Open Access
Review
Issue
4open
Volume 5, 2022
Article Number 15
Number of page(s) 13
Section Life Sciences - Medicine
DOI https://doi.org/10.1051/fopen/2022013
Published online 30 June 2022
  1. Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Jülicher F, Hyman AA (2009), Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 5935, 1729–1732. https://doi.org/10.1126/science.1172046. [CrossRef] [PubMed] [Google Scholar]
  2. Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L, Tompa P, Fuxreiter M (2018), Protein phase separation: a new phase in cell biology. Trends Cell Biol 28, 6, 420–435. https://doi.org/10.1016/j.tcb.2018.02.004. [CrossRef] [PubMed] [Google Scholar]
  3. Ling GN (2001), Life at the cell and below-cell level: the hidden history of a fundamental revolution in biology, Pacific Press, New York. [Google Scholar]
  4. Ling GN (2007), History of the membrane (pump) theory of the living cell from its beginning in mid-19th Century to its disproof 45 years ago – though still taught worldwide today as established truth. Physiol Chem Phys Med NMR 39, 1, 1–67. [PubMed] [Google Scholar]
  5. Lafontaine DLJ, Riback JA, Bascetin R, Brangwynne CP (2021), The nucleolus as a multiphase liquid condensate Nat Rev Mol Cell Biol. 22, 3, 165–182. https://doi.org/10.1038/s41580-020-0272-6. [CrossRef] [PubMed] [Google Scholar]
  6. Gao J, Wang H (2018), History and traditional techniques of studying the structure of cell membranes, in: H. Wang, G. Li (Eds.), Membrane Biophysics, Springer, Singapore, pp. 21–43. https://doi.org/10.1007/978-981-10-6823-2_2. [CrossRef] [Google Scholar]
  7. Bagatolli LA, Stock RP (2021), Lipids, membranes, colloids and cells: a long view. Biochim Biophys Acta Biomembr 1863, 10, 183684. https://doi.org/10.1016/j.bbamem.2021.183684. [CrossRef] [PubMed] [Google Scholar]
  8. Saha B, Chatterjee A, Reja A, Das D (2019), Condensates of short peptides and ATP for the temporal regulation of cytochrome c activity. Chem Commun (Camb). 55, 94, 14194–14197. https://doi.org/10.1039/c9cc07358b. [CrossRef] [PubMed] [Google Scholar]
  9. Rothman JE (2019), Jim’s view: is the Golgi stack a phase-separated liquid crystal? FEBS Lett 593, 19, 2701–2705. https://doi.org/10.1002/1873-3468.13609. [CrossRef] [PubMed] [Google Scholar]
  10. Matveev VV (2019), Cell theory, intrinsically disordered proteins, and the physics of the origin of life. Prog Biophys Mol Biol 149, 114–130. https://doi.org/10.1016/j.pbiomolbio.2019.04.001. [CrossRef] [PubMed] [Google Scholar]
  11. Troshin AS (1966), Problems of cell permeability, English transl. by Hell MG and Widdas WF. Pergamon Press, Oxford. Revised and supplemented Russian edition: Troshin AS (1956), Problema kletochnoi pronitsaemosti, Moskva-Leningrad. Reprint: Troshin AS (2013), Problems of cell permeability: International series of monographs in pure and applied biology: Modern trends in physiological sciences, Vol. 26. Elsevier. [Google Scholar]
  12. Nasonov DN (1962), Local reaction of protoplasm and gradual excitation, English Transl. by Halpern YS. National Science Foundation, available at Office of Technical Services, US Department of Commerce, Washington, DC. [Google Scholar]
  13. Pontes A, Hutzler M, Brito PH, Sampaio JP (2020), Revisiting the taxonomic synonyms and populations of Saccharomyces cerevisiae – phylogeny, phenotypes, ecology and domestication. Microorganisms 8, 6, 903. https://doi.org/10.3390/microorganisms8060903. [CrossRef] [Google Scholar]
