Open Access
Issue
4open
Volume 3, 2020
Article Number 8
Number of page(s) 9
Section Mathematics - Applied Mathematics
DOI https://doi.org/10.1051/fopen/2020009
Published online 04 August 2020
  1. Sadyrbaev F, Ogorelova D, Samuilik I (2019), A nullclines approach to the study of 2D artificial network. Contemp Math 1, 1, 11. [Google Scholar]
  2. Wilson HR, Cowan JD (1972), Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12, 1, 1–24. [CrossRef] [PubMed] [Google Scholar]
  3. Vohradský J (2001), Neural network model of gene expression. FASEB J 15, 3, 846–854. https://doi.org/10.1096/fj.00-0361com. [CrossRef] [PubMed] [Google Scholar]
  4. Tušek A, Kurtanjek Ž (2012), Mathematical Modelling of Gene Regulatory Networks, Ch. 5 in: R Ganesh Naik (Ed), Applied Biological Engineering – Principles and Practice, InTech. https://doi.org/10.5772/2101 [Google Scholar]
  5. Crombach A, Hogeweg P (2008), Evolution of evolvability in gene regulatory networks. PLoS Comput Biol 4, 7, e1000112. https://doi.org/10.1371/journal.pcbi.1000112. [Google Scholar]
  6. Wuensche A (1998), Genomic regulation modeled as a network with basins of attraction. Proc Pac Symp Biocomput 3, 89–102. [Google Scholar]
  7. Furusawa C, Kaneko K (2008), A generic mechanism for adaptive growth rate regulation. PLoS Comput Biol 4, 1, e3. 0035–0042. https://doi.org/10.1371/journal.pcbi.0040003. [Google Scholar]
  8. Koizumi Y, Miyamura T, Arakawa S, Oki E, Shiomoto K, Murata M (2010), Adaptive virtual network topology control based on attractor selection. J Lightwave Technol 28, 11, 1720–1731. https://doi.org/10.1109/JLT.2010.2048412. [Google Scholar]
  9. Conti R (1962), Equazioni differenziali ordinarie quasilineari con condizioni lineari. Ann Mat Pura Appl 57, 49–61. [CrossRef] [Google Scholar]
  10. Klokov YA, Vasilyev NI (1978), Foundations of the theory of boundary value problems for ordinary differential equations, Zinatne, Riga. (in Russian). [Google Scholar]
  11. Sadyrbaev F (2019), Planar differential systems arising in network regulation theory. Adv Math Models Appl (Jomard Publ) 4, 1, 70–78. [Google Scholar]
  12. Lefschetz S (1957), Differential equations: geometric theory, Interscience Publ, New York. [Google Scholar]