Issue
4open
Volume 2, 2019
Disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer”
Article Number 11
Number of page(s) 21
Section Life Sciences - Medicine
DOI https://doi.org/10.1051/fopen/2018009
Published online 25 April 2019
  1. Stachura J, Heitzman J, Urbańczyk K (1999), Adenocarcinoma developes in the “cirrhotic” not just atrophic gastric mucosa. Pol J Pathol 50, 177–181. [PubMed] [Google Scholar]
  2. Goo MJ, Ki MR, Lee HR, Yang HJ, Yuan DW, Hong IH, Park JK, Hong KS, Han JY, Hwang OK, Kim DH, Do SH, Cohn RD, Jeong K (2009), Helicobacter pylori promotes hepatic fibrosis in the animal model. Lab Invest 89, 1291–1303. [Google Scholar]
  3. Ki MR, Goo MJ, Park JK, Hong IH, Ji AR, Han SY, You SY, Lee EM, Kim AY, Park SJ, Lee HJ, Kim SY, Jeong KS (2010), Helicobacter pylori accelerates hepatic fibrosis by sensitizing transforming growth factor-β1-induced inflammatory signaling. Lab Invest 90, 1507–1516. [Google Scholar]
  4. Deenonpoe R, Mairiang E, Mairiang P, Pairojkul C, Chamgramol Y, Rinaldi G, Loukas A, Brindley PJ, Sripa B (2013), Elevated prevalence of Helicobacter species and virulence factors in opisthorchiasis and associated hepatobiliary disease. Sci Rep 7, 42744. [Google Scholar]
  5. Sakr SA, Badrah GA, Sheir RA (2013), Histological and histochemical alterations in liver of chronic hepatitis C patients with Helicobacter pylori infection. Biomed Pharmacother 67, 367–374. [CrossRef] [PubMed] [Google Scholar]
  6. Gouveia MJ, Pakharukova MY, Laha T, Sripa B, Maksimova GA, Rinaldi G, Brindley PJ, Mordvinov VA, Amaro T, Santos LL, Costa JMCD, Vale N (2013), Infection with Opisthorchis felineus induces intraepithelial neoplasia of the biliary tract in a rodent model. Carcinogenesis 38, 929–937. [Google Scholar]
  7. Jalouli J, Ibrahim SO, Mehrotra R, Jalouli MM, Sapkota D, Larsson PA, Hirsch JM (2010), Prevalence of viral (HPV, EBV, HSV) infections in oral submucous fibrosis and oral cancer from India. Acta Otolaryngol 130, 1306–1311. [CrossRef] [PubMed] [Google Scholar]
  8. Nayak MT, Singh A, Desai RS, Vanaki SS (2013), Immunohistochemical analysis of vimentin in oral submucous fibrosis. J Cancer Epidemiol 2013, 549041. [Google Scholar]
  9. Feghali CA, Wright TM (1997), Cytokines in acute and chronic inflammation. Front Biosci 2, d12–26. [Google Scholar]
  10. Gharaee-Kermani M, McCullumsmith RE, Charo IF, Kunkel SL, Phan SH (2003), CC-chemokine receptor 2 required for bleomycin-induced pulmonary fibrosis. Cytokine 24, 266–276. [Google Scholar]
  11. Kendall RT, Feghali-Bostwick CA (2014), Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol 5, 123. [CrossRef] [PubMed] [Google Scholar]
  12. McKleroy W, Lee TH, Atabai K (2013), Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis. Am J Physiol Lung Cell Mol Physiol 304, L709– L721. [CrossRef] [PubMed] [Google Scholar]
  13. Cox TR, Bird D, Baker AM, Barker HE, Ho MW, Lang G, Erler (2013), LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res 73, 1721–1732. [Google Scholar]
  14. Wang T, Zhang L, Shi C, Sun H, Wang J, Li R, Zou Z, Ran X, Su Y (2012), TGF-β-induced miR-21 negatively regulates the antiproliferative activity but has no effect on EMT of TGF-β in HaCaT cells. Int J Biochem Cell Biol 44, 366–376. [CrossRef] [PubMed] [Google Scholar]
  15. Bissell DM (1992), Lipocyte activation and hepatic fibrosis. Gastroenterology 102, 1803–1805. [CrossRef] [PubMed] [Google Scholar]
  16. Flavell SJ, Hou TZ, Lax S, Filer AD, Salmon M, Buckley CD (2008), Fibroblasts as novel therapeutic targets in chronic inflammation. Br J Pharmacol 153 Suppl, S241– S246. [CrossRef] [PubMed] [Google Scholar]
  17. Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, Chow JC, Strauss JF 3rd (2001), The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 276, 10229–10233. [Google Scholar]
  18. Csordas G, Santra M, Reed CC, Eichstetter I, McQuillan DJ, Gross D, Nugent MA, Hajnoczky G, Iozzo RV (2000), Sustained down-regulation of the epidermal growth factor receptor by decorin. A mechanism for controlling tumor growth in vivo. J Biol Chem 275, 32879–32887. [Google Scholar]
  19. Kresse H, Schönherr E (2001), Proteoglycans of the extracellular matrix and growth control. J Cell Physiol 189, 266–274. [Google Scholar]
  20. Comalada M, Cardó M, Xaus J, Valledor AF, Lloberas J, Ventura F, Celada A (2003), Decorin reverses the repressive effect of autocrine-produced TGF-beta on mouse macrophage activation. J Immunol 170, 4450–4456. [CrossRef] [PubMed] [Google Scholar]
  21. Köninger J, Giese NA, Bartel M, di Mola FF, Berberat PO, di Sebastiano P, Giese T, Büchler MW, Friess H (2006), The ECM proteoglycan decorin links desmoplasia and inflammation in chronic pancreatitis. J Clin Pathol 59, 21–27. [Google Scholar]
  22. Kovalszky I, Nagy P, Szende B, Lapis K, Szalay F, Jeney A, Schaff Z (1998), Experimental and human liver fibrogenesis. Scand J Gastroenterol Suppl 228, 51–55. [CrossRef] [PubMed] [Google Scholar]
  23. Berk BC, Fujiwara K, Lehoux S (2007), ECM remodeling in hypertensive heart disease. J Clin Invest 117, 568–575. [CrossRef] [PubMed] [Google Scholar]
  24. Wang H, Fang R, Wang XF, Zhang F, Chen DY, Zhou B, Wang HS, Cai SH, Du J (2013), Stabilization of Snail through AKT/GSK-3β signaling pathway is required for TNF-α-induced epithelial-mesenchymal transition in prostate cancer PC3 cells. Eur J Pharmacol 714, 48–55. [CrossRef] [PubMed] [Google Scholar]
  25. Lv L, Yuan J, Huang T, Zhang C, Zhu Z, Wang L, Jiang G, Zeng F (2014), Stabilization of Snail by HIF-1α and TNF-α is required for hypoxia-induced invasion in prostate cancer PC3 cells. Mol Biol Rep 41, 4573–4582. [CrossRef] [PubMed] [Google Scholar]
  26. Liu H, Xu L, He H, Zhu Y, Liu J, Wang S, Chen L, Wu Q, Xu J, Gu J (2012), Hepatitis B virus X protein promotes hepatoma cell invasion and metastasis by stabilizing Snail protein. Cancer Sci 103, 2072–2081. [CrossRef] [PubMed] [Google Scholar]
  27. Campbell SE, Katwa LC (1997), Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 29, 1947–1958. [CrossRef] [PubMed] [Google Scholar]
  28. Wang H, Wang HS, Zhou BH, Li CL, Zhang F, Wang XF, Zhang G, Bu XZ, Cai SH, Du J (2013), Epithelial-mesenchymal transition (EMT) induced by TNF-α requires AKT/GSK-3β-mediated stabilization of snail in colorectal cancer. PLoS ONE 8, e56664. [CrossRef] [PubMed] [Google Scholar]
  29. Hofmann C, Dunger N, Schölmerich J, Falk W, Obermeier F (2010), Glycogen synthase kinase 3-β: a master regulator of toll-like receptor-mediated chronic intestinal inflammation. Inflamm Bowel Dis 16, 1850–1858. [CrossRef] [PubMed] [Google Scholar]
  30. Thiel A, Heinonen M, Rintahaka J, Hallikainen T, Hemmes A, Dixon DA, Haglund C, Ristimäki A (2006), Expression of cyclooxygenase-2 is regulated by glycogen synthase kinase-3beta in gastric cancer cells. J Biol Chem 281, 4564–4569. [Google Scholar]
  31. Ding L, Liou GY, Schmitt DM, Storz P, Zhang JS, Billadeau DD (2013), Glycogen synthase kinase-3β ablation limits pancreatitis-induced acinar-to-ductal metaplasia. J Pathol 243, 65–77. [Google Scholar]
  32. Park H, Lee M, Kim DW, Hong SY, Lee H (2016), Glycogen synthase kinase 3β and cyclin D1 expression in cervical carcinogenesis. Obstet Gynecol Sci 59, 470–478. [CrossRef] [PubMed] [Google Scholar]
  33. Di Gregorio J, Sferra R, Speca S, Vetuschi A, Dubuquoy C, Desreumaux P, Pompili S, Cristiano L, Gaudio E, Flati V, Latella G (2013), Role of glycogen synthase kinase-3β and PPAR-γ on epithelial-to-mesenchymal transition in DSS-induced colorectal fibrosis, PLoS ONE 12, e0171093. [Google Scholar]
  34. Son YO, Pratheeshkumar P, Wang L, Wang X, Fan J, Kim DH, Lee JY, Zhang Z, Lee JC, Shi X (2013), Reactive oxygen species mediate Cr(VI)-induced carcinogenesis through PI3K/AKT-dependent activation of GSK-3β/β-catenin signaling. Toxicol Appl Pharmacol 271, 239–248. [CrossRef] [PubMed] [Google Scholar]
  35. Zumbrunn J, Kinoshita K, Hyman AA, Näthke IS (2001), Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Curr Biol 11, 44–49. [CrossRef] [PubMed] [Google Scholar]
  36. Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA, Nywening TM, Hawkins WG, Shapiro IM, Weaver DT, Pachter JA, Wang-Gillam A, DeNardo DG (2016), Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med 22, 851–860. [CrossRef] [PubMed] [Google Scholar]
  37. Grimm S, Jennek S, Singh R, Enkelmann A, Junker K, Rippaus N, Berndt A, Friedrich K (2015), Malignancy of bladder cancer cells is enhanced by tumor-associated fibroblasts through a multifaceted cytokine-chemokine loop. Exp Cell Res 335, 1–11. [CrossRef] [PubMed] [Google Scholar]