  14. Lin C, Smith JS, Liu X, Tse JS, Yang W (2018), Venture into water’s no man’s land: structural transformations of solid H2O under rapid compression and decompression. Phys Rev Lett 121, 22, 225703. https://doi.org/10.1103/PhysRevLett.121.225703. [CrossRef] [PubMed] [Google Scholar]
  15. Gallo P, Amann-Winkel K, Angell CA, Anisimov MA, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos AZ, Russo J, Sellberg JA, Stanley HE, Tanaka H, Vega C, Xu L, Pettersson LG (2016), Water: a tale of two liquids. Chem Rev 116, 13, 7463–7500. https://doi.org/10.1021/acs.chemrev.5b00750. [CrossRef] [PubMed] [Google Scholar]
  16. Brooke S, Fox SW (1977), Compartmentalization in proteinoid microspheres. BioSystems 9, 1, 1–22. https://doi.org/10.1016/0303-2647(77)90028-4. [CrossRef] [PubMed] [Google Scholar]
  17. Corti HR, Appignanesi GA, Barbosa MC, Bordin JR, Calero C, Camisasca G, Elola MD, Franzese G, Gallo P, Hassanali A, Huang K, Laria D, Menendez CA, de Oca JMM, Longinotti MP, Rodriguez J, Rovere M, Scherlis D, Szleifer I (2021), Structure and dynamics of nanoconfined water and aqueous solutions. Eur Phys J E Soft Matter 44, 11, 136. https://doi.org/10.1140/epje/s10189-021-00136-4. [CrossRef] [PubMed] [Google Scholar]
  18. Ling GN (1962), A physical theory of the living state: the association-induction hypothesis, Blaisdell, Waltham, MA. [Google Scholar]
  19. Ling GN (1984), In search of the physical basis of life, Plenum Publishing Corp, New York. [CrossRef] [Google Scholar]
  20. Ling GN (1992), A revolution in the physiology of the living cell, Krieger Publishing Co, Malabar, FL. [Google Scholar]
  21. Debye P, Hückel E (1923), Zur theorie der electrolyte. Phys Z 24, 185–206. [Google Scholar]
  22. Ling GN (2006), A convergence of experimental and theoretical breakthroughs affirms the PM theory of dynamically structured cell water on the theory’s 40th birthday, in: G.H. Pollack, I.L. Cameron, D.N. Wheatley (Eds.), Water and the cell, Springer, Dordrecht, pp. 1–52. https://doi.org/10.1007/1-4020-4927-7_1. [Google Scholar]
  23. Jaeken L, Matveev VV (2012), Coherent behavior and the bound state of water and K+ imply another model of bioenergetics: negative entropy instead of high-energy bonds. Open Biochem J 6, 139–159. https://doi.org/10.2174%2F1874091X01206010139. [CrossRef] [PubMed] [Google Scholar]
  24. Matveev VV (2005), Protoreaction of protoplasm. Cell Mol Biol 51, 8, 715–723. [PubMed] [Google Scholar]
  25. Ling GN (2007), Nano-protoplasm: the ultimate unit of life. Physiol Chem Phys Med NMR 39, 2, 111–234. Erratum in: Physiol Chem Phys Med NMR 2012, 42, 115. [PubMed] [Google Scholar]
  26. Saranathan V, Osuji CO, Mochrie SG, Noh H, Narayanan S, Sandy A, Dufresne ER, Prum RO (2010), Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. Proc Natl Acad Sci USA 107, 26, 11676–11681. https://doi.org/10.1073/pnas.0909616107. [CrossRef] [PubMed] [Google Scholar]
  27. Zwicker D, Seyboldt R, Weber CA, Hyman AA, Jülicher F (2017), Growth and division of active droplets provides a model for protocells. Nature Phys 13, 408–413. https://doi.org/10.1038/nphys3984. [CrossRef] [Google Scholar]
  28. Holehouse AS, Pappu RV (2018), Functional implications of intracellular phase transitions. Biochemistry 57, 17, 2415–2423. https://doi.org/10.1021/acs.biochem.7b01136. [CrossRef] [PubMed] [Google Scholar]
