Issue
4open
Volume 2, 2019
Disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer”
Article Number 10
Number of page(s) 16
Section Life Sciences - Medicine
DOI https://doi.org/10.1051/fopen/2018007
Published online 25 April 2019
  1. Schaechter M, Kolter R, Buckley M (2004), Microbiology in the 21st century: where are we and where are we going? American Society for Microbiology, Washington, DC. Available at http://www.asm.org/Academy/index.asp?bidp29245 [Google Scholar]
  2. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J, Jr, Infectious Diseases Society of America (2008), The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46, 155–164. [CrossRef] [PubMed] [Google Scholar]
  3. Rodrigues Hoffmann A, Proctor LM, Surette MG, Suchodolski JS (2016), The microbiome: the trillions of microorganisms that maintain health and cause disease in humans and companion animals. Vet Pathol 53, 10–21. [Google Scholar]
  4. Tjalsma H, Boleij A, Marchesi JR, Dutilh BE (2012), A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol 10, 575–582. [CrossRef] [PubMed] [Google Scholar]
  5. Sender R, Fuchs S, Milo R (2016), Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14, e1002533. [CrossRef] [PubMed] [Google Scholar]
  6. Savage DC (1977), Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31, 107–133. [Google Scholar]
  7. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006), Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023. [CrossRef] [PubMed] [Google Scholar]
  8. Brücher BLDM, Jamall IS (2019), Chronic inflammation evoked by pathogenic stimulus during carcinogenesis. 4open 2, 8, 1–22. https://doi.org/10.1051/fopen/2018006 [CrossRef] [EDP Sciences] [Google Scholar]
  9. Brücher BLDM, Jamall IS (2019), Eicosanoids in carcinogenesis. 4open 2, 9, 1–3. https://doi.org/10.1051/fopen/2018008 [CrossRef] [EDP Sciences] [Google Scholar]
  10. Mishima E, Sharma A (2011), Tannerella forsythia invasion in oral epithelial cells requires phosphoinositide 3-kinase activation and clathrin-mediated endocytosis. Microbiology 157, 2382–2391. [CrossRef] [PubMed] [Google Scholar]
  11. Honma K, Mishima E, Sharma A (2011), Role of Tannerella forsythia NanH sialidase in epithelial cell attachment. Infect Immun 79, 393–401. [CrossRef] [PubMed] [Google Scholar]
  12. Wu JS, Zheng M, Zhang M, Pang X, Li L, Wang SS, Yang X, Wu JB, Tang YJ, Tang YL, Liang XH (2018), Porphyromonas gingivalis promotes 4-nitroquinoline-1-oxide-induced oral carcinogenesis with an alteration of fatty acid metabolism. Front Microbiol 9, 2081. [CrossRef] [PubMed] [Google Scholar]
  13. Binder Gallimidi A, Fischman S, Revach B, Bulvik R, Maliutina A, Rubinstein AM, Nussbaum G, Elkin M (2015), Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 6, 22613–22623. [PubMed] [Google Scholar]
  14. Snider EJ, Freedberg DE, Abrams JA (2016), Potential role of the microbiome in Barrett's esophagus and esophageal adenocarcinoma. Dig Dis Sci 61, 2217–2225. [CrossRef] [PubMed] [Google Scholar]
  15. Peters BA, Wu J, Pei Z, Yang L, Purdue MP, Freedman ND, Jacobs EJ, Gapstur SM, Hayes RB, Ahn J (2017), Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res 77, 6777–6787. [Google Scholar]
  16. Michaud DS, Izard J, Wilhelm-Benartzi CS, You DH, Grote VA, Tjønneland A, Dahm CC, Overvad K, Jenab M, Fedirko V, Boutron-Ruault MC, Clavel-Chapelon F, Racine A, Kaaks R, Boeing H, Foerster J, Trichopoulou A, Lagiou P, Trichopoulos D, Sacerdote C, Sieri S, Palli D, Tumino R, Panico S, Siersema PD, Peeters PH, Lund E, Barricarte A, Huerta JM, Molina-Montes E, Dorronsoro M, Quirós JR, Duell EJ, Ye W, Sund M, Lindkvist B, Johansen D, Khaw KT, Wareham N, Travis RC, Vineis P, Bueno-de-Mesquita HB, Riboli E (2013), Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut 62, 1764–1770. [CrossRef] [PubMed] [Google Scholar]
  17. Öğrendik M (2017), Periodontal Pathogens in the Etiology of Pancreatic Cancer. Gastrointest Tumors 3, 125–127. [PubMed] [Google Scholar]
  18. Lu H, Ren Z, Li A, Zhang H, Jiang J, Xu S, Luo Q, Zhou K, Sun X, Zheng S, Li L (2016), Deep sequencing reveals microbiota dysbiosis of tongue coat in patients with liver carcinoma. Sci Rep 6, 33142. [CrossRef] [PubMed] [Google Scholar]
  19. Honma K, Ruscitto A, Sharma A (2017), β-Glucanase activity of the oral bacterium Tannerella forsythia contributes to the growth of a partner species, Fusobacterium nucleatum, in co-biofilms. Appl Environ Microbiol pii, AEM. 01759-17. [Google Scholar]
  20. Yu J, Chen Y, Fu X, Zhou X, Peng Y, Shi L, Chen T, Wu Y (2016), Invasive Fusobacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. Int J Cancer 139, 1318–1326. [CrossRef] [PubMed] [Google Scholar]
  21. Farhana L, Antaki F, Murshed F, Mahmud H, Judd SL, Nangia-Makker P, Levi E, Yu Y, Majumdar AP (2018), Gut microbiome profiling and colorectal cancer in African Americans and Caucasian Americans. World J Gastrointest Pathophysiol 9, 47–58. [CrossRef] [PubMed] [Google Scholar]
  22. Liu Y, Baba Y, Ishimoto T, Iwatsuki M, Hiyoshi Y, Miyamoto Y, Yoshida N, Wu R, Baba H (2018), Progress in characterizing the linkage between Fusobacterium nucleatum and gastrointestinal cancer. J Gastroenterol. DOI: 10.1007/s00535-018-1512-9 [Google Scholar]
  23. Ding T, Schloss PD (2014), Dynamics and associations of microbial community types across the human body. Nature 509, 357–360. [CrossRef] [PubMed] [Google Scholar]