  38. Kuhn C, McDonald JA (1991), The roles of the myofibroblast in idiopathic pulmonary fibrosis. Ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis. Am J Pathol 138, 1257–1265. [PubMed] [Google Scholar]
  39. Gross TJ, Hunninghake GW (2001), Idiopathic pulmonary fibrosis. N Engl J Med 345, 517–525. [CrossRef] [PubMed] [Google Scholar]
  40. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002), Myofibroblasts and mechano-regulation of connective tissue remodeling. Nat Rev Mol Cell Biol 3, 349–363. [CrossRef] [PubMed] [Google Scholar]
  41. Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, Tschumperlin DJ (2010), Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol 190, 693–706. [CrossRef] [PubMed] [Google Scholar]
  42. Vyalov SL, Gabbiani G, Kapanci Y (1993), Rat alveolar myofibroblasts acquire alpha-smooth muscle actin expression during bleomycin-induced pulmonary fibrosis. Am J Pathol 143, 1754–1765. [PubMed] [Google Scholar]
  43. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993), Transforming growth factor-13l induces a-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122, 103–111. [CrossRef] [PubMed] [Google Scholar]
  44. Huang CP, Cheng CM, Su HL, Lin YW (2015), Syndecan-4 promotes epithelial tumor cells spreading and regulates the turnover of PKCα activity under mechanical stimulation on the elastomeric substrates. Cell Physiol Biochem 36, 1291–1304. [CrossRef] [PubMed] [Google Scholar]
  45. Richards KE, Zeleniak AE, Fishel ML, Wu J, Littlepage LE, Hill R (2013), Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene 36, 1770–1778. [Google Scholar]
  46. Lee SK, Choi MY, Bae SY, Lee JH, Lee HC, Kil WH, Lee JE, Kim SW, Nam SJ (2015), Immediate postoperative inflammation is an important prognostic factor in breast cancer. Oncology 88, 337–344. [CrossRef] [PubMed] [Google Scholar]
  47. Yoshida K, Murata M, Yamaguchi T, Matsuzaki K (2014), TGF-β/Smad signaling during hepatic fibro-carcinogenesis (review). Int J Oncol 45, 1363–1371. [Google Scholar]
  48. Saha A, Jha HC, Upadhyay SK, Robertson ES (2015), Epigenetic silencing of tumor suppressor genes during in vitro Epstein-Barr virus infection. Proc Natl Acad Sci USA 112, E5199–E5207. [CrossRef] [Google Scholar]
  49. Massague J, Wotton D (2000), Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19, 1745–1754. [CrossRef] [PubMed] [Google Scholar]
  50. Roberts AB, Wakefield LM (2003), The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA 100, 8621–8623. [CrossRef] [Google Scholar]
  51. Benson JR (2004), Role of transforming growth factor beta in breast carcinogenesis. Lancet Oncol 5, 229–239. [CrossRef] [PubMed] [Google Scholar]
  52. Javelaud D, Mauviel A (2004), Mammalian transforming growth factor-betas: Smad signaling and physio-pathological roles. Int J Biochem Cell Biol 36, 1161–1165. [CrossRef] [PubMed] [Google Scholar]
  53. Pühringer-Oppermann F, Sarbia M, Ott N, Brücher BLDM (2010), The predictive value of genes of the TGF-beta1 pathway in multimodally treated squamous cell carcinoma of the esophagus. Int J Colorectal Dis 25, 515–521. [CrossRef] [PubMed] [Google Scholar]
  54. Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M, Sevillano M, Palomo-Ponce S, Tauriello DV, Byrom D, Cortina C, Morral C, Barceló C, Tosi S, Riera A, Attolini CS, Rossell D, Sancho E, Batlle E (2015), Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet 47, 320–329. [Google Scholar]
  55. Voorhees PM, Orlowski RZ (2006), The proteasome and proteasome inhibitors in cancer therapy. Annu Rev Pharmacol Toxicol 46, 189–213. [Google Scholar]
  56. Luo K (2004), Ski and SnoN: negative regulators of TGF-beta signaling. Curr Opin Genet Dev 14, 65–70. [CrossRef] [PubMed] [Google Scholar]
  57. Deheuninck J, Luo K (2009), Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Res 19, 47–57. [CrossRef] [PubMed] [Google Scholar]
  58. Chen CR, Kang Y, Massague J (2001), Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci USA 98, 992–999. [CrossRef] [Google Scholar]
  59. Miyazono K, Maeda S, Imamura T (2004), Coordinate regulation of cell growth and differentiation by TGF-beta superfamily and Runx proteins. Oncogene 23, 4232–4237. [Google Scholar]
  60. Frederick JP, Liberati NT, Waddell DS, Shi Y, Wang XF (2004), Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Mol Cell Biol 24, 2546–2559. [Google Scholar]
  61. Matsuura I, Denissova NG, Wang G, He D, Long J, Liu F (2004), Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 430, 226–231. [CrossRef] [PubMed] [Google Scholar]
  62. Dai C, Yang J, Liu Y (2003), Transforming growth factor-beta1 potentiates renal tubular epithelial cell death by a mechanism independent of Smad signaling. J Biol Chem 278, 12537–12545. [Google Scholar]
  63. Edlund S, Bu S, Schuster N, Aspenström P, Heuchel R, Heldin NE, ten Dijke P, Heldin CH, Landström M (2003), Transforming growth factor-beta1 (TGF-beta)-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-beta-activated kinase 1 and mitogen-activated protein kinase kinase 3. Mol Biol Cell 14, 529–544. [CrossRef] [PubMed] [Google Scholar]
  64. Yoo J, Ghiassi M, Jirmanova L, Balliet AG, Hoffman B, Fornace AJ Jr, Liebermann DA, Bottinger EP, Roberts AB (2003), Transforming growth factor-beta-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem 278, 43001–43007. [Google Scholar]
  65. Kim KY, Kim BC, Xu Z, Kim SJ (2004), Mixed lineage kinase 3 (MLK3)-activated p38 MAP kinase mediates transforming growth factor-beta-induced apoptosis in hepatoma cells. J Biol Chem 279, 29478–29484. [Google Scholar]
  66. Landström M, Heldin NE, Bu S, Hermansson A, Itoh S, ten Dijke P, Heldin CH (2000), Smad7 mediates apoptosis induced by transforming growth factor beta in prostatic carcinoma cells. Curr Biol 10, 535–538. [CrossRef] [PubMed] [Google Scholar]
  67. Mazars A, Lallemand F, Prunier C, Marais J, Ferrand N, Pessah M, Cherqui G, Atfi A (2001), Evidence for a role of the JNK cascade in Smad7-mediated apoptosis. J Biol Chem 276, 36797–36803. [Google Scholar]
  68. Townsend DM, Tew KD (2003), The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22, 7369–7375. [Google Scholar]
  69. Cullen KJ, Newkirk KA, Schumaker LM, Aldosari N, Rone JD, Haddad BR (2003), Glutathione S-transferase pi amplification is associated with cisplatin resistance in head and neck squamous cell carcinoma cell lines and primary tumors. Cancer Res 63, 8097–9102. [Google Scholar]
  70. Kim SI, Kwak JH, Na HJ, Kim JK, Ding Y, Choi ME (2009), Transforming growth factor-beta (TGF-beta1) activates TAK1 via TAB1-mediated autophosphorylation, independent of TGF-beta receptor kinase activity in mesangial cells. J Biol Chem 284, 22285–22296. [Google Scholar]
  71. Caraci F, Gili E, Calafiore M, Failla M, La Rosa C, Crimi N, Sortino MA, Nicoletti F, Copani A, Vancheri C (2008), TGF-beta1 targets the GSK-3beta/beta-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res 57, 274–282. [CrossRef] [PubMed] [Google Scholar]
  72. Miettinen PJ, Ebner R, Lopez AR, Derynck R (1994), TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127, 2021–2036. [CrossRef] [PubMed] [Google Scholar]
  73. Kim S, Lee J, Jeon M, Nam SJ, Lee JE (2015), Elevated TGF-β1 and −β2 expression accelerates the epithelial to mesenchymal transition in triple-negative breast cancer cells. Cytokine 75, 151–158. [Google Scholar]
  74. Cho HJ, Baek KE, Saika S, Jeong MJ, Yoo J (2007), Snail is required for transforming growth factor-beta-induced epithelial-mesenchymal transition by activating PI3 kinase/Akt signal pathway. Biochem Biophys Res Commun 353, 337–343. [Google Scholar]
  75. Wettstein G, Bellaye PS, Kolb M, Hammann A, Crestani B, Soler P, Marchal-Somme J, Hazoume A, Gauldie J, Gunther A, Micheau O, Gleave M, Camus P, Garrido C, Bonniaud P (2013), Inhibition of HSP27 blocks fibrosis development and EMT features by promoting Snail degradation. FASEB J 27, 1549–1560. [CrossRef] [PubMed] [Google Scholar]
  76. Wang H, Fang R, Wang XF, Zhang F, Chen DY, Zhou B, Wang HS, Cai SH, Du J (2013), Stabilization of Snail through AKT/GSK-3β signaling pathway is required for TNF-α-induced epithelial-mesenchymal transition in prostate cancer PC3 cells. Eur J Pharmacol 714, 48–55. [CrossRef] [PubMed] [Google Scholar]
  77. Bae GY, Hong SK, Park JR, Kwon OS, Kim KT, Koo J, Oh E, Cha HJ (2016), Chronic TGFβ stimulation promotes the metastatic potential of lung cancer cells by Snail protein stabilization through integrin β3-Akt-GSK3β signaling. Oncotarget 7, 25366–25376. [Google Scholar]