  29. Marianelli AM, Miller BM, Keating CD (2018), Impact of macromolecular crowding on RNA/spermine complex coacervation and oligonucleotide compartmentalization. Soft Matter 14, 3, 368–378. https://doi.org/10.1039/c7sm02146a. [CrossRef] [PubMed] [Google Scholar]
  30. Yewdall NA, André AA, Lu T, Spruijt E (2020), Coacervates as models of membraneless organelles. Curr Opin Colloid Interface Sci 52, 101416. https://doi.org/10.1016/j.cocis.2020.101416. [Google Scholar]
  31. Edelmann L (2014), The physical state of potassium in frog skeletal muscle studied by ion-sensitive microelectrodes and by electron microscopy: interpretation of seemingly incompatible results. Physiol Chem Phys Med NMR 43, 1, 75–92. [PubMed] [Google Scholar]
  32. Ling GN, Ochsenfeld MM (1991), The majority of potassium ions in muscle cells is adsorbed on β- and γ-carboxyl groups of myosin: potassium-ion-adsorbing carboxyl groups on myosin heads engage in cross-bridge formation during contraction. Physiol Chem Phys Med NMR 23, 3, 133–160. [PubMed] [Google Scholar]
  33. Ishima Y, Przybylski AT, Fox SW (1981), Electrical membrane phenomena in spherules from proteinoid and lecithin. BioSystems 13, 4, 243–251. https://doi.org/10.1016/0303-2647(81)90004-6. [CrossRef] [PubMed] [Google Scholar]
  34. Matveev VV (2017), Comparison of fundamental physical properties of the model cells (protocells) and the living cells reveals the need in protophysiology. Int J Astrobiol 16, 1, 97–104. https://doi.org/10.1017/S1473550415000476. [CrossRef] [Google Scholar]
  35. Stratten WP (1984), Protocell action potentials: a new perspective of bio-excitation, in: K. Matsuno, K. Dose, K. Harada, D.L. Rohlfing (Eds.), Molecular Evolution and Protobiology, Plenum Press, New York, pp. 233–251. https://doi.org/10.1007/978-1-4684-4640-1_17. [CrossRef] [Google Scholar]
  36. Przybylski AT, Fox SW (1986), Electrical phenomena in proteinoid cells, in: F. Gutmann, H. Keyzer (Eds.), Modern Bioelectrochemistry, Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2105-7_13. [Google Scholar]
  37. Fox SW, Bahn PR, Pappelis A, Yu B (1996), Experimental retracement of terrestrial origin of an excitable cell: Was it predictable? in: J. Chela-Flores, F. Raulin (Eds.), Chemical evolution: physics of the origin and evolution of life, Kluwer Academic Publishers, Dordrecht, pp. 21–32. https://doi.org/10.1007/978-94-009-1712-5_2. [CrossRef] [Google Scholar]
  38. Adamatzky A (2021), Towards proteinoid computers. Hypothesis paper. Biosystems 208, 104480. https://doi.org/10.1016/j.biosystems.2021.104480. [CrossRef] [PubMed] [Google Scholar]
  39. Ling GN (1986), The origins of cellular electrical potentials, in: F. Gutmann, H. Keyser (Eds.), Modern Bioelectrochemistry, Plenum Press, New York, pp. 45–68. https://doi.org/10.1007/978-1-4613-2105-7_2. [CrossRef] [Google Scholar]
  40. Fox SW, McCauley RL, Montgomery POB, Fukushima T, Harada K, Windsor CR (1969), Membrane-like properties in microsystems assembled from synthetic protein-like polymer, in: F. Snell, J. Wolken, G.J. Iverson, J. Lam (Eds.), Physical principles of biological membranes, Gordon and Breach Science Publishers, Coral Gables, FL, pp. 417–432. [Google Scholar]
  41. Kokufuta E, Sakai H, Harada K (1984), Factors controlling the size of proteinoid microspheres. Biosystems 16, 3–4, 175–181. https://doi.org/10.1016/0303-2647(83)90002-3. [Google Scholar]