  24. Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, Jansen T, Jacobs L, Bonder MJ, Kurilshikov A, Fu J, Joosten LA, Zhernakova A, Huttenhower C, Wijmenga C, Netea MG, Xavier RJ (2016), Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1125–1136. [CrossRef] [PubMed] [Google Scholar]
  25. Waki M, Ide Y, Ishizaki I, Nagata Y, Masaki N, Sugiyama E, Kurabe N, Nicolaescu D, Yamazaki F, Hayasaka T, Ikegami K, Kondo T, Shibata K, Hiraide T, Taki Y, Ogura H, Shiiya N, Sanada N, Setou M (2014), Single-cell time-of-flight secondary ion mass spectrometry reveals that human breast cancer stem cells have significantly lower content of palmitoleic acid compared to their counterpart non-stem cancer cells. Biochimie 107, 73–77. [CrossRef] [PubMed] [Google Scholar]
  26. Chernet BT, Levin M (2013), Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model. Dis Model Mech 6, 595–607. [Google Scholar]
  27. Brücher BLDM, Jamall IS (2014), Epistemology of the origin of cancer: a new paradigm. BMC Cancer 14, 1–15. [CrossRef] [PubMed] [Google Scholar]
  28. Ferreira R, Oliveira P, Martins T, Magalhães S, Trindade F, Pires MJ, Colaço B, Barros A, Santos L, Amado F, Vitorino R (2015), Comparative proteomic analyses of urine from rat urothelial carcinoma chemically induced by exposure to N-butyl-N-(4-hydroxybutyl)-nitrosamine. Mol Biosyst 11, 1594–1602. [Google Scholar]
  29. Bernardo C, Cunha MC, Santos JH, da Costa JM, Brindley PJ, Lopes C, Amado F, Ferreira R, Vitorino R, Santos LL (2016), Insight into the molecular basis of Schistosoma haematobium-induced bladder cancer through urine proteomics. Tumour Biol 37, 11279–11287. [CrossRef] [PubMed] [Google Scholar]
  30. Messina CM, Pizzo F, Santulli A, Bušelić I, Boban M, Orhanović S, Mladineo I (2016), Anisakis pegreffi (Nematoda: Anisakidae) products modulate oxidative stress and apoptosis-related biomarkers in human cell lines. Parasit Vectors 9, 607. [Google Scholar]
  31. Roche K, Feltus FA, Park JP, Coissieux MM, Chang C, Chan VBS, Bentires-Alj M, Booth BW (2017), Cancer cell redirection biomarker discovery using a mutual information approach. PLoS One 12, e0179265. [CrossRef] [PubMed] [Google Scholar]
  32. Xie L, Bourne PE (2015), Developing multi-target therapeutics to fine-tune the evolutionary dynamics of the cancer ecosystem. Front Pharmacol 6, 209. [PubMed] [Google Scholar]
  33. Honda S, Loher P, Shigematsu M, Palazzo JP, Suzuki R, Imoto I, Rigoutsos I, Kirino Y (2016), Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc Natl Acad Sci USA 112, E3816–E3825. [Google Scholar]
  34. Baudrimont A, Voegeli S, Viloria EC, Stritt F, Lenon M, Wada T, Jaquet V, Becskei A (2017), Multiplexed gene control reveals rapid mRNA turnover. Sci Adv 3, e1700006. [CrossRef] [PubMed] [Google Scholar]
  35. Christ A, Günther P, Lauterbach MAR, Duewell P, Biswas D, Pelka K, Scholz CJ, Oosting M, Haendler K, Baßler K, Klee K, Schulte-Schrepping J, Ulas T, Moorlag SJCFM, Kumar V, Park MH, Joosten LAB, Groh LA, Riksen NP, Espevik T, Schlitzer A, Li Y, Fitzgerald ML, Netea MG, Schultze JL, Latz E (2018), Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 2018 172, 162–175. [Google Scholar]
  36. Albenberg LG, Wu GD (2014), Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology 146, 1564–1572. [CrossRef] [PubMed] [Google Scholar]
  37. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wie SC, Cogdill AP, Zhao L, Hudgens CW, Hutchinson DS, Manzo T, Petaccia de Macedo M, Cotechini T, Kumar T, Chen WS, Reddy SM, Szczepaniak Sloane R, Galloway-Pena J, Jiang H, Chen PL, Shpall EJ, Rezvani K, Alousi AM, Chemaly RF, Shelburne S, Vence LM, Okhuysen PC, Jensen VB, Swennes AG, McAllister F, Marcelo Riquelme Sanchez E, Zhang Y, Le Chatelier E, Zitvogel L, Pons N, Austin-Breneman JL, Haydu LE, Burton EM, Gardner JM, Sirmans E, Hu J, Lazar AJ, Tsujikawa T, Diab A, Tawbi H, Glitza IC, Hwu WJ, Patel SP, Woodman SE, Amaria RN, Davies MA, Gershenwald JE, Hwu P, Lee JE, Zhang J, Coussens LM, Cooper ZA, Futreal PA, Daniel CR, Ajami NJ, Petrosino JF, Tetzlaff MT, Sharma P, Allison JP, Jenq RR, Wargo JA (2017), Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. DOI: 10.1126/science.aan4236 [Google Scholar]
  38. Kumar H, Kawai T, Akira S (2011), Pathogen recognition by the innate immune system. Int Rev Immunol 30, 16–34. [CrossRef] [PubMed] [Google Scholar]
  39. Martinon F, Tschopp J (2005), NLRs join TLRs as innate sensors of pathogens. Trends Immunol 26, 447–454. [CrossRef] [PubMed] [Google Scholar]
  40. Fritz JH, Ferrero RL, Philpott DJ, Girardin SE (2006), Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7, 1250–1257. [CrossRef] [PubMed] [Google Scholar]
  41. Schroder K, Tschopp J (2010), The inflammasomes. Cell 140, 821–832. [CrossRef] [PubMed] [Google Scholar]
  42. Pinheiro AS, Eibl C, Ekman-Vural Z, Schwarzenbacher R, Peti W (2011), The NLRP12 pyrin domain: structure, dynamics, and functional insights. J Mol Biol 413, 790–803. [Google Scholar]
  43. Gharagozloo M, Mahvelati TM, Imbeault E, Gris P, Zerif E, Bobbala D, Ilangumaran S, Amrani A, Gris D (2015), The nod-like receptor, Nlrp12, plays an anti-inflammatory role in experimental autoimmune encephalomyelitis. J Neuroinflammation 12, 198. [Google Scholar]
  44. Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC, Woodford RM, Davis BK, Uronis JM, Herfarth HH, Jobin C, Rogers AB, Ting JP (2012), NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity 36, 742–754. [CrossRef] [PubMed] [Google Scholar]