  78. Palumbo-Zerr K, Zerr P, Distler A, Fliehr J, Mancuso R, Huang J, Mielenz D, Tomcik M, Fürnrohr BG, Scholtysek C, Dees C, Beyer C, Krönke G, Metzger D, Distler O, Schett G, Distler JH (2015), Orphan nuclear receptor NR4A1 regulates transforming growth factor-β signaling and fibrosis. Nat Med 21, 150–158. [CrossRef] [PubMed] [Google Scholar]
  79. Zhou F, Drabsch Y, Dekker TJ, de Vinuesa AG, Li Y, Hawinkels LJ, Sheppard KA, Goumans MJ, Luwor RB, de Vries CJ, Mesker WE, Tollenaar RA, Devilee P, Lu CX, Zhu H, Zhang L, Dijke PT (2014), Nuclear receptor NR4A1 promotes breast cancer invasion and metastasis by activating TGF-β signaling. Nat Commun 5, 3388. [CrossRef] [PubMed] [Google Scholar]
  80. Tan Y, Li Y (2015), HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1. Biochem Biophys Res Commun 466, 592–598. [Google Scholar]
  81. de Léséleuc L, Denis F (2006), Inhibition of apoptosis by Nur77 through NF-kappaB activity modulation. Cell Death Differ 13, 293–300. [CrossRef] [PubMed] [Google Scholar]
  82. Peinado H, Olmeda D, Cano A (2007), Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7, 415–428. [Google Scholar]
  83. Taylor MA, Amin JD, Kirschmann DA, Schiemann WP (2011), Lysyl oxidase contributes to mechanotransduction-mediated regulation of transforming growth factor-β signaling in breast cancer cells. Neoplasia 13, 406–418. [Google Scholar]
  84. Moon HJ, Finney J, Xu L, Moore D, Welch DR, Mure M (2013), MCF-7 cells expressing nuclear associated lysyl oxidase-like 2 (LOXL2) exhibit an epithelial-to-mesenchymal transition (EMT) phenotype and are highly invasive in vitro. J Biol Chem 288, 30000–30008. [Google Scholar]
  85. Park PG, Jo SJ, Kim MJ, Kim HJ, Lee JH, Park CK, Kim H, Lee KY, Kim H, Park JH, Dong SM, Lee JM (2013), Role of LOXL2 in the epithelial-mesenchymal transition and colorectal cancer metastasis. Oncotarget 8, 80325–80335. [Google Scholar]
  86. Boak AM, Roy R, Berk J, Taylor L, Polgar P, Goldstein RH, Kagan HM (1994), Regulation of lysyl oxidase expression in lung fibroblasts by transforming growth factor-beta 1 and prostaglandin E2. Am J Respir Cell Mol Biol 11, 751–755. [CrossRef] [PubMed] [Google Scholar]
  87. Choung J, Taylor L, Thomas K, Zhou X, Kagan H, Yang X, Polgar P (1998), Role of EP2 receptors and cAMP in prostaglandin E2 regulated expression of type I collagen alpha1, lysyl oxidase, and cyclooxygenase-1 genes in human embryo lung fibroblasts. J Cell Biochem 71, 254–263. [CrossRef] [PubMed] [Google Scholar]
  88. Budhu S, Schaer DA, Li Y, Toledo-Crow R, Panageas K, Yang X, Zhong H, Houghton AN, Silverstein SC, Merghoub T, Wolchok JD (2013), Blockade of surface-bound TGF-β on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment. Sci Signal 10, pii: eaak9702. [Google Scholar]
  89. von Rahden BHA, Brücher BLDM, Langner C, Hartl S, Theisen J, Siewert JR, Stein HJ, Sarbia M (2006), Expression of COX-1 and 2, mPGES and TGF-Beta1 and their link with proangiogenetic factors VEGF-A and VEGF-A C in Primary Adenocarcinomas of the Small Intestine. Br J Surg 93, 1424–1432. [CrossRef] [PubMed] [Google Scholar]
  90. Möbius C, Freire J, Becker I, Feith M, Brücher BLDM, Hennig M, Siewert JR, Stein HJ (2007), VEGF-C expression in squamous cell carcinoma and adenocarcinoma of the esophagus. World J Surg 31, 1768–1772. [CrossRef] [PubMed] [Google Scholar]
  91. Hurst V IV, Goldberg PL, Minnear FL, Heimark RL, Vincent PA (1999), Rearrangement of adherens junctions by transforming growth factor-beta1: role of contraction. Am J Physiol 276, L582–L595. [Google Scholar]
  92. Gaide Chevronnay HP, Selvais C, Emonard H, Galant C, Marbaix E, Henriet P (2012), Regulation of matrix metalloproteinases activity studied in human endometrium as a paradigm of cyclic tissue breakdown and regeneration. Biochim Biophys Acta 1824, 146–156. [CrossRef] [PubMed] [Google Scholar]
  93. Zheng G, Lyons JG, Tan TK, Wang Y, Hsu TT, Min D, Succar L, Rangan GK, Hu M, Henderson BR, Alexander SI, Harris DC (2009), Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial-mesenchymal transition downstream of transforming growth factor-beta1 in renal tubular epithelial cells. Am J Pathol 175, 580–591. [CrossRef] [PubMed] [Google Scholar]
  94. Wells A, Yates C, Shepard CR (2008), E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clin Exp Metastasis 25, 621–628. [CrossRef] [PubMed] [Google Scholar]
  95. Duangkumpha K, Techasen A, Loilome W, Namwat N, Thanan R, Khuntikeo N, Yongvanit P (2014), BMP-7 blocks the effects of TGF-beta-induced EMT in cholangiocarcinoma. Tumour Biol 35, 9667–9676. [CrossRef] [PubMed] [Google Scholar]
  96. Shi L, Dong N, Fang X, Wang X (2016), Regulatory mechanisms of TGF-β1-induced fibrogenesis of human alveolar epithelial cells. J Cell Mol Med 20, 2183–2193. [CrossRef] [PubMed] [Google Scholar]
  97. Hamidi A, Song J, Thakur N, Itoh S, Marcusson A, Bergh A, Heldin CH, Landström M (2013), TGF-β promotes PI3K-AKT signaling and prostate cancer cell migration through the TRAF6-mediated ubiquitylation of p85α. Sci Signal 10, pii:eaal 4186. [Google Scholar]
  98. Bradham DM, Igarashi A, Potter RL, Grotendorst GR (1991), Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol 114, 1285–1294. [CrossRef] [PubMed] [Google Scholar]
  99. Lipson KE, Wong C, Teng Y, Spong S (2012), CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair 5, S24. [Google Scholar]
  100. Pez F, Dayan F, Durivault J, Kaniewski B, Aimond G, Le Provost GS, Deux B, Clézardin P, Sommer P, Pouysségur J, Reynaud C (2011), The HIF-1-inducible lysyl oxidase activates HIF-1 via the Akt pathway in a positive regulation loop and synergizes with HIF-1 in promoting tumor cell growth. Cancer Res 71, 1647–1657. [Google Scholar]
  101. Xie J, Wang C, Huang DY, Zhang Y, Xu J, Kolesnikov SS, Sung KL, Zhao H (2013), TGF-beta1 induces the different expressions of lysyl oxidases and matrix metalloproteinases in anterior cruciate ligament and medial collateral ligament fibroblasts after mechanical injury. J Biomech 46, 890–898. [CrossRef] [PubMed] [Google Scholar]
  102. Brücher BLDM, Jamall IS (2014), Epistemology of the origin of cancer: a new paradigm. BMC Cancer 14, 1–15. [CrossRef] [PubMed] [Google Scholar]
  103. Brücher BLDM, Jamall IS (2014), Cell-cell communication in tumor microenvironment, carcinogenesis and anticancer treatment. Cell Physiol Biochem 34, 213–243. [CrossRef] [PubMed] [Google Scholar]
  104. Dibble CC, Cantley LC (2015), Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 25, 545–555. [Google Scholar]
  105. Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham RT (1995), Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270, 815–822. [Google Scholar]
  106. Guertin DA, Sabatini DM (2005), An expanding role for mTOR in cancer. Trends Mol Med 11, 353–361. [CrossRef] [PubMed] [Google Scholar]
  107. Sarbassov DD, Ali SM, Sabatini DM (2005), Growing roles for the mTOR pathway. Curr Opin Cell Biol 17, 596–603. [CrossRef] [PubMed] [Google Scholar]
  108. Yen CJ, Lin YJ, Yen CS, Tsai HW, Tsai TF, Chang KY, Huang WC, Lin PW, Chiang CW, Chang TT (2012), Hepatitis B virus X protein upregulates mTOR signaling through IKKβ to increase cell proliferation and VEGF production in hepatocellular carcinoma. PLoS ONE 7, e41931. [CrossRef] [PubMed] [Google Scholar]
  109. Lee DF, Kuo HP, Chen CT, Hsu JM, Chou CK, Wei Y, Sun HL, Li LY, Ping B, Huang WC, He X, Hung JY, Lai CC, Ding Q, Su JL, Yang JY, Sahin AA, Hortobagyi GN, Tsai FJ, Tsai CH, Hung MC (2007), IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130, 440–455. [CrossRef] [PubMed] [Google Scholar]
  110. Schlessinger K, Hall A (2004), GSK-3beta sets Snail's pace. Nat Cell Biol 6, 913–915. [CrossRef] [PubMed] [Google Scholar]
  111. Peinado H, Quintanilla M, Cano A (2003), Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 278, 21113–21123. [Google Scholar]
  112. Breasson L, Becattini B, Sardi C, Molinaro A, Zani F, Marone R, Botindari F, Bousquenaud M, Ruegg C, Wymann MP, Solinas G (2013), PI3Kγ activity in leukocytes promotes adipose tissue inflammation and early-onset insulin resistance during obesity. Sci Signal 10, eaaf2969. [Google Scholar]
  113. Santo EE, Stroeken P, Sluis PV, Koster J, Versteeg R, Westerhout EM (2013), FOXO3a is a major target of inactivation by PI3K/AKT signaling in aggressive neuroblastoma. Cancer Res 73, 2189–2198. [Google Scholar]
  114. Min M, Yang J, Yang YS, Liu Y, Liu LM, Xu Y (2015), Expression of transcription factor FOXO3a is decreased in patients with ulcerative colitis. Chin Med J (Engl) 128, 2759–2763. [CrossRef] [PubMed] [Google Scholar]
  115. Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY, Zou Y, Bao S, Hanada N, Saso H, Kobayashi R, Hung MC (2004), IkB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117, 225–237. Erratum in: Cell 2007, 129, 1427–1428. [CrossRef] [PubMed] [Google Scholar]