  42. Ling GN (1965), The physical state of water in living cell and model systems. Ann N Y Acad Sci 125, 2, 401–417. https://doi.org/10.1111/j.1749-6632.1965.tb45406.x. [Google Scholar]
  43. Ling GN (1972), Hydration of macromolecules, in: R.A. Horne (Ed.), Water and aqueous solutions. Structure, thermodynamics, and transport processes, Wiley-Interscience, New York, pp. 663–700. [Google Scholar]
  44. Parisi G, Palopoli N, Tosatto SC, Fornasari MS, Tompa P (2021), “Protein” no longer means what it used to. Curr Res Struct Biol 3, 146–152. https://doi.org/10.1016/j.crstbi.2021.06.002. [CrossRef] [PubMed] [Google Scholar]
  45. Gunasekaran K, Tsai CJ, Nussinov R (2004), Analysis of ordered and disordered protein complexes reveals structural features discriminating between stable and unstable monomers. J Mol Biol 341, 5, 1327–1341. https://doi.org/10.1016/j.jmb.2004.07.002. [CrossRef] [PubMed] [Google Scholar]
  46. Zhang JZ, Mehta S, Zhang J (2021), Liquid-liquid phase separation: a principal organizer of the cell’s biochemical activity architecture. Trends Pharmacol Sci 42, 10, 845–856. https://doi.org/10.1016/j.tips.2021.07.003. [CrossRef] [PubMed] [Google Scholar]
  47. Brady JP, Farber PJ, Sekhar A, Lin YH, Huang R, Bah A, Nott TJ, Chan HS, Baldwin AJ, Forman-Kay JD, Kay LE (2017), Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proc Natl Acad Sci USA 114, 39, E8194–E8203. https://doi.org/10.1073/pnas.1706197114. [Google Scholar]
  48. Vernon RM, Chong PA, Tsang B, Kim TH, Bah A, Farber P, Lin H, Forman-Kay JD (2018), Pi-Pi contacts are an overlooked protein feature relevant to phase separation. Elife 7, e31486. https://doi.org/10.7554/eLife.31486. [CrossRef] [PubMed] [Google Scholar]
  49. Wang J, Choi JM, Holehouse AS, Lee HO, Zhang X, Jahnel M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D, Poser I, Pappu RV, Alberti S, Hyman AA (2018), A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 3, 688–699. https://doi.org/10.1016/j.cell.2018.06.006. [CrossRef] [PubMed] [Google Scholar]
  50. Murthy AC, Dignon GL, Kan Y, Zerze GH, Parekh SH, Mittal J, Fawzi NL (2019), Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain. Nat Struct Mol Biol 26, 7, 637–648. https://doi.org/10.1038/s41594-019-0250-x. [CrossRef] [PubMed] [Google Scholar]
  51. Hardenberg M, Horvath A, Ambrus V, Fuxreiter M, Vendruscolo M (2020), Widespread occurrence of the droplet state of proteins in the human proteome. Proc Natl Acad Sci USA 117, 52, 33254–33262. https://doi.org/10.1073/pnas.2007670117. [CrossRef] [PubMed] [Google Scholar]
  52. Kamagata K, Kanbayashi S, Honda M, Itoh Y, Takahashi H, Kameda T, Nagatsugi F, Takahashi S (2020), Liquid-like droplet formation by tumor suppressor p53 induced by multivalent electrostatic interactions between two disordered domains. Sci Rep 10, 1, 580. https://doi.org/10.1038/s41598-020-57521-w. [CrossRef] [PubMed] [Google Scholar]
  53. Krainer G, Welsh TJ, Joseph JA, Espinosa JR, Wittmann S, de Csilléry E, Sridhar A, Toprakcioglu Z, Gudiškytė G, Czekalska MA, Arter WE, Guillén-Boixet J, Franzmann TM, Qamar S, George-Hyslop PS, Hyman AA, Collepardo-Guevara R, Alberti S, Knowles TPJ (2021), Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat Commun 12, 1, 1085. https://doi.org/10.1038/s41467-021-21181-9. [CrossRef] [PubMed] [Google Scholar]