  45. Chen L, Wilson JE, Koenigsknecht MJ, Chou WC, Montgomery SA, Truax AD, Brickey WJ, Packey CD, Maharshak N, Matsushima GK, Plevy SE, Young VB, Sartor RB, Ting JP (2017), NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nat Immunol 18, 541–551. [CrossRef] [PubMed] [Google Scholar]
  46. Truax AD, Chen L, Tam JW, Cheng N, Guo H, Koblansky AA, Chou WC, Wilson JE, Brickey WJ, Petrucelli A, Liu R, Cooper DE, Koenigsknecht MJ, Young VB, Netea MG, Stienstra R, Sartor RB, Montgomery SA, Coleman RA, Ting JP (2018), The inhibitory innate immune sensor NLRP12 maintains a threshold against obesity by regulating gut microbiota homeostasis. Cell Host Microbe 24, 364–378. [CrossRef] [PubMed] [Google Scholar]
  47. Zaki MH, Vogel P, Malireddi RK, Body-Malapel M, Anand PK, Bertin J, Green DR, Lamkanfi M, Kanneganti TD (2011), The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 20, 649–660. [CrossRef] [PubMed] [Google Scholar]
  48. Flemer B, Lynch DB, Brown JM, Jeffery IB, Ryan FJ, Claesson MJ, O'Riordain M, Shanahan F, O'Toole PW (2017), Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 66, 633–643. [CrossRef] [PubMed] [Google Scholar]
  49. Omar Al-Hassi H, Ng O, Brookes M (2018), Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 67, 395. [Google Scholar]
  50. Flemer B, Herlihy M, O'Riordain M, Shanahan F, O'Toole PW (2018), Tumour-associated and non-tumour-associated microbiota: addendum. Gut Microbes 9, 369–373. [PubMed] [Google Scholar]
  51. Flemer B, Warren RD, Barrett MP, Cisek K, Das A, Jeffery IB, Hurley E, O'Riordain M, Shanahan F, O'Toole PW (2018), The oral microbiota in colorectal cancer is distinctive and predictive. Gut 67, 1454–1463. [CrossRef] [PubMed] [Google Scholar]
  52. Mendonça LABM, Dos Santos Ferreira R, de Cássia Avellaneda Guimarães R, de Castro AP, Franco OL, Matias R, Carvalho CME (2018), The complex puzzle of interactions among functional food, gut microbiota, and colorectal cancer. Front Oncol 8, 325. [CrossRef] [PubMed] [Google Scholar]
  53. Wu M, Wu Y, Li J, Bao Y, Guo Y, Yang W (2018), The dynamic changes of gut microbiota in Muc2 deficient mice. Int J Mol Sci 19, pii: E2809. [Google Scholar]
  54. Zhang Y, Yu X, Yu E, Wang N, Cai Q, Shuai Q, Yan F, Jiang L, Wang H, Liu J, Chen Y, Li Z, Jiang Q (2018), Changes in gut microbiota and plasma inflammatory factors across the stages of colorectal tumorigenesis: a case-control study. BMC Microbiol 18, 92. [CrossRef] [PubMed] [Google Scholar]
  55. Haslam DW, James WP (2005), Obesity. Lancet 366, 1197–209. [CrossRef] [Google Scholar]
  56. Bradlow HL (2014), Obesity and the gut microbiome: pathophysiological aspects. Horm Mol Biol Clin Investig 17, 53–61. [PubMed] [Google Scholar]
  57. Schulz MD, Atay C, Heringer J, Romrig FK, Schwitalla S, Aydin B, Ziegler PK, Varga J, Reindl W, Pommerenke C, Salinas-Riester G, Böck A, Alpert C, Blaut M, Polson SC, Brandl L, Kirchner T, Greten FR, Polson SW, Arkan MC (2014), High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 514, 508–512. [CrossRef] [PubMed] [Google Scholar]
  58. Keith SW, Redden DT, Katzmarzyk PT, Boggiano MM, Hanlon EC, Benca RM, Ruden D, Pietrobelli A, Barger JL, Fontaine KR, Wang C, Aronne LJ, Wright SM, Baskin M, Dhurandhar NV, Lijoi MC, Grilo CM, DeLuca M, Westfall AO, Allison DB (2006), Putative contributors to the secular increase in obesity: exploring the roads less traveled. Int J Obes (Lond) 30, 1585–1594. [CrossRef] [PubMed] [Google Scholar]
  59. Farooqi S, O'Rahilly S (2006), Genetics and obesity in humans. Endocr Rev 27, 710–718. [CrossRef] [PubMed] [Google Scholar]
  60. DuPan RC, Golay A (2014), The obesity paradox. Rev Med Suiss 10, 1413–1417. [Google Scholar]
  61. Kopple JD, Zhu X, Lew NL, Lowrie EG (1999), Body weight-for-height relationships predict mortality in maintenance hemodialysis patients. Kidney Int 56, 1136–1148. [CrossRef] [PubMed] [Google Scholar]
  62. Kalantar-Zadeh K, Block G, Humphreys MH, Kopple JD (2003), Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int 63, 793–808. [CrossRef] [PubMed] [Google Scholar]
  63. Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G (2001), Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280, E745– E751. [CrossRef] [PubMed] [Google Scholar]
  64. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003), Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112, 1821–1830. [CrossRef] [PubMed] [Google Scholar]
  65. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW, Jr (2003), Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112, 1796–1808. [CrossRef] [PubMed] [Google Scholar]
  66. Subbaramaiah K, Morris PG, Zhou XK, Morrow M, Du B, Giri D, Kopelovich L, Hudis CA, Dannenberg AJ (2012), Increased levels of COX-2 and prostaglandin E2 contribute to elevated aromatase expression in inflamed breast tissue of obese women. Cancer Discov 2, 356–365. [CrossRef] [PubMed] [Google Scholar]
  67. Küper MA, Kratt T, Kramer KM, Zdichavsky M, Schneider JH, Glatzle J, Stüker D, Königsrainer A, Brücher BLDM (2010), Effort, safety, and findings of routine preoperative endoscopic evaluation of morbidly obese patients undergoing bariatric surgery. Surg Endosc 24, 1996–2001. [PubMed] [Google Scholar]
  68. Potter JD, Slattery ML, Bostick RM, Gapstur SM (1993), Colon cancer: a review of the epidemiology. Epidemiol Rev 15, 499–545. [CrossRef] [PubMed] [Google Scholar]
  69. Giovannucci E, Ascherio A, Rimm EB, Colditz GA, Stampfer MJ, Willett WC (1995), Physical activity, obesity, and risk for colon cancer and adenoma in men. Ann Intern Med 122, 327–334. [CrossRef] [PubMed] [Google Scholar]