  116. Yang XB, Zhao JJ, Huang CY, Wang QJ, Pan K, Wang DD, Pan QZ, Jiang SS, Lv L, Gao X, Chen HW, Yao JY, Zhi M, Xia JC (2013), Decreased expression of the FOXO3a gene is associated with poor prognosis in primary gastric adenocarcinoma patients. PLoS ONE 8, e78158. [CrossRef] [PubMed] [Google Scholar]
  117. Yu S, Yu Y, Sun Y, Wang X, Luo R, Zhao N, Zhang W, Li Q, Cui Y, Wang Y, Li W, Liu T (2015), Activation of FOXO3a suggests good prognosis of patients with radically resected gastric cancer. Int J Clin Exp Pathol 8, 2963–2970. [Google Scholar]
  118. Yang LL, Wang XY, Zheng LY, Fang SJ, Xu M, Zhao ZW, Ji JS (2013), The role of FOXO3a-Bim signaling in triptolide induced bladder cancer T24 cells apoptosis. Zhonghua Yi Xue Za Zhi 97, 1187–1190. [Google Scholar]
  119. Birkenkamp KU, Coffer PJ (2003), Regulation of cell survival and proliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors. Biochem Soc Trans 31, 292–297. [CrossRef] [PubMed] [Google Scholar]
  120. Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X, Lang JY, Lai CC, Chang CJ, Huang WC, Huang H, Kuo HP, Lee DF, Li LY, Lien HC, Cheng X, Chang KJ, Hsiao CD, Tsai FJ, Tsai CH, Sahin AA, Muller WJ, Mills GB, Yu D, Hortobagyi GN, Hung MC (2008), ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 10, 138–148. [CrossRef] [PubMed] [Google Scholar]
  121. Erlacher M, Michalak EM, Kelly PN, Labi V, Niederegger H, Coultas L, Adams JM, Strasser A, Villunger A (2005), BH3-only proteins Puma and Bim are rate-limiting for gamma-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood 106, 4131–4138. [Google Scholar]
  122. Ekoff M, Kaufmann T, Engström M, Motoyama N, Villunger A, Jönsson JI, Strasser A, Nilsson G (2007), The BH3-only protein Puma plays an essential role in cytokine deprivation induced apoptosis of mast cells. Blood 110, 3209–3217. [Google Scholar]
  123. You H, Pellegrini M, Tsuchihara K, Yamamoto K, Hacker G, Erlacher M, Villunger A, Mak TW (2006), FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J Exp Med 203, 1657–1663. [CrossRef] [PubMed] [Google Scholar]
  124. Chen CR, Kang Y, Siegel PM, Massagué J (2002), E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell 110, 19–32. [CrossRef] [PubMed] [Google Scholar]
  125. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis AN, Swigart LB, Nasi S, Evan GI (2008), Modelling Myc inhibition as a cancer therapy. Nature 455, 679–683. [CrossRef] [PubMed] [Google Scholar]
  126. Ohtani N, Brennan P, Gaubatz S, Sanij E, Hertzog P, Wolvetang E, Ghysdael J, Rowe M, Hara E (2003), Epstein-Barr virus LMP1 blocks p16INK4a-RB pathway by promoting nuclear export of E2F4/5. J Cell Biol 162, 173–183. [CrossRef] [PubMed] [Google Scholar]
  127. Ewen ME, Xing YG, Lawrence JB and Livingston DM (1991), Molecular cloning, chromosomal mapping, and expression of the cDNA for p107, a retinoblastoma gene product-related protein. Cell 66, 1155–1164. [CrossRef] [PubMed] [Google Scholar]
  128. Baldi A, Esposito V, De Luca A, Fu Y, Meoli I, Giordano GG, Caputi M, Baldi F, Giordano A (1997), Differential expression of Rb2/p130 and p107 in normal human tissues and in primary lung cancer. Clin Cancer Res 3, 1691–1697. [PubMed] [Google Scholar]
  129. Ikeda MA, Jakoi L, Nevins JR (1996), A unique role for the Rb protein in controlling E2F accumulation during cell growth and differentiation. Proc Natl Acad Sci USA 93, 3215–3220. [CrossRef] [Google Scholar]
  130. Xiao ZX, Ginsberg D, Ewen M, Livingston DM (1996), Regulation of the retinoblastoma protein-related protein p107 by G1 cyclin-associated kinases. Proc Natl Acad Sci USA 93, 4633–4637. [CrossRef] [Google Scholar]
  131. Rodier G, Makris C, Coulombe P, Scime A, Nakayama K, Nakayama KI, Meloche S (2005), p107 inhibits G1 to S phase progression by down-regulating expression of the F-box protein Skp2. J Cell Biol 168, 55–66. [CrossRef] [PubMed] [Google Scholar]
  132. Johnson BR, Nitta RT, Frock RL, Mounkes L, Barbie DA, Stewart CL, Harlow E, Kennedy BK (2004), A-type lamins regulate retinoblastoma protein function by promoting subnuclear localization and preventing proteasomal degradation. Proc Natl Acad Sci USA 101, 9677–9682. [CrossRef] [Google Scholar]
  133. Parakati R, DiMario JX (2005), Dynamic transcriptional regulatory complexes, including E2F4, p107, p130, and Sp1, control fibroblast growth factor receptor 1 gene expression during myogenesis. J Biol Chem 280, 21284–21294. [Google Scholar]
  134. Wu F, Li JQ, Miki H, Nishioka M, Fujita J, Ohmori M, Imaida K, Kuriyama S (2002), p107 Expression in colorectal tumours rises during carcinogenesis and falls during invasion. Eur J Cancer 38, 1838–1848. [CrossRef] [PubMed] [Google Scholar]
  135. Russo G, Zamparelli A, Howard CM, Minimo C, Bellan C, Carillo G, Califano L, Leoncini L, Giordano A, Claudio PP (2005), Expression of cell cycle-regulated proteins pRB2/p130, p107, E2F4, p27, and pCNA in salivary gland tumors: prognostic and diagnostic implications. Clin Cancer Res 11, 3265–3273. [CrossRef] [PubMed] [Google Scholar]
  136. Shin MK, Pitot HC, Lambert PF (2012), Pocket proteins suppress head and neck cancer. Cancer Res 72, 1280–1289. [Google Scholar]
  137. Tanaka N, Odajima T, Nakano T, Kimijima Y, Yamada S, Ogi K, Kohama G (1999), Immunohistochemical investigation of new suppressor oncogene p130 in oral squamous cell carcinoma. Oral Oncol 35, 321–325. [CrossRef] [PubMed] [Google Scholar]
  138. Claudio PP (2000), Immunohistochemical investigation of new suppressor oncogene p130 in oral squamous cell carcinoma. Oral Oncol 35, 321–325. [Google Scholar]
  139. Milde-Langosch K, Goemann C, Methner C, Rieck G, Bamberger AM, Löning T (2001), Expression of Rb2/p130 in breast and endometrial cancer: correlations with hormone receptor status. Br J Cancer 85, 546–551. [CrossRef] [PubMed] [Google Scholar]
  140. Baldi A, Esposito V, De Luca A, Howard CM, Mazzarella G, Baldi F, Caputi M, Giordano A (1996), Differential expression of the retinoblastoma gene family members pRb/p105, p107, and pRb2/p130 in lung cancer. Clin Cancer Res 2, 1239–1245. [PubMed] [Google Scholar]
  141. Claudio PP, Howard CM, Baldi A, De Luca A, Fu Y, Condorelli G, Sun Y, Colburn N, Calabretta B, Giordano A (1994), p130/pRb2 has growth suppressive properties similar to yet distinctive from those of retinoblastoma family members pRb and p107. Cancer Res 54, 5556–5560. [Google Scholar]
  142. Cinti C, Claudio PP, Howard CM, Neri LM, Fu Y, Leoncini L, Tosi GM, Maraldi NM, Giordano A (2000), Genetic alterations disrupting the nuclear localization of the retinoblastoma related gene RB2/p130 in human tumor cell lines and primary tumors. Cancer Res 60, 383–389. [Google Scholar]
  143. Susini T, Baldi F, Howard CM, Baldi A, Taddei G, Massi D, Rapi S, Savino L, Massi G, Giordano A (1998), Expression of the retinoblastoma-related gene Rb2/p130 correlates with clinical outcome in endometrial cancer. J Clin Oncol 16, 1085–1093. [CrossRef] [PubMed] [Google Scholar]
  144. Claudio PP, Russo G, Kumar CA, Minimo C, Farina A, Tutton S, Nuzzo G, Giuliante F, Angeloni G, Maria V, Vecchio FM, Campli CD, Giordano A (2004), pRb2/p130, vascular endothelial growth factor, p27(KIP1), and proliferating cell nuclear antigen expression in hepatocellular carcinoma: their clinical significance. Clin Cancer Res 10, 3509–3517. [CrossRef] [PubMed] [Google Scholar]
  145. Russo G, Zamparelli A, Howard CM, Minimo C, Bellan C, Carillo G, Califano L, Leoncini L, Giordano A, Claudio PP (2005), Expression of cell cycle-regulated proteins pRB2/p130, p107, E2F4, p27, and pCNA in salivary gland tumors: prognostic and diagnostic implications. Clin Cancer Res 11, 3265–3273. [CrossRef] [PubMed] [Google Scholar]
  146. Woessner JF Jr (1962), Catabolism of collagen and non-collagen protein in the rat uterus during post-partum involution. Biochem J 83, 304–314. [CrossRef] [PubMed] [Google Scholar]
  147. Iyer RP, Patterson NL, Fields GB, Lindsey ML (2012), The history of matrix metalloproteinases: milestones, myths, and misperceptions. Am J Physiol Heart Circ Physiol 303, H919–H930. [Google Scholar]
  148. Gross J, Lapiere CM (1962), Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci USA 48, 1014–1022. [CrossRef] [Google Scholar]
  149. Nagai Y, Lapiere CM, Gross J (1966), Tadpole collagenase. Preparation and purification. Biochemistry 5, 3123–3130. [CrossRef] [PubMed] [Google Scholar]
  150. Verma RP, Hansch C (2007), Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg Med Chem 15, 2223–2268. [CrossRef] [PubMed] [Google Scholar]
