–475. [CrossRef] [PubMed] [Google Scholar]
  77. Thacher SM, Rice RH (1985), Keratinocyte-specific transglutaminase of cultured human epidermal cells: relation to cross-linked envelope formation and terminal differentiation. Cell 40, 3, 685–695. [CrossRef] [PubMed] [Google Scholar]
  78. Warhol M, Roth J, Lucocq JM, Pinkus G, Rice R (1985), Immuno-ultrastructural localization of involucrin in squamous epithelium and cultured keratinocytes. J Histochem Cytochem 33, 2, 141–149. [CrossRef] [PubMed] [Google Scholar]
  79. Mehrel T, Hohl D, Rothnagel JA, Longley MA, Bundman D, Cheng C, Lichti U, Bisher ME, Steven AC, Steinert PM, Yuspa SH, Roop DR (1990), Identification of a major keratinocyte cell envelope protein, loricrin. Cell 61, 6, 1103–1112. [CrossRef] [PubMed] [Google Scholar]
  80. Steven A, Bisher M, Roop D, Steinert P (1990), Biosynthetic pathways of filaggrin and loricrin – two major proteins expressed by terminally differentiated epidermal keratinocytes. J Struct Biol 104, 1–3, 150–162. [CrossRef] [PubMed] [Google Scholar]
  81. Nishiyama T, Amano S, Tsunenaga M, Kadoya K, Takeda A, Adachi E, Burgeson RE (2000), The importance of laminin 5 in the dermal – epidermal basement membrane. J Dermatol Sci 24, 1, S51–S59. [CrossRef] [PubMed] [Google Scholar]
  82. Elias PM, Menon GK, Grayson S, Brown BE (1988), Membrane structural alterations in murine stratum corneum: relationship to the localization of polar lipids and phospholipases. J Invest Dermatol 91, 1, 3–10. [CrossRef] [PubMed] [Google Scholar]
  83. Hohl D (1990), Cornified cell envelope. Dermatologica 180, 4, 201–211. [CrossRef] [PubMed] [Google Scholar]
  84. Kee SH, Steinert PM (2001), Microtubule Disruption in Keratinocytes Induces Cell-Cell Adhesion through Activation of Endogenous E-Cadherin. Mol Biol Cell 12, 7, 1983–1993. [CrossRef] [PubMed] [Google Scholar]
  85. Pegu S, Bodani JP, Lemire EG, Holfeld KI (2017), A novel keratin 10 gene mutation causing epidermolytic hyperkeratosis (bullous congenital ichthyosiform erythroderma) in a term neonate. Case Rep Perinat Med 6, 1, 20160050. https://doi.org/10.1515/crpm-2016-0050. [Google Scholar]
  86. Khani P, Ghazi F, Zekri A, Nasri F, Behrangi E, Aghdam AM, Mirzaei H (2018), Keratins and epidermolysis bullosa simplex. J Cell Physiol 234, 1, 289–297. [Google Scholar]
  87. Maestrini E, Monaco AP, Mcgrath JA, Ishida-Yamamoto A, Camisa C, Hovnanian A, Weeks DE, Lathrop M, Uitto J, Christiano AM (1996), A molecular defect in loricrin, the major component of the cornified cell envelope, underlies Vohwinkel’s syndrome. Nat Genet 13, 70–77. [Google Scholar]
  88. Harrison CA, Gossiel F, Layton CM, Bullock AJ, Johnson T, Blumsohn A, MacNeil S (2006), Use of an in vitro model of tissue-engineered skin to investigate the mechanism of skin graft contraction. Tissue Eng 12, 11, 3119–3133. [Google Scholar]
  89. Michel M, L’heureux N, Pouliot R, Xu W, Auger FA, Germain L (1999), Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cell Dev Biol Anim 35, 6, 318–326. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.