  70. Schoen RE, Tangen CM, Kuller LH, Burke GL, Cushman M, Tracy RP, Dobs A, Savage PJ (1999), Increased blood glucose and insulin, body size, and incident colorectal cancer. J Natl Cancer Inst 91, 1147–1154. [CrossRef] [PubMed] [Google Scholar]
  71. Sass DA, Schoen RE, Weissfeld JL, Weissfeld L, Thaete FL, Kuller LH, McAdams M, Lanza E, Schatzkin A (2004), Relationship of visceral adipose tissue to recurrence of adenomatous polyps. Am J Gastroenterol 99, 687–693. [Google Scholar]
  72. Keum N, Lee DH, Kim R, Greenwood DC, Giovannucci EL (2005), Visceral adiposity and colorectal adenomas: dose-response meta-analysis of observational studies. Ann Oncol 26, 1101–1109. [Google Scholar]
  73. Otake S, Takeda H, Suzuki Y, Fukui T, Watanabe S, Ishihama K, Saito T, Togashi H, Nakamura T, Matsuzawa Y, Kawata S (2005), Association of visceral fat accumulation and plasma adiponectin with colorectal adenoma: evidence for participation of insulin resistance. Clin Cancer Res 11, 3642–3646. [CrossRef] [PubMed] [Google Scholar]
  74. Sato Y, Nozaki R, Yamada K, Takano M, Haruma K (2009), Relation between obesity and adenomatous polyps of the large bowel. Dig Endosc 21, 154–157. [CrossRef] [PubMed] [Google Scholar]
  75. Yamaji T, Iwasaki M, Sasazuki S, Kurahashi N, Mutoh M, Yamamoto S, Suzuki M, Moriyama N, Wakabayashi K, Tsugane S (2009), Visceral fat volume and the prevalence of colorectal adenoma. Am J Epidemiol 170, 502–511. [Google Scholar]
  76. Nam SY, Kim BC, Han KS, Ryu KH, Park BJ, Kim HB, Nam BH (2010), Abdominal visceral adipose tissue predicts risk of colorectal adenoma in both sexes. Clin Gastroenterol Hepatol 8, 443–450, e1-e2. [Google Scholar]
  77. Nimptsch K, Giovannucci E, Willett WC, Fuchs CS, Wei EK, Wu K (2011), Body fatness during childhood and adolescence, adult height, and risk of colorectal adenoma in women. Cancer Prev Res (Phila) 4, 1710–1718. [CrossRef] [PubMed] [Google Scholar]
  78. Kim BC, Shin A, Hong CW, Sohn DK, Han KS, Ryu KH, Park BJ, Nam JH, Park JW, Chang HJ, Choi HS, Kim J, Oh JH (2012), Association of colorectal adenoma with components of metabolic syndrome. Cancer Causes Control 23, 727–735. [CrossRef] [PubMed] [Google Scholar]
  79. Summers RM, Liu J, Sussman DL, Dwyer AJ, Rehani B, Pickhardt PJ, Choi JR, Yao J (2012), Association between visceral adiposity and colorectal polyps on CT colonography. AJR Am J Roentgenol 199, 48–57. [CrossRef] [PubMed] [Google Scholar]
  80. Ashktorab H, Paydar M, Yazdi S, Namin HH, Sanderson A, Begum R, Semati M, Etaati F, Lee E, Brim H, Zenebe A, Nunlee-Bland G, Laiyemo AO, Nouraie M (2014), BMI and the risk of colorectal adenoma in African-Americans. Obesity (Silver Spring) 22, 1387–1391. [CrossRef] [PubMed] [Google Scholar]
  81. Nagata N, Sakamoto K, Arai T, Niikura R, Shimbo T, Shinozaki M, Aoki T, Kishida Y, Sekine K, Tanaka S, Okubo H, Watanabe K, Sakurai T, Yokoi C, Akiyama J, Yanase M, Noda M, Itoh T, Mizokami M, Uemura N (2014), Visceral abdominal fat measured by computed tomography is associated with an increased risk of colorectal adenoma. Int J Cancer 135, 2273–2281. [CrossRef] [PubMed] [Google Scholar]
  82. Yamaji Y, Mitsushima T, Koike K (2014), Pulse-wave velocity, the ankle-brachial index, and the visceral fat area are highly associated with colorectal adenoma. Dig Liver Dis 46, 943–949. [CrossRef] [PubMed] [Google Scholar]
  83. Park JH, Kim SJ, Hyun JH, Han KS, Kim BC, Hong CW, Lee SJ, Sohn DK (2017), Correlation between bowel preparation and the adenoma detection rate in screening colonoscopy. Ann Coloproctol 33, 93–98. [CrossRef] [PubMed] [Google Scholar]
  84. Seo IK, Kim BJ, Kim B, Choi CH, Kim JW, Kim JG, Chang SK, Kang H (2017), Abdominal fat distribution measured using computed tomography is associated with an increased risk of colorectal adenoma in men. Medicine (Baltimore) 96, e 8051. [Google Scholar]
  85. Shapero TF, Chen GI, Devlin T, Gibbs A, Murray IC, Tran S, Weigensberg C (2017), Obesity increases prevalence of colonic adenomas at screening colonoscopy: a Canadian community-based study. Can J Gastroenterol Hepatol 2017, 8750967. [CrossRef] [Google Scholar]
  86. Im JP, Kim D, Chung SJ, Jin EH, Han YM, Park MJ, Song JH, Yang SY, Kim YS, Yim JY, Lim SH, Kim JS (2018), Visceral obesity as a risk factor for colorectal adenoma occurrence in surveillance colonoscopy. Gastrointest Endosc 88, 119–127, e4. [CrossRef] [PubMed] [Google Scholar]
  87. Friedman GD, Herrinton LJ (1994), Obesity and multiple myeloma. Cancer Causes Control 5, 479–483. [CrossRef] [PubMed] [Google Scholar]
  88. Brown LM, Gridley G, Pottern LM, Baris D, Swanso CA, Silverman DT, Hayes RB, Greenberg RS, Swanson GM, Schoenberg JB, Schwartz AG, Fraumeni JF, Jr (2001), Diet and nutrition as risk factors for multiple myeloma among blacks and whites in the United States. Cancer Causes Control 12, 117–125. [CrossRef] [PubMed] [Google Scholar]
  89. Thompson MA, Kyle RA, Melton LJ 3rd, Plevak MF, Rajkumar SV (2004), Effect of statins, smoking and obesity on progression of monoclonal gammopathy of undetermined significance: a case-control study. Haematologica 89, 626–628. [PubMed] [Google Scholar]
  90. Alexander DD, Mink PJ, Adami HO, Cole P, Mandel JS, Oken MM, Trichopoulos D (2007), Multiple myeloma: a review of the epidemiologic literature. Int J Cancer 120, 40–61. [CrossRef] [PubMed] [Google Scholar]
  91. Birmann BM, Giovannucci E, Rosner B, Anderson KC, Colditz GA (2007), Body mass index, physical activity, and risk of multiple myeloma. Cancer Epidemiol Biomarkers Prev 16, 1474–1478. [CrossRef] [PubMed] [Google Scholar]