  151. Urso ML, Wang R, Zambraski EJ, Liang (2012), Adenosine A3 receptor stimulation reduces muscle injury following physical trauma and is associated with alterations in the MMP/TIMP response. J Appl Physiol 112, 658–670. [CrossRef] [PubMed] [Google Scholar]
  152. Overall CM, Lopez-Otin C (2002), Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2, 657–672. [Google Scholar]
  153. Overall CM, Kleifeld O (2006), Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6, 227–239. [Google Scholar]
  154. Olson MW, Gervasi DC, Mobashery S, Fridman R (1997), Kinetic analysis of the binding of human matrix metalloproteinase-2 and −9 to tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. J Biol Chem 272, 29975–29983. [Google Scholar]
  155. Price B, Dennison C, Tschesche H, Elliott E (2000), Neutrophil tissue inhibitor of matrix metalloprotetinases-1 occurs in novel vesicles that do not fuse with the phagosome. J Biol Chem 275, 28308–28315. [Google Scholar]
  156. Gerg M, Kopitz C, Schaten S, Tschukes S, Bandapalli OR, Stangl M, Hann von Weyhern CW, Brücher BLDM, Edwards DR, Brand K, Krüger A (2008), Distinct functionality of tumor cell-derived gelatinases during formation of liver metastases. Mol Cancer 6, 341–351. [Google Scholar]
  157. Kopitz C, Gerg M, Bandapalli OR, Ister D, Pennington CJ, Hauser S, Flechsig C, Krell HW, Antolovic D, Brew K, Nagase H, Stangl M, von Weyhern CW, Brücher BLDM, Brand K, Coussens LM, Edwards DR, Krüger A (2007), Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Res 67, 8615–8623. [Google Scholar]
  158. Elieh Ali Komi D, Grauwet K (2013), Role of mast cells in regulation of T cell responses in experimental and clinical settings. Clin Rev Allergy Immunol. DOI: 10.1007/s12016-017-8646-z [Google Scholar]
  159. Deimann W (1984), Endogenous peroxidase activity in mononuclear phagocytes. Prog Histochem Cytochem 15, 1–58. [CrossRef] [PubMed] [Google Scholar]
  160. Galli SJ, Borregaard N, Wynn TA (2011), Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 12, 1035–1044. [CrossRef] [PubMed] [Google Scholar]
  161. Nourshargh S, Alon R (2014), Leukocyte migration into inflamed tissues. Immunity 41, 694–707. [CrossRef] [PubMed] [Google Scholar]
  162. Wang J, Hossain M, Thanabalasuriar A, Gunzer M, Meininger C, Kubes P (2013), Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358, 111–116. [Google Scholar]
  163. Zieker D, Königsrainer I, Tritschler I, Löffler M, Beckert S, Traub F, Nieselt K, Bühler S, Weller M, Gaeddcke J, Taichman RS, Northoff H, Brücher BLDM, Königsrainer A (2010), P Phosphoglycerate Kinase1 a promoting enzyme for peritoneal dissemination in gastric cancer. Int J Cancer 126, 1513–1520. [PubMed] [Google Scholar]
  164. Zieker D, Königsrainer I, Weinreich J, Beckert S, Glatzle J, Nieselt K, Bühler S, Löffler M, Gaedcke J, Northoff H, Manheim JG, Wiehr S, Pichler PJ, von-Weyhern C, Brücher BLDM, Königsrainer A (2010), Phosphoglycerate Kinase1 promoting tumor progression and metastasis in gastric cancer − detected in a tumour mouse model using positron emission tomography/magnetic resosonance imaging. Cell Physiol Biochem 26, 147–154. [CrossRef] [PubMed] [Google Scholar]
  165. Xie H, Tong G, Zhang Y, Liang S, Tang K, Yang Q (2013), PGK1 drives hepatocellular carcinoma metastasis by enhancing metabolic process. Int J Mol Sci 18, pii: E1630. [Google Scholar]
  166. Wald O, Pappo O, Safadi R, Dagan-Berger M, Beider K, Wald H, Franitza S, Weiss I, Avniel S, Boaz P, Hanna J, Zamir G, Eid A, Mandelboim O, Spengler U, Galun E, Peled A (2004), Involvement of the CXCL12/CXCR4 pathway in the advanced liver disease that is associated with hepatitis C virus or hepatitis B virus. Eur J Immunol 34, 1164–1174. [CrossRef] [PubMed] [Google Scholar]
  167. Bettink SI, Werner C, Chen CH, Müller P, Schirmer SH, Walenta KL, Böhm M, Laufs U, Friedrich EB (2010), Integrin-linked kinase is a central mediator in angiotensin II type 1- and chemokine receptor CXCR4 signaling in myocardial hypertrophy. Biochem Biophys Res Commun 397, 208–213. [Google Scholar]
  168. Katsura M, Shoji F, Okamoto T, Shimamatsu S, Hirai F, Toyokawa G, Morodomi Y, Tagawa T, Oda Y, Maehara Y (2013), Correlation between CXCR4/CXCR7/CXCL12 chemokine axis expression and prognosis in lymph-node-positive lung cancer patients. Cancer Sci 109, 154–165. [Google Scholar]
  169. Meuris F, Jaracz-Ros A, Gaudin F, Schlecht-Louf G, Deback C, Bachelerie F (2013), The CXCL12/CXCR4 signaling pathway in the control of human papillomavirus infection: new susceptibility factors in viral pathogenesis. Med Sci (Paris) 33, 691–694. [Google Scholar]
  170. Bai R, Liang Z, Yoon Y, Salgado E, Feng A, Gurbani S, Shim H (2013), Novel anti-inflammatory agents targeting CXCR4: design, synthesis, biological evaluation and preliminary pharmacokinetic study. Eur J Med Chem 136, 360–371. [Google Scholar]
  171. Sobolik T, Su YJ, Wells S, Ayers GD, Cook RS, Richmond A (2014), CXCR4 drives the metastatic phenotype in breast cancer through induction of CXCR2 and activation of MEK and PI3K pathways. Mol Biol Cell 25, 566–582. [CrossRef] [PubMed] [Google Scholar]
  172. Egeblad M, Werb Z (2002), New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2, 161–174. [Google Scholar]
  173. Elezkurtaj S, Kopitz C, Baker AH, Perez-Cantó A, Arlt MJ, Khokha R, Gansbacher B, Anton M, Brand K, Krüger A (2004), Adenovirus mediated overexpression of tissue inhibitor of metalloproteinases-1 in the liver: efficient protection against T-cell lymphoma and colon carcinoma metastasis. J Gene Med 6, 1228–1237. [CrossRef] [PubMed] [Google Scholar]
  174. Radisky ES, Raeeszadeh-Sarmazdeh M, Radisky DC (2013), Therapeutic potential of matrix metalloproteinase inhibition in breast cancer. J Cell Biochem 118, 3531–3548. [Google Scholar]
  175. Amour A, Knight CG, Webster A, Slocombe PM, Stephens PE, Knäuper V, Docherty AJ, Murphy G (2000), The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett 473, 275–279. [CrossRef] [PubMed] [Google Scholar]
  176. Chirco R, Liu XW, Jung KK, Kim HR (2006), Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev 25, 99–113. [CrossRef] [PubMed] [Google Scholar]
  177. Woessner JF, Taplin CJ (1988), Purification and properties of a small latent matrix metalloproteinase of the rat uterus. J Biol Chem 263, 16918–16925. [Google Scholar]
  178. Yokoyama Y, Grünebach F, Schmidt SM, Heine A, Häntschel M, Stevanovic S, Rammensee HG, Brossart P (2008), Matrilysin (MMP-7) is a novel broadly expressed tumor antigen recognized by antigen-specific T cells. Clin Cancer Res 14, 5503–5511. [CrossRef] [PubMed] [Google Scholar]
  179. Ogden SR, Wroblewski LE, Weydig C, Romero-Gallo J, O'Brien DP, Israel DA, Krishna US, Fingleton B, Reynolds AB, Wessler S, Peek RM Jr (2008), p120 and Kaiso regulate Helicobacter pylori-induced expression of matrix metalloproteinase-7. Mol Biol Cell 19, 4110–4121. [CrossRef] [PubMed] [Google Scholar]
  180. Yang J, Liu Y (2001), Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol 159, 1465–1475. [CrossRef] [PubMed] [Google Scholar]
  181. Suomalainen K, Sorsa T, Ingman T, Lindy O, Golub LM (1992), Tetracycline inhibition identifies the cellular origin of interstitial collagenases in human periodontal diseases in vivo. Oral Microbiol Immunol 7, 121–123. [CrossRef] [PubMed] [Google Scholar]
  182. Golub LM, Sorsa T, Lee HM, Ciancio S, Sorbi D, Ramamurthy NS, Gruber B, Salo T, Konttinen YT (1995), Doxycycline inhibits neutrophil (PMN)-type matrix metalloproteinases in human adult periodontitis gingival. J Clin Periodontol 22, 100–109. [CrossRef] [PubMed] [Google Scholar]
  183. Frantz C, Stewart KM, Weaver VM (2010), The extracellular matrix at a glance. J Cell Sci 123, 4195–4200. [Google Scholar]
  184. Gjaltema RA, Bank RA (2013), Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Crit Rev Biochem Mol Biol 52, 74–95. [Google Scholar]
  185. Kagan HM (1986), Characterization and regulation of lysyl oxidase, in: RP Mecham (Ed.), Biology of Extracellular Matrix Academic Press, Orlando, Florida, USA, pp. 321–398. [Google Scholar]
  186. Miller EJ, Pinnell SR, Martin GR, Schiffmann E (1967), Investigation of the nature of the intermediates involved in desmosine biosynthesis. Biochem Biophys Res Commun 26, 132–137. [Google Scholar]
  187. Pinnell SR, Martin GR, Miller EJ (1968), Desmosine biosynthesis: nature of inhibition by D-penicillamine. Science 161, 475–476. [Google Scholar]
  188. Pinnell SR, Martin GR (1968), The cross-linking of collagen and elastin: enzymatic conversion of lysine in peptide linkage to alpha-aminoadipic-delta-semialdehyde (allysine) by an extract from bone. Proc Natl Acad Sci USA 61, 708–716. [CrossRef] [Google Scholar]
