Logical Entropy
Open Access
Volume 5, 2022
Logical Entropy
Article Number 8
Number of page(s) 11
Section Physics - Applied Physics
DOI https://doi.org/10.1051/fopen/2022004
Published online 21 March 2022
  1. Ellerman D (2009), Counting distinctions: On the conceptual foundations of Shannon’s information theory, Synthese 168, 1, 119–149. [Google Scholar]
  2. Ellerman D (2018), Logical entropy: Introduction to classical and quantum logical information theory. Entropy 20, 9, 679. [Google Scholar]
  3. Brukner Č, Zeilinger A (1999), Operationally invariant information in quantum measurements. Phys Rev Lett 83, 3354–3357. [Google Scholar]
  4. Manfredi G, Feix MR (2000), Entropy and Wigner functions. Phys Rev E 62, 4665–4674. [Google Scholar]
  5. Wehrl A (1978), General properties of entropy. Rev Mod Phys 50, 221–260. [Google Scholar]
  6. Simpson EH (1949), Measurement of diversity. Nature 163, 4148, 688. [Google Scholar]
  7. Hunter PR, Gaston MA (1988), Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26, 11, 2465–2466. [CrossRef] [PubMed] [Google Scholar]
  8. Crupi V (2019), Measures of biological diversity: Overview and unified framework, in: E Casetta, J Marques da Silva, D Vecchi (Eds), From Assessing to Conserving Biodiversity. History, Philosophy and Theory of the Life Sciences, vol. 24, Springer, Cham, pp. 123–136. [CrossRef] [Google Scholar]
  9. Christensen C (2007), Polish mathematicians finding patterns in enigma messages, Math Mag 80, 4, 247–273. [CrossRef] [Google Scholar]
  10. Tsallis C (1988), Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52, 1, 479–487. [Google Scholar]
  11. Brukner Č, Zeilinger A (2003), Information and fundamental elements of the structure of quantum theory, in: L Castell, O Ischebeck (Eds), Time, Quantum, Information, Springer, Berlin, Heidelberg, pp. 323–354. [CrossRef] [Google Scholar]
  12. Feynman RP (1987), Negative probability, in B Hiley, FD Peat (Eds), Quantum implications: Essays in honour of David Bohm, Routledge, London, pp. 235–248. [Google Scholar]
  13. Scully MO, Walther H, Schleich W (1994), Feynman’s approach to negative probability in quantum mechanics. Phys Rev A 49, 1562–1566. [CrossRef] [PubMed] [Google Scholar]
  14. Curtright T, Zachos C (2001), Negative probabilities and uncertainty relations, Mod Phys Lett A 16, 37, 2381–2385. [CrossRef] [Google Scholar]
  15. Wigner E (1932), On the quantum correction for thermodynamic equilibrium. Phys Rev 40, 749–759. [CrossRef] [Google Scholar]
  16. Deléglise S, Dotsenko I, Sayrin C, Bernu J, Brune M, Raimond J-M, Haroche S (2008), Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 7212, 510–514. [CrossRef] [PubMed] [Google Scholar]
  17. Bartlett MS (1945), Negative probability, Math Proc Camb Philos Soc 41, 1, 71–73. [CrossRef] [Google Scholar]
  18. Khrennikov AY (2008), EPR-Bohm experiment and Bell’s inequality: Quantum physics meets probability theory. Theor Math Phys 157, 1, 1448–1460. [CrossRef] [Google Scholar]
  19. Khrennikov A (2009) Interpretations of probability, de Gruyter, Berlin, New York. [CrossRef] [Google Scholar]
  20. Burgin M (2010), Interpretations of negative probabilities. arXiv preprint arXiv:1008.1287. [Google Scholar]
  21. Burgin M, Meissner G (2012), Negative probabilities in financial modeling. Wilmott 2012, 58, 60–65. [CrossRef] [Google Scholar]
  22. Mückenheim W, Ludwig G, Dewdney C, Holland PR, Kyprianidis A, Vigier JP, Cufaro Petroni N, Bartlett MS, Jaynes ET (1986), A review of extended probabilities. Phys Rep 133, 6, 337–401. [CrossRef] [Google Scholar]
  23. Hillery M, O’Connell RF, Scully MO, Wigner EP (1984,) Distribution functions in physics: Fundamentals. Phys Rep 106, 3, 121–167. [CrossRef] [Google Scholar]
  24. de Barros JA, Holik F (2020), Indistinguishability and negative probabilities, Entropy 22, 8, 829. [CrossRef] [Google Scholar]
  25. Veitch V, Ferrie C, Gross D, Emerson J (2012), Negative quasi-probability as a resource for quantum computation. New J Phys 14, 11, 113011. [CrossRef] [Google Scholar]
  26. Spekkens RW (2008), Negativity and contextuality are equivalent notions of nonclassicality. Phys Rev Lett 101, 020401. [CrossRef] [PubMed] [Google Scholar]
  27. Abramsky S, Brandenburger A (2011), The sheaf-theoretic structure of non-locality and contextuality. New J Phys 13, 11, 113036. [CrossRef] [Google Scholar]
  28. Abramsky S, Brandenburger A (2014), An operational interpretation of negative probabilities and no-signalling models, in: F van Breugel, E Kashefi, C Palamidessi, J Rutten (Eds.), Horizons of the Mind: A Tribute to Prakash Panagaden, Springer International Publishing, Cham, pp. 59–75. [CrossRef] [Google Scholar]
  29. Bell JS (1966), On the problem of hidden variables in quantum mechanics. Rev Mod Phys 38, 447–452. [CrossRef] [Google Scholar]
  30. Kochen S, Specker EP (1968), The problem of hidden variables in quantum mechanics. Indiana Univ Math J 17, 59–87. [Google Scholar]
  31. Kochen S, Specker EP (1975), The problem of hidden variables in quantum mechanics, in: CA Hooker (Ed), The Logico-Algebraic Approach to Quantum Mechanics, Springer, Heidelberg, pp. 293–328. [CrossRef] [Google Scholar]
  32. Baker GA (1958), Formulation of quantum mechanics based on the quasi-probability distribution induced on phase space. Phys Rev 109, 2198–2206. [CrossRef] [Google Scholar]
  33. Ellerman D (1985), The mathematics of double entry bookkeeping, Math Mag 58, 4, 226–233. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.