  92. Larsson SC, Wolk A (2007), Body mass index and risk of multiple myeloma: a meta-analysis. Int J Cancer 121, 2512–2516. [CrossRef] [PubMed] [Google Scholar]
  93. Landgren O, Rajkumar SV, Pfeiffer RM, Kyle RA, Katzmann JA, Dispenzieri A, Cai Q, Goldin LR, Caporaso NE, Fraumeni JF, Blot WJ, Signorello LB (2010), Obesity is associated with an increased risk of monoclonal gammopathy of undetermined significance among black and white women. Blood 116, 1056–1059. [CrossRef] [PubMed] [Google Scholar]
  94. Lichtman MA (2010), Obesity and the risk for a hematological malignancy: leukemia, lymphoma, or myeloma. Oncologist 15, 1083–1101. [CrossRef] [PubMed] [Google Scholar]
  95. Lwin ST, Olechnowicz SW, Fowler JA, Edwards CM (2015), Diet-induced obesity promotes a myeloma-like condition in vivo. Leukemia 29, 507–510. [CrossRef] [PubMed] [Google Scholar]
  96. Chang SH, Luo S, Thomas TS, O'Brian KK, Colditz GA, Carlsson NP, Carson KR (2016), Obesity and the transformation of monoclonal gammopathy of undetermined significance to multiple myeloma: a population-based cohort study. J Natl Cancer Inst 109. DOI: 10.1093/jnci/djw264 [Google Scholar]
  97. Sonderman JS, Bethea TN, Kitahara CM, Patel AV, Harvey C, Knutsen SF, Park Y, Park SY, Fraser GE, Teras LR, Purdue MP, Stolzenberg-Solomon RZ, Gillanders EM, Palmer JR, Kolonel LN, Blot WJ (2016), Multiple myeloma mortality in relation to obesity among African Americans. J Natl Cancer Inst 108, pii: djw 120. [Google Scholar]
  98. Thordardottir M, Lindqvist EK, Lund SH, Costello R, Burton D, Korde N, Mailankody S, Eiriksdottir G, Launer LJ, Gudnason V, Harris TB, Landgren O, Kristinsson SY (2017), Obesity and risk of monoclonal gammopathy of undetermined significance and progression to multiple myeloma: a population-based study. Blood Adv 1, 2186–2192. [CrossRef] [PubMed] [Google Scholar]
  99. Brunicardi FC, Chaiken RL, Ryan AS, Seymour NE, Hoffmann JA, Lebovitz HE, Chance RE, Gingerich RL, Andersen DK, Elahi D (1996), Pancreatic polypeptide administration improves abnormal glucose metabolism in patients with chronic pancreatitis. J Clin Endocrinol Metab 81, 3566–3572. [PubMed] [Google Scholar]
  100. Gumbs AA (2008), Obesity, pancreatitis, and pancreatic cancer. Obes Surg 18, 1183–1187. [CrossRef] [PubMed] [Google Scholar]
  101. Eibl G, Cruz-Monserrate Z, Korc M, Petrov MS, Goodarzi MO, Fisher WE, Habtezion A, Lugea A, Pandol SJ, Hart PA, Andersen DK; Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer (2018), Diabetes mellitus and obesity as risk factors for pancreatic cancer. J Acad Nutr Diet 118, 555–567. [CrossRef] [PubMed] [Google Scholar]
  102. Melitas C, Meiselman M (2018), Metabolic pancreatitis: pancreatic steatosis, hypertriglyceridemia, and associated chronic pancreatitis in 3 patients with metabolic syndrome. Case Rep Gastroenterol 12, 331–336. [CrossRef] [PubMed] [Google Scholar]
  103. Karmiris K, Koutroubakis IE, Kouroumalis EA (2005), The emerging role of adipocytokines as inflammatory mediators in inflammatory bowel disease. Inflamm Bowel Dis 11, 847–855. [CrossRef] [PubMed] [Google Scholar]
  104. John BJ, Abulafi AM, Poullis A, Mendall MA (2007), Chronic subclinical bowel inflammation may explain increased risk of colorectal cancer in obese people. Gut 56, 1034–1035. [CrossRef] [PubMed] [Google Scholar]
  105. Tilg H, Moschen AR (2008), Role of adiponectin and PBEF/visfatin as regulators of inflammation: involvement in obesity-associated diseases. Clin Sci (Lond) 114, 275–288. [CrossRef] [PubMed] [Google Scholar]
  106. Kreuter R, Wankell M, Ahlenstiel G, Hebbard L (2018), The role of obesity in inflammatory bowel disease. Biochim Biophys Acta Mol Basis Dis 1865, 63–72. [Google Scholar]
  107. Chen S, Chen CM, Zhou Y, Zhou RJ, Yu KD, Shao ZM (2012), Obesity or overweight is associated with worse pathological response to neoadjuvant chemotherapy among Chinese women with breast cancer. PLoS One 7, e41380. [CrossRef] [PubMed] [Google Scholar]
  108. Robinson PJ, Bell RJ, Davis SR (2014), Obesity is associated with a poorer prognosis in women with hormone receptor positive breast cancer. Maturitas 79, 279–286. [CrossRef] [PubMed] [Google Scholar]
  109. Seo BR, Bhardwaj P, Choi S, Gonzalez J, Andresen Eguiluz RC, Wang K, Mohanan S, Morris PG, Du B, Zhou XK, Vahdat LT, Verma A, Elemento O, Hudis CA, Williams RM, Gourdon D, Dannenberg AJ, Fischbach C (2015), Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci Transl Med 7, 301ra130. [PubMed] [Google Scholar]
  110. Gravena AAF, Romeiro Lopes TC, Demitto MO, Borghesan DHP, Dell' Agnolo CM, Brischiliari SCR, Carvalho MDB, Pelloso SM (2018), The obesity and the risk of breast cancer among pre and postmenopausal women. Asian Pac J Cancer Prev 19, 2429–2436. [PubMed] [Google Scholar]
  111. Nyasani E, Munir I, Perez M, Payne K, Khan S (2018), Linking obesity-induced leptin-signaling pathways to common endocrine-related cancers in women. Endocrine. DOI: 10.1007/s12020-018-1748-4 [Google Scholar]
  112. Tartter PI, Slater G, Papatestas AE, Aufses AH, Jr (1984), Cholesterol, weight, height, Quetelet's index, and colon cancer recurrence. J Surg Oncol 27, 232–235. [Google Scholar]
  113. Dignam JJ, Polite BN, Yothers G, Raich P, Colangelo L, O'Connell MJ, Wolmark N (2006), Body mass index and outcomes in patients who receive adjuvant chemotherapy for colon cancer. J Natl Cancer Inst 98, 1647–1654. [CrossRef] [PubMed] [Google Scholar]