  189. Siegel RC, Pinnell SR, Martin GR (1970), Cross-linking of collagen and elastin. Properties of lysyl oxidase. Biochemistry 9, 4486–4492. [CrossRef] [PubMed] [Google Scholar]
  190. Chen X, Greenaway FT (2011), Identification of the disulfide bonds of lysyl oxidase. J Neural Transm (Vienna) 118, 1111–1114. [CrossRef] [PubMed] [Google Scholar]
  191. Lopez KM, Greenaway FT (2011), Identification of the copper-binding ligands of lysyl oxidase. J Neural Transm (Vienna) 118, 1101–1109. [CrossRef] [PubMed] [Google Scholar]
  192. Lucero HA, Kagan HM (2006), Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci 63, 2304–2316. [CrossRef] [PubMed] [Google Scholar]
  193. Grimsby JL, Lucero HA, Trackman PC, Ravid K, Kagan HM (2010), Role of lysyl oxidase propeptide in secretion and enzyme activity. J Cell Biochem 111, 1231–1243. [CrossRef] [PubMed] [Google Scholar]
  194. Contente S, Csiszar K, Kenyon K, Friedman RM (1993), Structure of the mouse lysyl oxidase gene. Genomics 16, 395–400. [CrossRef] [PubMed] [Google Scholar]
  195. Kenyon K, Modi WS, Contente S, Friedman RM (1993), A novel human cDNA with a predicted protein similar to lysyl oxidase maps to chromosome 15q24-q25. J Biol Chem 268, 18435–18437. [Google Scholar]
  196. Kim Y, Boyd CD, Csiszar K (1995), A new gene with sequence and structural similarity to the gene encoding human lysyl oxidase. J Biol Chem 270, 7176–7182. [Google Scholar]
  197. Csiszar K (2001), Lysyl oxidases: a novel multifunctional amine oxidase family. Prog Nucleic Acid Res Mol Biol 70, 1–32. [CrossRef] [PubMed] [Google Scholar]
  198. Asuncion L, Fogelgren B, Fong KS, Fong SF, Kim Y, Csiszar K (2001), A novel human lysyl oxidase-like gene (LOXL4) on chromosome 10q24 has an altered scavenger receptor cysteine rich domain. Matrix Biol 20, 487–491. [CrossRef] [PubMed] [Google Scholar]
  199. Szabó Z, Light E, Boyd CD, Csiszár K (1997), The human lysyl oxidase-like gene maps between STS markers D15S215 and GHLC. GCT7C09 on chromosome 15. Hum Genet 101, 198–200. [CrossRef] [PubMed] [Google Scholar]
  200. Hornstra IK, Birge S, Starcher B, Bailey AJ, Mecham RP, Shapiro SD (2003), Lysyl oxidase is required for vascular and diaphragmatic development in mice. J Biol Chem 278, 14387–14393. [Google Scholar]
  201. Kirschmann DA, Seftor EA, Fong SF, Nieva DR, Sullivan CM, Edwards EM, Sommer P, Csiszar K, Hendrix MJ (2002), A molecular role for lysyl oxidase in breast cancer invasion. Cancer Res 62, 4478–4483. [Google Scholar]
  202. Trackman PC, Bedell-Hogan D, Tang J, Kagan HM (1992), Post-translational glycosylation and proteolytic processing of a lysyl oxidase precursor. J Biol Chem 267, 8666–8671. [Google Scholar]
  203. Panchenko MV, Stetler-Stevenson WG, Trubetskoy OV, Gacheru SN, Kagan HM (1996), Metalloproteinase activity secreted by fibrogenic cells in the processing of prolysyl oxidase. Potential role of procollagen C-proteinase. J Biol Chem 271, 7113–7119. [Google Scholar]
  204. Li W, Nellaiappan K, Strassmaier T, Graham L, Thomas KM, Kagan HM (1997), Localization and activity of lysyl oxidase within nuclei of fibrogenic cells. Proc Natl Acad Sci USA 94, 12817–12822. [CrossRef] [Google Scholar]
  205. Kagan HM, Li W (2003), Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 88, 660–672. [CrossRef] [PubMed] [Google Scholar]
  206. Bedell-Hogan D, Trackman P, Abrams W, Rosenbloom J, Kagan H (1993), Oxidation, cross-linking, and insolubilization of recombinant tropoelastin by purified lysyl oxidase. J Biol Chem 268, 10345–10350. [Google Scholar]
  207. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT, Giaccia AJ (2009), Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15, 35–44. [CrossRef] [PubMed] [Google Scholar]
  208. Payne SL, Hendrix MJC, Kirschmann DA (2007), Paradoxical roles for lysyl oxidase in cancer − a prospect. J Cell Biochem 101, 1338–1354. [CrossRef] [PubMed] [Google Scholar]
  209. Galán M, Varona S, Guadall A, Orriols M, Navas M, Aguiló S, de Diego A, Navarro MA, García-Dorado D, Rodríguez-Sinovas A, Martínez-González J, Rodriguez C (2013), Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy. FASEB J 31, 3787–3799. [Google Scholar]
  210. Rosenkranz S (2004), TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 63, 423–432. [CrossRef] [PubMed] [Google Scholar]
  211. Erler JT, Weaver VM (2009), Three-dimensional context regulation of metastasis. Clin Exp Metastasis 26, 35–49. [CrossRef] [PubMed] [Google Scholar]
  212. Butcher DT, Alliston T, Weaver VM (2009), A tense situation: forcing tumour progression. Nat Rev Cancer 9, 108–122. [Google Scholar]
  213. Kothapalli CR, Ramamurthi A (2009), Lysyl oxidase enhances elastin synthesis and matrix formation by vascular smooth muscle cells. J Tissue Eng Regen Med 3, 655–661. [CrossRef] [PubMed] [Google Scholar]
  214. Wilgus ML, Borczuk AC, Stoopler M, Ginsburg M, Gorenstein L, Sonett JR, Powell CA (2011), Lysyl oxidase: a lung adenocarcinoma biomarker of invasion and survival. Cancer 117, 2186–2191. [CrossRef] [PubMed] [Google Scholar]
  215. Cox TR, Rumney RMH, Schoof EM, Perryman L, Høye AM, Agrawal A, Bird D, Latif NA, Forrest H, Evans HR, Huggins ID, Lang G, Linding R, Gartland A, Erler JT (2015), The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522, 106–110. [CrossRef] [PubMed] [Google Scholar]
  216. Xie JJ, Guo JC, Wu ZY, Xu XE, Wu JY, Chen B, Ran LQ, Liao LD, Li EM, Xu LY (2016), Integrin α5 promotes tumor progression and is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma.Hum Pathol 48, 69–75. [CrossRef] [PubMed] [Google Scholar]
  217. Nishioka T, Eustace A, West C (2012), Lysyl oxidase: from basic science to future cancer treatment. Cell Struct Funct 37, 75–80. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  218. Chen H, Li D, Saldeen T, Mehta JL (2001), Transforming growth factor-beta(1) modulates oxidatively modified LDL-induced expression of adhesion molecules: role of LOX-1. Circ Res 89, 1155–1160. [Google Scholar]
  219. Grimsby JL, Lucero HA, Trackman PC, Ravid K, Kagan HM (2010), Role of lysyl oxidase propeptide in secretion and enzyme activity. J Cell Biochem 111, 1231–1243. [CrossRef] [PubMed] [Google Scholar]
  220. Lucero HA, Ravid K, Grimsby JL, Rich CB, DiCamillo SJ, Mäki JM, Myllyharju J, Kagan HM (2008), Lysyl oxidase oxidizes cell membrane proteins and enhances the chemotactic response of vascular smooth muscle cells. J Biol Chem 283, 24103–24117. [Google Scholar]
  221. Lucero HA, Mäki JM, Kagan HM (2011), Activation of cellular chemotactic responses to chemokines coupled with oxidation of plasma membrane proteins by lysyl oxidase. J Neural Transm (Vienna) 118, 1091–1099. [CrossRef] [PubMed] [Google Scholar]
  222. Wu G, Guo Z, Chang X, Kim MS, Nagpal JK, Liu J, Maki JM, Kivirikko KI, Ethier SP, Trink B, Sidransky D (2007), LOXL1 and LOXL4 are epigenetically silenced and can inhibit ras/extracellular signal-regulated kinase signaling pathway in human bladder cancer. Cancer Res 67, 4123–4129. [Google Scholar]
  223. Mammoto T, Jiang E, Jiang A, Mammoto A (2013), ECM structure and tissue stiffness control postnatal lung development through the LRP5-Tie2 signaling system. Am J Respir Mol Biol 49, 1009–1018. [CrossRef] [Google Scholar]
  224. Chen LC, Tu SH, Huang CS, Chen CS, Ho CT, Lin HW, Lee CH, Chang HW, Chang CH, Wu CH, Lee WS, Ho YS (2012), Human breast cancer cell metastasis is attenuated by lysyl oxidase inhibitors through down-regulation of focal adhesion kinase and the paxillin-signaling pathway. Breast Cancer Res Treat 134, 989–1004. [CrossRef] [PubMed] [Google Scholar]
  225. Chene G, Caloone J, Moret S, Le Bail-Carval K, Chabert P, Beaufils E, Mellier G, Lamblin G (2016), Is endometriosis a precancerous lesion? Perspectives and clinical implications. Gynecol Obstet Fertil 44, 106–112. [CrossRef] [PubMed] [Google Scholar]
  226. Ruiz LA, Dutil J, Ruiz A, Fourquet J, Abac S, Laboy J, Flores I (2011), Single-nucleotide polymorphisms in the lysyl oxidase-like protein 4 and complement component 3 genes are associated with increased risk for endometriosis and endometriosis-associated infertility. Fertil Steril 96, 512–515. [CrossRef] [PubMed] [Google Scholar]
  227. Ruiz LA, Báez-Vega PM, Ruiz A, Peterse DP, Monteiro JB, Bracero N, Beauchamp P, Fazleabas AT, Flores I (2015), Dysregulation of lysyl oxidase expression in lesions and endometrium of women with endometriosis. Reprod Sci 22, 1496–1508. [Google Scholar]
