Open Access
Issue
4open
Volume 3, 2020
Article Number 8
Number of page(s) 9
Section Mathematics - Applied Mathematics
DOI https://doi.org/10.1051/fopen/2020009
Published online 04 August 2020
  1. Sadyrbaev F, Ogorelova D, Samuilik I (2019), A nullclines approach to the study of 2D artificial network. Contemp Math 1, 1, 11. [Google Scholar]
  2. Wilson HR, Cowan JD (1972), Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12, 1, 1–24. [CrossRef] [PubMed] [Google Scholar]
  3. Vohradský J (2001), Neural network model of gene expression. FASEB J 15, 3, 846–854. https://doi.org/10.1096/fj.00-0361com. [CrossRef] [PubMed] [Google Scholar]
  4. Tušek A, Kurtanjek Ž (2012), Mathematical Modelling of Gene Regulatory Networks, Ch. 5 in: R Ganesh Naik (Ed), Applied Biological Engineering – Principles and Practice, InTech. https://doi.org/10.5772/2101 [Google Scholar]
  5. Crombach A, Hogeweg P (2008), Evolution of evolvability in gene regulatory networks. PLoS Comput Biol 4, 7, e1000112. https://doi.org/10.1371/journal.pcbi.1000112. [Google Scholar]
  6. Wuensche A (1998), Genomic regulation modeled as a network with basins of attraction. Proc Pac Symp Biocomput 3, 89–102. [Google Scholar]
  7. Furusawa C, Kaneko K (2008), A generic mechanism for adaptive growth rate regulation. PLoS Comput Biol 4, 1, e3. 0035–0042. https://doi.org/10.1371/journal.pcbi.0040003. [Google Scholar]
  8. Koizumi Y, Miyamura T, Arakawa S, Oki E, Shiomoto K, Murata M (2010), Adaptive virtual network topology control based on attractor selection. J Lightwave Technol 28, 11, 1720–1731. https://doi.org/10.1109/JLT.2010.2048412. [Google Scholar]
  9. Conti R (1962), Equazioni differenziali ordinarie quasilineari con condizioni lineari. Ann Mat Pura Appl 57, 49–61. [CrossRef] [Google Scholar]
  10. Klokov YA, Vasilyev NI (1978), Foundations of the theory of boundary value problems for ordinary differential equations, Zinatne, Riga. (in Russian). [Google Scholar]
  11. Sadyrbaev F (2019), Planar differential systems arising in network regulation theory. Adv Math Models Appl (Jomard Publ) 4, 1, 70–78. [Google Scholar]
  12. Lefschetz S (1957), Differential equations: geometric theory, Interscience Publ, New York. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.