  114. Wu S, Liu J, Wang X, Li M, Gan Y, Tang Y (2014), Association of obesity and overweight with overall survival in colorectal cancer patients: a meta-analysis of 29 studies. Cancer Causes Control 25, 1489–1502. [CrossRef] [PubMed] [Google Scholar]
  115. Colussi D, Fabbri M, Zagari RM, Montale A, Bazzoli F, Ricciardiello L (2018), Lifestyle factors and risk for colorectal polyps and cancer at index colonoscopy in a FIT-positive screening population. United European Gastroenterol J 6, 935–942. [CrossRef] [PubMed] [Google Scholar]
  116. da Silva M, Weiderpass E, Licaj I, Lissner L, Rylander C (2018), Excess body weight, weight gain and obesity-related cancer risk in women in Norway: the Norwegian Women and Cancer study. Br J Cancer 119, 646–656. [CrossRef] [PubMed] [Google Scholar]
  117. Mu N, Zhu Y, Wang Y, Zhang H, Xue F (2012), Insulin resistance: a significant risk factor of endometrial cancer. Gynecol Oncol 125, 751–757. [CrossRef] [PubMed] [Google Scholar]
  118. MacInnis RJ, English DR (2006), Body size and composition and prostate cancer risk: systematic review and meta-regression analysis. Cancer Causes Control 17, 989–1003. [CrossRef] [PubMed] [Google Scholar]
  119. Choi Y, Park B, Jeong BC, Seo SI, Jeon SS, Choi HY, Adami HO, Lee JE, Lee HM (2013), Body mass index and survival in patients with renal cell carcinoma: a clinical-based cohort and meta-analysis. Int J Cancer 132, 625–634. [CrossRef] [PubMed] [Google Scholar]
  120. Leo QJ, Ollberding NJ, Wilkens LR, Kolonel LN, Henderson BE, Le Marchand L, Maskarinec G (2014), Obesity and non-Hodgkin lymphoma survival in an ethnically diverse population: the Multiethnic Cohort study. Cancer Causes Control 25, 1449–1459. [CrossRef] [PubMed] [Google Scholar]
  121. Wienecke A, Neuhauser H, Kraywinkel K, Barnes B (2018), Cancers potentially preventable through excess weight reduction in Germany in 2010. Obes Facts 11, 400–412. [CrossRef] [PubMed] [Google Scholar]
  122. Geyer SM, Morton LM, Habermann TM, Allmer C, Davis S, Cozen W, Severson RK, Lynch CF, Wang SS, Maurer MJ, Hartge P, Cerhan JR (2010), Smoking, alcohol use, obesity, and overall survival from non-Hodgkin lymphoma: a population-based study. Cancer 116, 2993–3000. [CrossRef] [PubMed] [Google Scholar]
  123. Jones JA, Fayad LE, Elting LS, Rodriguez MA (2010), Body mass index and outcomes in patients receiving chemotherapy for intermediate-grade B-cell non-Hodgkin lymphoma. Leuk Lymphoma 51, 1649–1657. [CrossRef] [PubMed] [Google Scholar]
  124. Carson KR, Bartlett NL, McDonald JR, Luo S, Zeringue A, Liu J, Fu Q, Chang SH, Colditz GA (2012), Increased body mass index is associated with improved survival in United States veterans with diffuse large B-cell lymphoma. J Clin Oncol 30, 3217–3222. [CrossRef] [PubMed] [Google Scholar]
  125. Han X, Stevens J, Bradshaw PT (2013), Body mass index, weight change, and survival in non-Hodgkin lymphoma patients in Connecticut women. Nutr Cancer 65, 43–50. [CrossRef] [PubMed] [Google Scholar]
  126. Gevers TJG, BWM, Veendrick PB, Vrolijk JM (2018), Regression of hepatocellular adenoma after bariatric surgery in severe obese patients. Liver Int. DOI: 10.1111/liv.13934 [Google Scholar]
  127. Incio J, Ligibel JA, McManus DT, Suboj P, Jung K, Kawaguchi K, Pinter M, Babykutty S, Chin SM, Vardam TD, Huang Y, Rahbari NN, Roberge S, Wang D, Gomes-Santos IL, Puchner SB, Schlett CL, Hoffmman U, Ancukiewicz M, Tolaney SM, Krop IE, Duda DG, Boucher Y, Fukumura D, Jain RK (2018), Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci Transl Med 10, pii: eaag 0945. [Google Scholar]
  128. Hillers LE, D'Amato JV, Chamberlin T, Paderta G, Arendt LM (2018), Obesity-activated adipose-derived stromal cells promote breast cancer growth and invasion. Neoplasia 20, 1161–1174. [CrossRef] [PubMed] [Google Scholar]
  129. Benzler J, Ganjam GK, Pretz D, Oelkrug R, Koch CE, Legler K, Stöhr S, Culmsee C, Williams LM, Tups A (2015), Central inhibition of IKKβ/NF-κB signaling attenuates high-fat diet-induced obesity and glucose intolerance. Diabetes 64, 2015–2027. [CrossRef] [PubMed] [Google Scholar]
  130. Wei X, Song H, Yin L, Rizzo MG, Sidhu R, Covey DF, Ory DS, Semenkovich CF (2016), Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature 539, 294–298. [CrossRef] [PubMed] [Google Scholar]
  131. Breasson L, Becattini B, Sardi C, Molinaro A, Zani F, Marone R, Botindari F, Bousquenaud M, Ruegg C, Wymann MP, Solinas G (2017), PI3Kγ activity in leukocytes promotes adipose tissue inflammation and early-onset insulin resistance during obesity. Sci Signal 10, eaaf 2969. [CrossRef] [Google Scholar]
  132. Kim YJ, Sano T, Nabetani T, Asano Y, Hirabayashi Y (2012), GPRC5B activates obesity-associated inflammatory signaling in adipocytes. Sci Signal 2012, 5, ra85. [Google Scholar]
  133. Incio J, Liu H, Suboj P, Chin SM, Chen IX, Pinter M, Ng MR, Nia HT, Grahovac J, Kao S, Babykutty S, Huang Y, Jung K, Rahbari NN, Han X, Chauhan VP, Martin JD, Kahn J, Huang P, Desphande V, Michaelson J, Michelakos TP, Ferrone CR, Soares R, Boucher Y, Fukumura D, Jain RK (2016), Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. Cancer Discov 6, 852–869. [CrossRef] [PubMed] [Google Scholar]
  134. Yang G, Rosen DG, Zhang Z, Bast RC Jr, Mills GB, Colacino JA, Mercado-Uribe I, Liu J (2006), The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc Natl Acad Sci USA 103, 16472–16477. [CrossRef] [PubMed] [Google Scholar]