  228. Liu X, Shen M, Qi Q, Zhang H, Guo SW (2016), Corroborating evidence for platelet-induced epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the development of adenomyosis. Hum Reprod 31, 734–749. [CrossRef] [PubMed] [Google Scholar]
  229. Manov I, Hirsh M, Iancu TC, Malik A, Sotnichenko N, Band M, Avivi A, Shams I (2013), Pronounced cancer resistance in a subterranean rodent, the blind mole-rat, Spalax: in vivo and in vitro evidence. BMC Biol 11, 91. [CrossRef] [PubMed] [Google Scholar]
  230. Peyrol S, Raccurt M, Gerard F, Gleyzal C, Grimaud JA, Sommer P (1997), Lysyl oxidase gene expression in the stromal reaction to in situ and invasive ductal breast carcinoma. Am J Pathol 150, 497–507. [PubMed] [Google Scholar]
  231. Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J, Mao Z, Nevo E, Gorbunova V, Seluanov A (2013), High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499, 346–349. [CrossRef] [PubMed] [Google Scholar]
  232. Mitchell BS, Whitehouse A, Prehm P, Delpech B, Schumacher U (1996), CD44 exon variant 6 epitope and hyaluronate synthase are expressed on HT29 human colorectal carcinoma cells in a SCID mouse model of metastasis formation. Clin Exp Metastasis 14, 107–114. [CrossRef] [PubMed] [Google Scholar]
  233. Jacobson A, Rahmanian M, Rubin K, Heldin P (2002), Expression of hyaluronan synthase 2 or hyaluronidase 1 differentially affect the growth rate of transplantable colon carcinoma cell tumors. Int J Cancer 102, 212–219. [CrossRef] [PubMed] [Google Scholar]
  234. Setälä LP, Tammi MI, Tammi RH, Eskelinen MJ, Lipponen PK, Agren UM, Parkkinen J, Alhava EM, Kosma VM (1999), Hyaluronan expression in gastric cancer cells is associated with local and nodal spread and reduced survival rate. Br J Cancer 79, 1133–1138. [CrossRef] [PubMed] [Google Scholar]
  235. Twarock S, Freudenberger T, Poscher E, Dai G, Jannasch K, Dullin C, Alves F, Prenzel K, Knoefel WT, Stoecklein NH, Savani RC, Homey B, Fischer JW (2011), Inhibition of oesophageal squamous cell carcinoma progression by in vivo targeting of hyaluronan synthesis. Mol Cancer 10, 30. [Google Scholar]
  236. Auvinen P, Tammi R, Parkkinen J, Tammi M, Agren U, Johansson R, Hirvikoski P, Eskelinen M, Kosma VM (2000), Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am J Pathol 156, 529–536. [CrossRef] [PubMed] [Google Scholar]
  237. Udabage L, Brownlee GR, Nilsson SK, Brown TJ (2005), The over-expression of HAS2, Hyal-2 and CD44 is implicated in the invasiveness of breast cancer. Exp Cell Res 310, 205–217. [CrossRef] [PubMed] [Google Scholar]
  238. Li P, Xiang T, Li H, Li Q, Yang B, Huang J, Zhang X, Shi Y, Tan J, Ren G (2015), Hyaluronan synthase 2 overexpression is correlated with the tumorigenesis and metastasis of human breast cancer. Int J Clin Exp Pathol 8, 12101–12114. [Google Scholar]
  239. Vanneste M, Hanoux V, Bouakka M, Bonnamy PJ (2013), Hyaluronate synthase-2 overexpression alters estrogen dependence and induces histone deacetylase inhibitor-like effects on ER-driven genes in MCF7 breast tumor cells. Mol Cell Endocrinol 444, 48–58. [Google Scholar]
  240. Zhu G, Wang S, Chen J, Wang Z, Liang X, Wang X, Jiang J, Lang J, Li L (2013), Long noncoding RNA HAS2-AS1 mediates hypoxia-induced invasiveness of oral squamous cell carcinoma. Mol Carcinog 56, 2210–2222. [Google Scholar]
  241. Anttila MA, Tammi RH, Tammi MI, Syrjänen KJ, Saarikoski SV, Kosma VM (2000), High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer. Cancer Res 60, 150–155. [Google Scholar]
  242. Clarris BJ, Fraser JR, Rodda S (1974), Effect of cell-bound hyaluronic acid on infectivity of Newcastle disease virus for human synovial cells in vitro. Ann Rheum Dis 33, 240–242. [CrossRef] [PubMed] [Google Scholar]
  243. Yang B, Zhang L, Turley EA (1993), Identification of two hyaluronan-binding domains in the hyaluronan receptor RHAMM. J Biol Chem 268, 8617–8623. [Google Scholar]
  244. Entwistle J, Hall CL, Turley EA (1996), HA receptors: regulators of signalling to the cytoskeleton. J Cell Biochem 61, 569–577. [CrossRef] [PubMed] [Google Scholar]
  245. Weigel PH, Hascall VC, Tammi M (1997), Hyaluronan synthases. J Biol Chem 272, 13997–14000. [Google Scholar]
  246. Udabage L, Brownlee GR, Waltham M, Blick T, Walker EC, Heldin P, Nilsson SK, Thompson EW, Brown TJ (2005), Antisense-mediated suppression of hyaluronan synthase 2 inhibits the tumorigenesis and progression of breast cancer. Cancer Res 65, 6139–6150. [Google Scholar]
  247. Katsuno Y, Qin J, Oses-Prieto J, Wang H, Jackson-Weaver O, Zhang T, Lamouille S, Wu J, Burlingame A, Xu J, Derynck R (2018), Arginine methylation of SMAD7 by PRMT1 in TGF-β-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293, 13059–13072. [Google Scholar]
  248. Rodriguez KA, Li K, Nevo E, Buffenstein R (2016), Mechanisms regulating proteostasis are involved in sympatric speciation of the blind mole rat, Spalax galili . Autophagy 12, 703–704. [CrossRef] [PubMed] [Google Scholar]
  249. Li YX, Zhang L, Simayi D, Zhang N, Tao L, Yang L, Zhao J, Chen YZ, Li F, Zhang WJ (2015), Human papillomavirus infection correlates with inflammatory Stat3 signaling activity and IL-17 level in patients with colorectal cancer. PLoS ONE 10, e0118391. [CrossRef] [PubMed] [Google Scholar]
  250. Nojiri T, Hosoda H, Tokudome T, Miura K, Ishikane S, Otani K, Kishimoto I, Shintani Y, Inoue M, Kimura T, Sawabata N, Minami M, Nakagiri T, Funaki S, Takeuchi Y, Maeda H, Kidoya H, Kiyonari H, Shioi G, Arai Y, Hasegawa T, Takakura N, Hori M, Ohno Y, Miyazato M, Mochizuki N, Okumura M, Kangawa K (2015), Atrial natriuretic peptide prevents cancer metastasis through vascular endothelial cells. Proc Natl Acad Sci USA 112, 4086–4091. [CrossRef] [Google Scholar]
  251. Lu P, Weaver VM, Werb Z (2012), The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196, 395–406. [CrossRef] [PubMed] [Google Scholar]
  252. Nakagawa H, Hikiba Y, Hirata Y, Font-Burgada J, Sakamoto K, Hayakawa Y, Taniguchi K, Umemura A, Kinoshita H, Sakitani K, Nishikawa Y, Hirano K, Ikenoue T, Ijichi H, Dhar D, Shibata W, Akanuma M, Koike K, Karin M, Maeda S (2014), Loss of liver E-cadherin induces sclerosing cholangitis and promotes carcinogenesis. PNAS 111, 1090–1095. [CrossRef] [Google Scholar]
  253. Joo YN, Jin H, Eun SY, Park SW, Chang KC, Kim HJ (2014), P2Y2R activation by nucleotides released from the highly metastatic breast cancer cell contributes to pre-metastatic niche formation by mediating lysyl oxidase secretion, collagen crosslinking, and monocyte recruitment. Oncotarget 5, 9322–9334. [PubMed] [Google Scholar]
  254. Eun SY, Ko YS, Park SW, Chang KC, Kim HJ (2015), P2Y2 nucleotide receptor-mediated extracellular signal-regulated kinases and protein kinase C activation induces the invasion of highly metastatic breast cancer cells. Oncol Rep 34, 195–202. [Google Scholar]
  255. Salvador F, Martin A, López-Menéndez C, Moreno-Bueno G, Santos V, Vázquez-Naharro A, Santamaria PG, Morales S, Dubus PR, Muinelo-Romay L, López-López R, Tung JC, Weaver VM, Portillo F, Cano A (2013), Lysyl oxidase-like protein LOXL2 promotes lung metastasis of breast cancer. Cancer Res 77, 5846–5859. [Google Scholar]
  256. Park JS, Lee JH, Lee YS, Kim JK, Dong SM, Yoon DS (2013), Emerging role of LOXL2 in the promotion of pancreas cancer metastasis. Oncotarget 7, 42539–42552. [Google Scholar]
  257. Barry-Hamilton V, Spangler R, Marshall D, Marshall D, McCauley S, Rodriguez HM, Oyasu M, Mikels A, Vaysberg M, Ghermazien H, Wai C, Garcia CA, Velayo AC, Jorgensen B, Biermann D, Tsai D, Green J, Zaffryar-Eilot S, Holzer A, Ogg S, Thai D, Neufeld G, Van Vlasselaer P, Smith V (2010), Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 16, 1009–1017. [CrossRef] [PubMed] [Google Scholar]
  258. Dongiovanni P, Meroni M, Baselli GA, Bassani GA, Rametta R, Pietrelli A, Maggioni M, Facciotti F, Trunzo V, Badiali S, Fargion S, Gatti S, Valenti L (2013), Insulin resistance promotes Lysyl Oxidase Like 2 induction and fibrosis accumulation in non-alcoholic fatty liver disease. Clin Sci (Lond) 131, 1301–1315. [Google Scholar]
  259. Rodriguez HM, Vaysberg M, Mikels A, McCauley S, Velayo AC, Garcia C, Smith V (2010), Modulation of lysyl oxidase-like 2 enzymatic activity by an allosteric antibody inhibitor. J Biol Chem 285, 20964–20974. [Google Scholar]
  260. Sommer P, Gleyzal C, Raccurt M, Delbourg M, Serrar M, Joazeiro P, Peyrol S, Kagan H, Trackman PC, Grimaud JA (1993), Transient expression of lysyl oxidase by liver myofibroblasts in murine schistosomiasis. Lab Invest 69, 460–470. [Google Scholar]
  261. Ouzzine M, Boyd A, Hulmes DJ (1996), Expression of active, human lysyl oxidase in Escherichia coli . FEBS Lett 399, 215–219. [CrossRef] [PubMed] [Google Scholar]
