Open Access
Issue
4open
Volume 3, 2020
Article Number 7
Number of page(s) 48
Section Mathematics - Applied Mathematics
DOI https://doi.org/10.1051/fopen/2020007
Published online 31 August 2020
  1. Tavkhelidze I (2001), On the some properties of one class of geometrical figures and lines. Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics 16, 1, 35–38. [Google Scholar]
  2. Gielis J, Tavkhelidze I, Ricci PE (2013), About “bulky” links generated by generalized Möbius-Listing bodies Formula . J Math Sci 193, 3, 449–460. [Google Scholar]
  3. Tavkhelidze I (2011), About connection of the generalized Möbius listing’s surfaces with sets of ribbon knots, in: Proceedings of Ukrainian Mathematical Congress S. 2, Topology and geometry – Kiev, pp. 117–129. [Google Scholar]
  4. Tavkhelidze I, Cassisa C, Gielis J, Ricci PE (2013), About bulky links, generated by generalized Mobius-Listing’s bodies Formula . Rendic Lincei Mat Appl 24, 11–3. [Google Scholar]
  5. Tavkhelidze I, Ricci PE (2017), Some properties of “bulky” links, generated by generalised Möbius–Listing’s bodies, in: Modeling in Mathematics, Atlantis Press, Paris, pp. 159–185. [Google Scholar]
  6. Pinelas S, Tavkhelidze I (2017), Analytic representation of generalized Möbius-listing’s bodies and classification of links appearing after their cut, in: International Conference on Differential & Difference Equations and Applications, Springer, Cham, pp. 477–493. [Google Scholar]
  7. Gielis J (2003), A generic geometric transformation that unifies a wide range of natural and abstract shapes. Am J Bot 90, 3, 333–338. [CrossRef] [PubMed] [Google Scholar]
  8. Tavkhelidze I, Gielis J (2018), The process of cutting Formula bodies with dm knives, in: Reports of the Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Vol. 32. [Google Scholar]
  9. Gielis J, Haesen S, Verstraelen L (2005), Universal shapes: from the supereggs of Piet Hein to the cosmic egg of George Lemaître. Kragujev J Math 28, 55–67. [Google Scholar]
  10. Gielis J (2001), Inventing the Circle, Geniaal, Antwerpen (2003), in: Dutch: De uitvinding van de Cirkel (2001), In Dutch. [Google Scholar]
  11. Gielis J (2017), The Geometrical Beauty of Plants, Atlantis-Springer. [Google Scholar]
  12. Matsuura M (2015), Gielis’ superformula and regular polygons. J Geom 106, 2, 1–21. [Google Scholar]
  13. Fougerolle YD, Gribok A, Foufou S, Truchetet F, Abidi MA (2006), Radial supershapes for solid modeling. J Comput Sci Technol 21, 2, 238–243. [Google Scholar]
  14. Gielis J, Natalini P, Ricci PE (2017), A note about generalized forms of the Gielis formula, in: Modeling in Mathematics, Atlantis Press, Paris, pp. 107–116. [Google Scholar]
  15. Abbott EA (1884), Flatland, A Romance of Many Dimensions. By A. Square, Seeley, London. [Google Scholar]
  16. Cutting bamboo poles [Google Scholar]
  17. Haesen S, Šebeković A, Verstraelen L (2003), Relations between intrinsic and extrinsic curvatures. Kragujevac J Math 25, 25, 139–145. [Google Scholar]
  18. Weisstein EW (2009), CRC Encyclopedia of Mathematics, CRC Press, USA. [Google Scholar]
  19. Nisley E (2016), Plotting like it’s 1999 – scrap to Superformula, Poughkeepsie ACM Chapter. [Google Scholar]
  20. Fougerolle Y, Truchetet F, Gielis J (2017), Potential fields of self intersecting Gielis curves for modeling and generalized blending techniques, in: Modeling in Mathematics, Atlantis Press, Paris, pp. 67–81. [Google Scholar]
  21. Shapiro V (2007), Semi-analytic geometry with R-functions. Acta Num 16, 239–303. [Google Scholar]
  22. Rvachev V (1974), Methods of logic algebra in mathematical physics, Naukova Dumka, Kiev (in Russian). [Google Scholar]
  23. Rvachev VL, Rvachev VA (1979), Neklassicheskie metody teorii priblizhenij v kraevyh zadachah [Non-classical methods of approximation theory to boundary tasks], Naukova dumka Publ, Kiev. [Google Scholar]
  24. Euler L (1965), Leonhard Euler und Christian Goldbach, Briefwechsel 1729–1764, in: A.P. Juskevic, E. Winter (Eds.), , Akademie Verlag, Berlin. [Google Scholar]
  25. Euler L (1758–59), Novi Commentarii Academiae Scientarium Imperialis Petropolitanque 7, pp. 9–28. [Google Scholar]
  26. Lamé G (1838), Un polygone convex étant donné, de combien de manières peut-on le partager en triangles au moyen de diagonales? J Math Pure Appl 3, 505–507. [Google Scholar]
  27. Koshy T (2009), Catalan Numbers with Applications, Oxford University Press, New York. [Google Scholar]
  28. Birmajer D, Gil JB, Weiner MD (2017), Colored partitions of a convex polygon by noncrossing diagonals. Discrete Math 340, 4, 563–571. [Google Scholar]
  29. Mallinson PR (1998), Proof without words: Area under a polygonal arch. Math Mag 71, 2, 141–141. [Google Scholar]
  30. Galilei G (1638), Dialogue concerning the two chief world systems. [Google Scholar]
  31. Cartwright JH, González DL (2016), Möbius strips before Möbius: Topological hints in ancient representations. Math Intell 38, 2, 69–76. [Google Scholar]
  32. D’Arcy TW (1917), On growth and form, Cambridge University Press. [Google Scholar]
  33. Gielis J, Tavkelidze I, Caratelli D, Fougerolle Y, Ricci PE, Gerats T (2012), Bulky knots and links generated by cutting Generalized Möbius Listing bodies and applications in the natural sciences, in: Royal Academy of Flanders. Proceedings of Math Art Summit 2012, Brussels. [Google Scholar]
  34. Weeks JR (1985), The shape of space. How to visualize surfaces and three-dimensional manifolds, Marcel Dekker. Chapter 17 Bundles. [Google Scholar]
  35. Tavkhelidze I, Caratelli D, Gielis J, Ricci PE, Rogava M, Transirico M (2017), On a geometric model of bodies with “Complex” configuration and some movements, in: Modeling in Mathematics, Atlantis Press, Paris, pp. 129–158. [Google Scholar]
  36. Starostin EL, Van Der Heijden GHM (2007), The shape of a Möbius strip. Nat Mater 6, 8, 563. [PubMed] [Google Scholar]
  37. Todhunter I (1893), The history of elasticity and of the Strength of Materials – from Galilei to the present time, Volume II Saint-Venant to Lord Kelvin, Part 1, Cambridge University Press. [Google Scholar]
  38. Vekua IN (1985), Shell theory: general methods of construction, Vol. 25, Addison-Wesley Longman. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.