Open Access

Table 3

GML cutting with moving knives.

n = km (full rotation)
Smallest divisor dm = 1
m-odd All different variants of cutting “SS” (side to side) All different variants of cutting “VS” (vertex to side) All different variants of cutting “VV” (vertex to vertex)
3 1 1 0
5 2 2 1
7 3 3 2
9 4 4 3
11 5 5 4
2k + 1
k
k
k – 1
n = km + j (gcd(m, j) = 1 − m-knife
Largest divisor dm = m
m-odd
All different variants of cutting “SS” (side to side)
All different variants of cutting “VS” (vertex to side)
All different variants of cutting “VV” (vertex to vertex)
3 5 1 1 0
5 3 + 5 2 1 1
7 3 + 3 + 5 3 1 2
9 3 + 3 + 3 + 5 4 1 3
11 3 + 3 + 3 + 3 + 5 5 1 4
2k + 1
3·(k − 1) + 5
k
1
k – 1
n = km (full rotation)
Smallest divisor dm = 1
m-even
All different variants of cutting “SS” (side to side)
All different variants of cutting “VS” (vertex to side)
All different variants of cutting “VV” (vertex to vertex)
2 “1” 0
4 2 1 1
6 3 2 2
8 4 3 3
10 5 4 4
2k
k
k-1
k-1
n = km + j (gcd(m, j) = 1 (m-knife)
Largest divisor dm = m
m-even
All different variants of cutting “SS” (side to side)
All different variants of cutting “VS” (vertex to side)
All different variants of cutting “VV” (vertex to vertex)
2 1 1 0 0
4 3 + 1 1 1 0 1
6 3 + 3 + 1 1 2 1 1
8 3 + 3 + 3 + 1 1 3 2 1
10 3 + 3 + 3 + 3 + 1 1 4 3 1
2k 3·(k − 1) + 1 1 k – 1 k – 2 1