  135. Richmond A, Lawson DH, Nixon DW, Chawla RK (1985), Characterization of autostimulatory and transforming growth factors from human melanoma cells. Cancer Res 45, 6390–6394. [Google Scholar]
  136. Schludi B, Moin ASM, Montemurro C, Gurlo T, Matveyenko AV, Kirakossian D, Dawson DW, Dry SM, Butler PC, Butler AE (2017), Islet inflammation and ductal proliferation may be linked to increased pancreatitis risk in type 2 diabetes. JCI Insight 2, pii: 92282. [CrossRef] [Google Scholar]
  137. Loncle C, Bonjoch L, Folch-Puy E, Lopez-Millan EB, Lac S, Molejon MI, Chuluyan E, Cordelier P, Dubus P, Lomberk G, Urrutia R, Closa D, Iovanna JL (2015), IL-17 functions through the novel REG3β-JAK2-STAT3 inflammatory pathway to promote the transition from chronic pancreatitis to pancreatic cancer. Cancer Res 75, 4852–4862. [CrossRef] [PubMed] [Google Scholar]
  138. Boncela, J, Papiewska I, Fijalkowska I, Walkowiak B, Cierniewski CS (2001), Acute phase protein alpha 1-acid glycoprotein interacts with plasminogen activator inhibitor type 1 and stabilizes its inhibitory activity. J Biol Chem 276, 35305–35311. [CrossRef] [PubMed] [Google Scholar]
  139. Savetsky IL, Torrisi JS, Cuzzone DA, Ghanta S, Albano NJ, Gardenier JC, Joseph WJ, Mehrara BJ (2014), Obesity increases inflammation and impairs lymphatic function in a mouse model of lymphedema. Am J Physiol Heart Circ Physiol 307, H165–172. [CrossRef] [PubMed] [Google Scholar]
  140. Araldi RP, Módolo DG, de Sá Júnior PL, Consonni SR, de Carvalho RF, Roperto FP, Beçak W, de Cassia Stocco R (2016), Genetics and metabolic deregulation following cancer initiation: a world to explore. Biomed Pharmacother 82, 449–458. [CrossRef] [PubMed] [Google Scholar]
  141. Ekoff M, Kaufmann T, Engström M, Motoyama N, Villunger A, Jönsson JI, Strasser A, Nilsson G (2007), The BH3-only protein Puma plays an essential role in cytokine deprivation induced apoptosis of mast cells. Blood 110, 3209–3217. [CrossRef] [PubMed] [Google Scholar]
  142. Skurk C, Maatz H, Kim HS, Yang J, Abid MR, Aird WC, Walsh K (2004), The Akt-regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase-8 inhibitor FLIP. J Biol Chem 279, 1513–1525. [CrossRef] [PubMed] [Google Scholar]
  143. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994), Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (erratum in Nature 1995, 374, 479). [CrossRef] [PubMed] [Google Scholar]
  144. Edwardson JA, Hough CA (1975), The pituitary-adrenal system of the genetically obese (ob/ob) mouse. J Endocrinol 65, 99–107. [CrossRef] [PubMed] [Google Scholar]
  145. Tatemoto K (1982), Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc Natl Acad Sci USA 79, 5485–5489. [CrossRef] [PubMed] [Google Scholar]
  146. Allen YS, Adrian TE, Allen JM, Tatemoto K, Crow TJ, Bloom SR, Polak JM (1983), Neuropeptide Y distribution in the rat brain. Science 221, 877–879. [CrossRef] [PubMed] [Google Scholar]
  147. Devane WA1, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992), Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949. [CrossRef] [PubMed] [Google Scholar]
  148. Ruegsegger GN, Booth FW (2017), Running from disease: molecular mechanisms associating dopamine and leptin signaling in the brain with physical inactivity, obesity, and type 2 diabetes. Front Endocrinol (Lausanne) 8, 109. [CrossRef] [PubMed] [Google Scholar]
  149. Flatow EA, Komegae EN, Fonseca MT, Brito CF, Musteata FM, Antunes-Rodrigues J, Steiner AA (2017), Elucidating the role of leptin in systemic inflammation: a study targeting physiological leptin levels in rats and their macrophages. Am J Physiol Regul Integr Comp Physiol 313, R572–R582. [CrossRef] [PubMed] [Google Scholar]
  150. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF (1996), Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334, 292–295. [CrossRef] [PubMed] [Google Scholar]
  151. Madej T, Boguski MS, Bryant SH (1995), Threading analysis suggests that the obese gene product may be a helical cytokine. FEBS Lett 373, 13–18. [CrossRef] [PubMed] [Google Scholar]
  152. Perrier S, Caldefie-Chézet F, Vasson MP (2009), IL-1 family in breast cancer: potential interplay with leptin and other adipocytokines. FEBS Lett 583, 259–265. [CrossRef] [PubMed] [Google Scholar]
  153. Cirillo D, Rachiglio AM, la Montagna R, Giordano A, Normanno N (2008), Leptin signaling in breast cancer: an overview. J Cell Biochem 105, 956–964. [CrossRef] [PubMed] [Google Scholar]
  154. Jardé T, Perrier S, Vasson MP, Caldefie-Chézet F (2011), Molecular mechanisms of leptin and adiponectin in breast cancer. Eur J Cancer 47, 33–43. [CrossRef] [PubMed] [Google Scholar]
  155. Perera CN, Chin HG, Duru N, Camarillo IG (2008), Leptin-regulated gene expression in MCF-7 breast cancer cells: mechanistic insights into leptin-regulated mammary tumor growth and progression. J Endocrinol 199, 221–233. [CrossRef] [PubMed] [Google Scholar]
  156. Castellucci M, De Matteis R, Meisser A, Cancello R, Monsurrò V, Islami D, Sarzani R, Marzioni D, Cinti S, Bischof P (2000), Leptin modulates extracellular matrix molecules and metalloproteinases: possible implications for trophoblast invasion. Mol Hum Reprod 6, 951–958. [CrossRef] [PubMed] [Google Scholar]
  157. Garofalo C, Surmacz E (2006), Leptin and cancer. J Cell Physiol 207, 12–22. [CrossRef] [PubMed] [Google Scholar]
  158. Rouet-Benzineb P, Aparicio Rouet-Benzineb T, Guilmeau S, Pouzet C, Descatoire V, Buyse M, Bado A (2004), Leptin counteracts sodium butyrate-induced apoptosis in human colon cancer HT-29 cells via NF-kappaB signaling. J Biol Chem 279, 16495–16502. [CrossRef] [PubMed] [Google Scholar]
