Open Access
Issue |
4open
Volume 5, 2022
Logical Entropy
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 11 | |
Section | Physics - Applied Physics | |
DOI | https://doi.org/10.1051/fopen/2022004 | |
Published online | 21 March 2022 |
- Ellerman D (2009), Counting distinctions: On the conceptual foundations of Shannon’s information theory, Synthese 168, 1, 119–149. [CrossRef] [Google Scholar]
- Ellerman D (2018), Logical entropy: Introduction to classical and quantum logical information theory. Entropy 20, 9, 679. [CrossRef] [Google Scholar]
- Brukner Č, Zeilinger A (1999), Operationally invariant information in quantum measurements. Phys Rev Lett 83, 3354–3357. [CrossRef] [Google Scholar]
- Manfredi G, Feix MR (2000), Entropy and Wigner functions. Phys Rev E 62, 4665–4674. [CrossRef] [PubMed] [Google Scholar]
- Wehrl A (1978), General properties of entropy. Rev Mod Phys 50, 221–260. [CrossRef] [Google Scholar]
- Simpson EH (1949), Measurement of diversity. Nature 163, 4148, 688. [Google Scholar]
- Hunter PR, Gaston MA (1988), Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26, 11, 2465–2466. [CrossRef] [PubMed] [Google Scholar]
- Crupi V (2019), Measures of biological diversity: Overview and unified framework, in: E Casetta, J Marques da Silva, D Vecchi (Eds), From Assessing to Conserving Biodiversity. History, Philosophy and Theory of the Life Sciences, vol. 24, Springer, Cham, pp. 123–136. [CrossRef] [Google Scholar]
- Christensen C (2007), Polish mathematicians finding patterns in enigma messages, Math Mag 80, 4, 247–273. [CrossRef] [Google Scholar]
- Tsallis C (1988), Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52, 1, 479–487. [CrossRef] [Google Scholar]
- Brukner Č, Zeilinger A (2003), Information and fundamental elements of the structure of quantum theory, in: L Castell, O Ischebeck (Eds), Time, Quantum, Information, Springer, Berlin, Heidelberg, pp. 323–354. [CrossRef] [Google Scholar]
- Feynman RP (1987), Negative probability, in B Hiley, FD Peat (Eds), Quantum implications: Essays in honour of David Bohm, Routledge, London, pp. 235–248. [Google Scholar]
- Scully MO, Walther H, Schleich W (1994), Feynman’s approach to negative probability in quantum mechanics. Phys Rev A 49, 1562–1566. [CrossRef] [PubMed] [Google Scholar]
- Curtright T, Zachos C (2001), Negative probabilities and uncertainty relations, Mod Phys Lett A 16, 37, 2381–2385. [CrossRef] [Google Scholar]
- Wigner E (1932), On the quantum correction for thermodynamic equilibrium. Phys Rev 40, 749–759. [CrossRef] [Google Scholar]
- Deléglise S, Dotsenko I, Sayrin C, Bernu J, Brune M, Raimond J-M, Haroche S (2008), Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 7212, 510–514. [CrossRef] [PubMed] [Google Scholar]
- Bartlett MS (1945), Negative probability, Math Proc Camb Philos Soc 41, 1, 71–73. [CrossRef] [Google Scholar]
- Khrennikov AY (2008), EPR-Bohm experiment and Bell’s inequality: Quantum physics meets probability theory. Theor Math Phys 157, 1, 1448–1460. [CrossRef] [Google Scholar]
- Khrennikov A (2009) Interpretations of probability, de Gruyter, Berlin, New York. [CrossRef] [Google Scholar]
- Burgin M (2010), Interpretations of negative probabilities. arXiv preprint arXiv:1008.1287. [Google Scholar]
- Burgin M, Meissner G (2012), Negative probabilities in financial modeling. Wilmott 2012, 58, 60–65. [CrossRef] [Google Scholar]
- Mückenheim W, Ludwig G, Dewdney C, Holland PR, Kyprianidis A, Vigier JP, Cufaro Petroni N, Bartlett MS, Jaynes ET (1986), A review of extended probabilities. Phys Rep 133, 6, 337–401. [CrossRef] [Google Scholar]
- Hillery M, O’Connell RF, Scully MO, Wigner EP (1984,) Distribution functions in physics: Fundamentals. Phys Rep 106, 3, 121–167. [CrossRef] [Google Scholar]
- de Barros JA, Holik F (2020), Indistinguishability and negative probabilities, Entropy 22, 8, 829. [CrossRef] [Google Scholar]
- Veitch V, Ferrie C, Gross D, Emerson J (2012), Negative quasi-probability as a resource for quantum computation. New J Phys 14, 11, 113011. [CrossRef] [Google Scholar]
- Spekkens RW (2008), Negativity and contextuality are equivalent notions of nonclassicality. Phys Rev Lett 101, 020401. [CrossRef] [PubMed] [Google Scholar]
- Abramsky S, Brandenburger A (2011), The sheaf-theoretic structure of non-locality and contextuality. New J Phys 13, 11, 113036. [CrossRef] [Google Scholar]
- Abramsky S, Brandenburger A (2014), An operational interpretation of negative probabilities and no-signalling models, in: F van Breugel, E Kashefi, C Palamidessi, J Rutten (Eds.), Horizons of the Mind: A Tribute to Prakash Panagaden, Springer International Publishing, Cham, pp. 59–75. [CrossRef] [Google Scholar]
- Bell JS (1966), On the problem of hidden variables in quantum mechanics. Rev Mod Phys 38, 447–452. [CrossRef] [Google Scholar]
- Kochen S, Specker EP (1968), The problem of hidden variables in quantum mechanics. Indiana Univ Math J 17, 59–87. [Google Scholar]
- Kochen S, Specker EP (1975), The problem of hidden variables in quantum mechanics, in: CA Hooker (Ed), The Logico-Algebraic Approach to Quantum Mechanics, Springer, Heidelberg, pp. 293–328. [CrossRef] [Google Scholar]
- Baker GA (1958), Formulation of quantum mechanics based on the quasi-probability distribution induced on phase space. Phys Rev 109, 2198–2206. [CrossRef] [Google Scholar]
- Ellerman D (1985), The mathematics of double entry bookkeeping, Math Mag 58, 4, 226–233. [CrossRef] [Google Scholar]