  262. Saito H, Papaconstantinou J, Sato H, Goldstein S (1997), Regulation of a novel gene encoding a lysyl oxidase-related protein in cellular adhesion and senescence. J Biol Chem 272, 8157–8160. [Google Scholar]
  263. Decitre M, Gleyzal C, Raccurt M, Peyrol S, Aubert-Foucher E, Csiszar K, Sommer P (1998), Lysyl oxidase-like protein localizes to sites of de novo fibrinogenesis in fibrosis and in the early stromal reaction of ductal breast carcinomas. Lab Invest 78, 143–151. [Google Scholar]
  264. Salvador F, Martin A, López-Menéndez C, Moreno-Bueno G, Santos V, Vázquez-Naharro A, Santamaria PG, Morales S, Dubus PR, Muinelo-Romay L, López-López R, Tung JC, Weaver VM, Portillo F, Cano A (2013), Lysyl oxidase-like protein LOXL2 promotes lung metastasis of breast cancer. Cancer Res 77, 5846–5859. [Google Scholar]
  265. Milward MR, Chapple IL, Carter K, Matthews JB, Cooper PR (2013), Micronutrient modulation of NF-κB in oral keratinocytes exposed to periodontal bacteria. Innate Immun 19, 140–151. [CrossRef] [PubMed] [Google Scholar]
  266. Willumsen N, Thomsen LB, Bager CL, Jensen C, Karsdal MA (2013), Quantification of altered tissue turnover in a liquid biopsy: a proposed precision medicine tool to assess chronic inflammation and desmoplasia associated with a pro-cancerous niche and response to immuno-therapeutic anti-tumor modalities. Cancer Immunol Immunother 67, 1–12. [Google Scholar]
  267. Mahato K, Kumar A, Maurya PK, Chandra P (2013), Shifting paradigm of cancer diagnoses in clinically relevant samples based on miniaturized electrochemical nanobiosensors and microfluidic devices. Biosens Bioelectron 100, 411–428. [Google Scholar]
  268. Jing CY, Fu YP, Huang JL, Zhang MX, Yi Y, Gan W, Xu X, Shen HJ, Lin JJ, Zheng SS, Zhang J, Zhou J, Fan J, Ren ZG, Qiu SJ, Zhang BH (2018), Prognostic nomogram based on histological characteristics of fibrotic tumor stroma in patients who underwent curative resection for intrahepatic cholangiocarcinoma. Oncologist. DOI: 10.1634/theoncologist.2017-0439 [Google Scholar]
  269. Pankova D, Chen Y, Terajima M, Schliekelman MJ, Baird BN, Fahrenholtz M, Sun L, Gill BJ, Vadakkan TJ, Kim MP, Ahn YH, Roybal JD, Liu X, Parra Cuentas ER, Rodriguez J, Wistuba II, Creighton CJ, Gibbons DL, Hicks JM, Dickinson ME, West JL, Grande-Allen KJ, Hanash SM, Yamauchi M, Kurie JM (2016), Mol Cancer Res 14, 287–295. [CrossRef] [PubMed] [Google Scholar]
  270. Tan X, Banerjee P, Guo HF, Ireland S, Pankova D, Ahn YH, Nikolaidis IM, Liu X, Zhao Y, Xue Y, Burns AR, Roybal J, Gibbons DL, Zal T, Creighton CJ, Ungar D, Wang Y, Kurie JM (2013), Epithelial-to-mesenchymal transition drives a pro-metastatic Golgi compaction process through scaffolding protein PAQR11. J Clin Invest 127, 117–131. [Google Scholar]
  271. Yamauchi M, Barker TH, Gibbons DL, Kurie JM (2018), The fibrotic tumor stroma. J Clin Invest 128, 16–25. [CrossRef] [PubMed] [Google Scholar]
  272. Wei Y, Kim TJ, Peng DH, Duan D, Gibbons DL, Yamauchi M, Jackson JR, Le Saux CJ, Calhoun C, Peters J, Derynck R, Backes BJ, Chapman HA (2013), Fibroblast-specific inhibition of TGF-β1 signaling attenuates lung and tumor fibrosis. J Clin Invest 127, 3675–3688. [Google Scholar]
  273. Kim DJ, Lee DC, Yang SJ, Lee JJ, Bae EM, Kim DM, Min SH, Kim SJ, Kang DC, Sang BC, Myung PK, Park KC, Yeom YI (2008), Lysyl oxidase like 4, a novel target gene of TGF-beta1 signaling, can negatively regulate TGF-beta1-induced cell motility in PLC/PRF/5 hepatoma cells. Biochem Biophys Res Commun 373, 521–527. [Google Scholar]
  274. Yang X, Li S, Li W, Chen J, Xiao X, Wang Y, Yan G, Chen L (2013), Inactivation of lysyl oxidase by β-aminopropionitrile inhibits hypoxia-induced invasion and migration of cervical cancer cells. Oncol Rep 29, 541–548. [Google Scholar]
  275. Erler JT, Giaccia AJ (2006), Lysyl oxidase mediates hypoxic control of metastasis. Cancer Res 66, 10238–10241. [Google Scholar]
  276. Erler JT, Bennewith KL, Nicolau M, Dornhöfer N, Kong C, Le QT, Chi JT, Jeffrey SS, Giaccia AJ (2006), Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440, 1222–1226. [CrossRef] [PubMed] [Google Scholar]
  277. Ikenaga N, Peng ZW, Vaid KA, Liu SB, Yoshida S, Sverdlov DY, Mikels-Vigdal A, Smith V, Schuppan D, Popov YV (2013), Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal. Gut 66, 1697–1708. [CrossRef] [Google Scholar]
  278. El Hajj EC, El Hajj MC, Ninh VK, Gardner JD (2018), Inhibitor of lysyl oxidase improves cardiac function and the collagen/MMP profile in response to volume overload. Am J Physiol Heart Circ Physiol 315, H463–H473. [CrossRef] [Google Scholar]
  279. Ma L, Zeng Y, Wei J, Yang D, Ding G, Liu J, Shang J, Kang Y, Ji X (2018), Knockdown of LOXL1 inhibits TGF-β1-induced proliferation and fibrogenesis of hepatic stellate cells by inhibition of Smad2/3 phosphorylation. Biomed Pharmacother 107, 1728–1735. [CrossRef] [Google Scholar]
  280. Stangenberg S, Saad S, Schilter HC, Zaky A, Gill A, Pollock CA, Wong MG (2018), Lysyl oxidase-like 2 inhibition ameliorates glomerulosclerosis and albuminuria in diabetic nephropathy. Sci Rep 8, 9423. [CrossRef] [Google Scholar]
  281. Zhao W, Yang A, Chen W, Wang P, Liu T, Cong M, Xu A, Yan X, Jia J, You H (2018), Inhibition of lysyl oxidase-like 1 (LOXL1) expression arrests liver fibrosis progression in cirrhosis by reducing elastin crosslinking. Biochim Biophys Acta Mol Basis Dis 1864, 1129–1137. [CrossRef] [Google Scholar]
  282. Rachman-Tzemah C, Zaffryar-Eilot S, Grossman M, Ribero D, Timaner M, Mäki JM, Myllyharju J, Bertolini F, Hershkovitz D, Sagi I, Hasson P, Shaked Y (2013), Blocking surgically induced lysyl oxidase activity reduces the risk of lung metastases. Cell Rep 19, 774–784. [CrossRef] [Google Scholar]
  283. Zhang L, Wang Y, Xia T, Yu Q, Zhang Q, Yang Y, Cun X, Lu L, Gao H, Zhang Z, He Q (2016), Suppression for lung metastasis by depletion of collagen I and lysyl oxidase via losartan assisted with paclitaxel-loaded pH-sensitive liposomes in breast cancer. Drug Deliv 23, 2970–2979. [CrossRef] [Google Scholar]
  284. Xu Y, Wang X, Huang Y, Ma Y, Jin X, Wang H, Wang J (2018), Inhibition of lysyl oxidase expression by dextran sulfate affects invasion and migration of gastric cancer cells. Int J Mol Med 42, 2737–2749. [Google Scholar]
  285. Hajdú I, Kardos J, Major B, Fabó G, Lőrincz Z, Cseh S, Dormán G (2018), Inhibition of the LOX enzyme family members with old and new ligands. Selectivity analysis revisited. Bioorg Med Chem Lett 28, 3113–3118. [Google Scholar]
  286. Sarenac T, Trapecar M, Gradisnik L, Rupnik MS, Pahor D (2016), Single-cell analysis reveals IGF-1 potentiation of inhibition of the TGF-β/Smad pathway of fibrosis in human keratocytes in vitro. Sci Rep 6, 1–12. [CrossRef] [PubMed] [Google Scholar]
  287. Srivatsa S, Paul MC, Cardone C, Holcmann M, Amberg N, Pathria P, Diamanti MA, Linder M, Timelthaler G, Dienes HP, Kenner L, Wrba F, Prager GW, Rose-John S, Eferl R, Liguori G, Botti G, Martinelli E, Greten FR, Ciardiello F, Sibilia M (2013), EGFR in Tumor-associated myeloid cells promotes development of colorectal cancer in mice and associates with outcomes of patients. Gastroenterology 153, 178–190. [Google Scholar]
  288. De Donato M, Petrillo M, Martinelli E, Filippetti F, Zannoni GF, Scambia G, Gallo D (2013), Uncovering the role of nuclear Lysyl oxidase (LOX) in advanced high grade serous ovarian cancer. Gynecol Oncol 146, 170–178. [Google Scholar]
  289. Lee YS, Park Y, Kwon M, Roh JL, Choi SH, Nam SY, Kim SY (2013), Expression of lysyl oxidase predictive of distant metastasis of laryngeal cancer. Otolaryngol Head Neck Surg 156, 489–497. [Google Scholar]
  290. Brücher BLDM, Jamall IS (2019), Chronic inflammation evoked by pathogenic stimulus during carcinogenesis. 4open 2, 8, 1–22. https://doi.org/10.1051/fopen/2018006 [CrossRef] [EDP Sciences] [Google Scholar]
  291. Fallowfield LJ, Fleissig A (2011), The value of progression-free survival to patients with advanced-stage cancer. Nat Rev Clin Oncol 9, 41–47. [CrossRef] [Google Scholar]
  292. Brücher BLDM, Jamall IS (2019), Eicosanoids in carcinogenesis. 4open 2, 9, 1–34. https://doi.org/10.1051/fopen/2018008 [CrossRef] [EDP Sciences] [Google Scholar]
  293. Brücher BLDM, Jamall IS (2019), Undervalued ubiquitous proteins. 4open 2, 7, 1–13, https://doi.org/10.1051/fopen/2019002 [CrossRef] [EDP Sciences] [Google Scholar]
  294. Brücher BLDM, Jamall IS (2019), Microbiome and morbid obesity increase pathogenic stimulus diversity. 4open 2, 10, 1–16. https://doi.org/10.1051/fopen/2018007 [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.