  54. Teilum K, Olsen JG, Kragelund BB (2021), On the specificity of protein-protein interactions in the context of disorder. Biochem J 478, 11, 2035–2050. https://doi.org/10.1042/bcj20200828. [CrossRef] [PubMed] [Google Scholar]
  55. Koga S, Williams DS, Perriman AW, Mann S (2011), Peptide-nucleotide microdroplets as a step towards a membrane-free protocell model. Nat Chem 3, 9, 720–724. https://doi.org/10.1038/nchem.1110. [CrossRef] [PubMed] [Google Scholar]
  56. McCall PM, Srivastava S, Perry SL, Kovar DR, Gardel ML, Tirrell MV (2018), Partitioning and enhanced self-assembly of actin in polypeptide coacervates. Biophys J 114, 7, 1636–1645. https://doi.org/10.1016/j.bpj.2018.02.020. [CrossRef] [PubMed] [Google Scholar]
  57. Tian Z, Qian F (2021), Adenosine Triphosphate-Induced Rapid Liquid-Liquid Phase Separation of a Model IgG1 mAb. Mol Pharm 18, 1, 267–274. https://doi.org/10.1021/acs.molpharmaceut.0c00905. [CrossRef] [PubMed] [Google Scholar]
  58. Ou X, Lao Y, Xu J, Wutthinitikornkit Y, Shi R, Chen X, Li J (2021), ATP Can Efficiently Stabilize Protein through a Unique Mechanism. JACS Au 110, 1766–1777. https://doi.org/10.1021/jacsau.1c00316. [CrossRef] [PubMed] [Google Scholar]
  59. Nakashima KK, Baaij JF, Spruijt E (2018), Reversible generation of coacervate droplets in an enzymatic network. Soft Matter 14, 3, 361–367. https://doi.org/10.1039/C7SM01897E. [CrossRef] [PubMed] [Google Scholar]
  60. Mugler CF, Hondele M, Heinrich S, Sachdev R, Vallotton P, Koek AY, Chan LY, Weis K (2016), ATPase activity of the DEAD-box protein Dhh1 controls processing body formation. Elife 5, e18746. https://doi.org/10.7554/eLife.18746. [CrossRef] [PubMed] [Google Scholar]
  61. Li XH, Chavali PL, Pancsa R, Chavali S, Babu MM (2018), Function and regulation of phase-separated biological condensates. Biochemistry 57, 17, 2452–2461. https://doi.org/10.1021/acs.biochem.7b01228. [CrossRef] [PubMed] [Google Scholar]
  62. Thoke HS, Tobiesen A, Brewer J, Hansen PL, Stock RP, Olsen LF, Bagatolli LA (2015), Tight coupling of metabolic oscillations and intracellular water dynamics in Saccharomyces cerevisiae. PloS One 10, 2, e0117308. https://doi.org/10.1371/journal.pone.0117308. [CrossRef] [PubMed] [Google Scholar]
  63. Thoke HS, Thorsteinsson S, Stock RP, Bagatolli LA, Olsen LF (2017), The dynamics of intracellular water constrains glycolytic oscillations in Saccharomyces cerevisiae. Sci Rep 7, 1, 16250. https://doi.org/10.1038/s41598-017-16442-x. [CrossRef] [PubMed] [Google Scholar]
  64. Thoke HS, Bagatolli LA, Olsen LF (2018), Effect of macromolecular crowding on the kinetics of glycolytic enzymes and the behaviour of glycolysis in yeast. Integr Biol (Camb) 10, 10, 587–597. https://doi.org/10.1039/c8ib00099a. [CrossRef] [PubMed] [Google Scholar]
  65. Thoke HS, Olsen LF, Duelund L, Stock RP, Heimburg T, Bagatolli LA (2018), Is a constant low-entropy process at the root of glycolytic oscillations? J Biol Phys 44, 3, 419–431. https://doi.org/10.1007/s10867-018-9499-2. [CrossRef] [PubMed] [Google Scholar]
  66. Bagatolli LA, Stock RP (2016), The cell as a gel: material for a conceptual discussion. Physiol Mini Rev 9, 5, 38–49. [Google Scholar]
  67. Bagatolli LA, Stock RP, Olsen LF (2019), Coupled response of membrane hydration with oscillating metabolism in live cells: an alternative way to modulate structural aspects of biological membranes? Biomolecules 9, 687. https://doi.org/10.3390/biom9110687. [CrossRef] [Google Scholar]