  159. Huang ZM, Du SH, Huang LG, Li JH, Xiao L, Tong P (2016), Leptin promotes apoptosis and inhibits autophagy of chondrocytes through upregulating lysyl oxidase-like 3 during osteoarthritis pathogenesis. Osteoarthritis Cartilage 24, 1246–1253. [CrossRef] [PubMed] [Google Scholar]
  160. Martínez-Martínez E, Rodríguez C, Galán M, Miana M, Jurado-López R, Bartolomé MV, Luaces M, Islas F, Martínez-González J, López-Andrés N, Cachofeiro V (2016), The lysyl oxidase inhibitor (β-aminopropionitrile) reduces leptin profibrotic effects and ameliorates cardiovascular remodeling in diet-induced obesity in rats. J Mol Cell Cardiol 92, 96–104. [CrossRef] [PubMed] [Google Scholar]
  161. Ebihara K, Kusakabe T, Hirata M, Masuzaki H, Miyanaga F, Kobayashi N, Tanaka T, Chusho H, Miyazawa T, Hayashi T, Hosoda K, Ogawa Y, DePaoli AM, Fukushima M, Nakao K (2007), Efficacy and safety of leptin-replacement therapy and possible mechanisms of leptin actions in patients with generalized lipodystrophy. J Clin Endocrinol Metab 92, 532–541. [CrossRef] [PubMed] [Google Scholar]
  162. Roggenkamp R, Numa S, Schweizer E (1980), Fatty acid-requiring mutant of Saccharomyces cerevisiae defective in acetyl-CoA carboxylase. Proc Natl Acad Sci USA 77, 1814–1817. [CrossRef] [PubMed] [Google Scholar]
  163. Hasslacher M, Ivessa AS, Paltauf F, Kohlwein SD (1993), Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid metabolism. J Biol Chem 268, 10946–10952. [PubMed] [Google Scholar]
  164. Rios Garcia M, Steinbauer B, Srivastava K, Singhal M, Mattijssen F, Maida A, Christian S, Hess-Stumpp H, Augustin HG, Müller-Decker K, Nawroth PP, Herzig S (2017), Acetyl-CoA carboxylase 1-dependent protein acetylation controls breast cancer metastasis and recurrence. Cell Metabol 26, 842–855. [CrossRef] [Google Scholar]
  165. Feng H, Liu Q, Zhang N, Zheng L, Sang M, Feng J, Zhang J, Wu X, Shan B (2013), Leptin promotes metastasis by inducing an epithelial-mesenchymal transition in A549 lung cancer cells. Oncol Res 21, 165–171. [Google Scholar]
  166. Houseknecht KL, Mantzoros CS, Kuliawat R, Hadro E, Flier JS, Kahn BB (1996), Evidence for leptin binding to proteins in serum of rodents and humans: modulation with obesity. Diabetes 45, 1638–1643. [CrossRef] [PubMed] [Google Scholar]
  167. van Dielen FM, van't Veer C, Schols AM, Soeters PB, Buurman WA, Greve JW (2001), Increased leptin concentrations correlate with increased concentrations of inflammatory markers in morbidly obese individuals. Int J Obes Relat Metab Disord 25, 1759–1766. [CrossRef] [Google Scholar]
  168. Rajala MW, Scherer PE (2003), Minireview: the adipocyte − at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 144, 3765–3773. [CrossRef] [PubMed] [Google Scholar]
  169. Du B, Cawthorn WP, Su A, Doucette CR, Yao Y, Hemati N, Kampert S, McCoin C, Broome DT, Rosen CJ, Yang G, MacDougald OA (2013), The transcription factor paired-related homeobox 1 (Prrx1) inhibits adipogenesis by activating transforming growth factor-β (TGFβ) signaling. J Biol Chem 288, 3036–3047. [CrossRef] [PubMed] [Google Scholar]
  170. Pastel E, Price E, Sjöholm K, McCulloch LJ, Rittig N, Liversedge N, Knight B, Moller N, Svensson PA, Kos K (2017), Lysyl oxidase and adipose tissue dysfunction. Metabolism 78, 118–127. [Google Scholar]
  171. Gottschling-Zeller H, Birgel M, Scriba D, Blum WF, Hauner H (1999), Depot-specific release of leptin from subcutaneous and omental adipocytes in suspension culture: effect of tumor necrosis factor-alpha and transforming growth factor-beta1. Eur J Endocrinol 141, 436–442. [CrossRef] [PubMed] [Google Scholar]
  172. Jain M, Budinger GR, Lo A, Urich D, Rivera SE, Ghosh AK, Gonzalez A, Chiarella SE, Marks K, Donnelly HK, Soberanes S, Varga J, Radigan KA, Chandel NS, Mutlu GM (2011), Leptin promotes fibroproliferative acute respiratory distress syndrome by inhibiting peroxisome proliferator-activated receptor-γ. Am J Respir Crit Care Med 183, 1490–1498. [CrossRef] [PubMed] [Google Scholar]
  173. Chen C, Chang YC, Liu CL, Liu TP, Chang KJ, Guo IC (2007), Leptin induces proliferation and anti-apoptosis in human hepatocarcinoma cells by up-regulating cyclin D1 and down-regulating Bax via a Janus kinase 2-linked pathway. Endocr Relat Cancer 14, 513–529. [CrossRef] [PubMed] [Google Scholar]
  174. Li L, Kubasová T, Rychlik I, Hoerr FJ, Rautenschlein S (2018), Infectious bursal disease virus infection leads to changes in the gut associated-lymphoid tissue and the microbiota composition. PLoS One 13, e0192066. [CrossRef] [PubMed] [Google Scholar]
  175. Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, Corthier G, Tran Van Nhieu J, Furet JP (2011), Microbial dysbiosis in colorectal cancer (CRC) patients. PloS One 6, e16393. [CrossRef] [PubMed] [Google Scholar]
  176. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J (2006), Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55, 205–211. [CrossRef] [PubMed] [Google Scholar]
  177. Brücher BLDM, Jamall IS (2019), Undervalued ubiquitous proteins. 4open 2, 7, 1–13. https://doi.org/10.1051/fopen/2019002 [CrossRef] [EDP Sciences] [Google Scholar]
  178. Brücher BLDM, Jamall IS (2019), Precancerous niche (PCN), a product of fibrosis with remodeling by incessant chronic inflammation. 4open 2, 11, 1–21. https://doi.org/10.1051/fopen/2018009 [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.