  68. Bagatolli LA, Mangiarotti A, Stock RP (2021), Cellular metabolism and colloids: realistically linking physiology and biological physical chemistry. Prog Biophys Mol Biol 162, 79–88. https://doi.org/10.1016/j.pbiomolbio.2020.06.002. [CrossRef] [PubMed] [Google Scholar]
  69. Patel SS, Belmont BJ, Sante JM, Rexach MF (2007), Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129, 1, 83–96. https://doi.org/10.1016/j.cell.2007.01.044. [CrossRef] [PubMed] [Google Scholar]
  70. Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, Kriwacki RW, Pappu RV, Brangwynne CP (2016), Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 7, 1686–1697. https://doi.org/10.1016/j.cell.2016.04.047. [CrossRef] [PubMed] [Google Scholar]
  71. Schneider MF (2021), Living systems approached from physical principles. Prog Biophys Mol Biol 162, 2–25. https://doi.org/10.1016/j.pbiomolbio.2020.10.001. [CrossRef] [PubMed] [Google Scholar]
  72. Leo A, Hansch C, Elkins D (1971), Partition coefficients and their use. Chem Rev 71, 525–616. https://doi.org/10.1021/cr60274a001. [CrossRef] [Google Scholar]
  73. Matveev VV (2010), Native aggregation as a cause of origin of temporary cellular structures needed for all forms of cellular activity, signaling and transformations. Theor Biol Med Model 7, 19. https://doi.org/10.1186/1742-4682-7-19. [CrossRef] [PubMed] [Google Scholar]
  74. Wintrode PL, Zhang D, Vaidehi N, Arnold FH, Goddard WA (2003), Protein dynamics in a family of laboratory evolved thermophilic enzymes. J Mol Biol 327, 3, 745–757. https://doi.org/10.1016/s0022-2836(03)00147-5. [CrossRef] [PubMed] [Google Scholar]
  75. Tomalia DA, Khanna SN (2016), A systematic framework and nanoperiodic concept for unifying nanoscience: hard/soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns, and predictive Mendeleev-like nanoperiodic tables. Chem Rev 116, 4, 2705–2774. https://doi.org/10.1021/acs.chemrev.5b00367. [CrossRef] [PubMed] [Google Scholar]
  76. Sandberg WS, Miller KW (2003), The Meyer–Overton relationship and its exceptions, in: J.F. Antognini, E. Carstens, D.E. Raines (Eds.), Neural mechanisms of anesthesia. Contemporary Clinical Neuroscience, Humana Press, Totowa, NJ, pp. 371–394. https://doi.org/10.1007/978-1-59259-322-4_22. [Google Scholar]
  77. Brandts JF (1969), Conformational transitions of proteins in water and in aqueous mixtures, in: S.N. Timasheft, G.D. Fasman (Eds.), Structure and stability of biological macromolecules, Marcel Dekker, New York, pp. 213–290. [Google Scholar]
  78. Katz Y, Simon SA (1977), Physical parameters of the anesthetic site. Biochim Biophys Acta 471, 1, 1–15. https://doi.org/10.1016/0005-2736(77)90387-x. [CrossRef] [PubMed] [Google Scholar]
  79. Halsey MJ, Brown FF, Richards RE (1978), Perturbations of model protein systems as a basis for central and peripheral mechanisms of general anaesthesia, in: R. Porter, D.W. Fitzsimons (Eds.), Molecular interactions and activity in proteins, Excerpta Medica, Amsterdam, pp. 123–132. https://doi.org/10.1002/9780470720424.ch9. [Google Scholar]
  80. Bar-Even A, Noor E, Flamholz A, Buescher JM, Milo R (2011), Hydrophobicity and charge shape cellular metabolite concentrations. PLoS Comput Biol 7, 10, e1002166. https://doi.org/10.1371/journal.pcbi.1002166. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.