Issue
4open
Volume 2, 2019
Disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer”
Article Number 12
Number of page(s) 17
Section Life Sciences - Medicine
DOI https://doi.org/10.1051/fopen/2019006
Published online 25 April 2019
  1. World Health Organization (2014), “Ageing well” must be a global priority, World Health Organization, Geneva, November 6, 2014, http://www.who.int/mediacentre/news/releases/2014/lancet-ageing-series/en/ . [Google Scholar]
  2. Brücher BLDM (2018), Science belongs to no one – and to everyone. 4open 1, E1, 1–11. https://doi.org/10.1051/fopen/2017501. [CrossRef] [EDP Sciences] [Google Scholar]
  3. Lorenzo C, Okoloise M, Williams K, Stern MP, Haffner SM; San Antonio Heart Study (2003), The metabolic syndrome as predictor of type 2 diabetes: the San Antonio heart study. Diabetes Care 26, 11, 3153–3159. https://doi.org/10.2337/diacare.26.11.3153. [CrossRef] [PubMed] [Google Scholar]
  4. Geiss LS, Wang J, Cheng YJ, Thompson TJ, Barker L, Li Y, Albright AL, Gregg EW (2014), Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, United States, 1980–2012. JAMA 312, 12, 1218–1226. https://doi.org/10.1001/jama.2014.11494. [CrossRef] [PubMed] [Google Scholar]
  5. Ramachandran A, Snehalatha C, Shetty AS, Nanditha A (2012), Trends in prevalence of diabetes in Asian countries. World J Diabetes 3, 6, 110–117. https://doi.org/10.4239/wjd.v3.i6.110. [CrossRef] [PubMed] [Google Scholar]
  6. Webber L, Divajeva D, Marsh T, McPherson K, Brown M, Galea G, Breda J (2014), The future burden of obesity-related diseases in the 53 WHO European-Region countries and the impact of effective interventions: a modelling study. BMJ Open 4, 7, e004787. https://doi.org/10.1136/bmjopen-2014-004787. [CrossRef] [PubMed] [Google Scholar]
  7. Memish ZA, El Bcheraoui C, Tuffaha M, Robinson M, Daoud F, Jaber S, Mikhitarian S, Al Saeedi M, AlMazroa MA, Mokdad AH, Al Rabeeah AA (2014), Obesity and associated factors–Kingdom of Saudi Arabia, 2013. Prev Chronic Dis 11, E174. https://doi.org/10.5888/pcd11.140236. [PubMed] [Google Scholar]
  8. Ogden CL, Carroll MD, Kit BK, Flegal KM (2014), Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311, 8, 806–814. https://doi.org/10.1001/jama.2014.732. [CrossRef] [PubMed] [Google Scholar]
  9. Bardenheier BH, Imperatore G, Devlin HM, Kim SY, Cho P, Geiss LS (2014), Trends in pre-pregnancy diabetes among deliveries in 19 U.S. states, 2000–2010. Am J Prev Med 48, 2, 154–161. https://doi.org/10.1016/j.amepre.2014.08.031. [CrossRef] [PubMed] [Google Scholar]
  10. Gregg EW, Zhuo X, Cheng YJ, Albright AL, Narayan KM, Thompson TJ (2014), Trends in lifetime risk and years of life lost due to diabetes in the USA, 1985–2011: a modelling study. Lancet Diabetes Endocrinol 2, 11, 867–874. https://doi.org/10.1016/S2213-8587(14)70161-5. [CrossRef] [Google Scholar]
  11. King DE, Mainous AG 3rd, Carnemolla M, Everett CJ (2009), Adherence to healthy lifestyle habits in US adults, 1988–2006. Am J Med 122, 6, 528–534. https://doi.org/10.1016/j.amjmed.2008.11.013. [Google Scholar]
  12. Mathers CD, Stevens GA, Boerma T, White RA, Tobias MI (2015), Causes of international increases in older age life expectancy. Lancet 385, 9967, 540–548. https://doi.org/10.1016/S0140-6736(14)60569-9. [CrossRef] [PubMed] [Google Scholar]
  13. Brücher BLDM, Jamall IS (2019), Microbiome and morbid obesity increase pathogenic stimulus diversity. 4open 2, 7, 1–16. https://doi.org/10.1051/fopen/2018007. [CrossRef] [EDP Sciences] [Google Scholar]
  14. Smith U, Gale EA (2010), Cancer and diabetes: are we ready for prime time? Diabetologia 53, 8, 1541–1544. https://doi.org/10.1007/s00125-010-1815-8. [CrossRef] [PubMed] [Google Scholar]
  15. Kasper JS, Giovannucci E (2006), A meta-analysis of diabetes mellitus and the risk of prostate cancer. Cancer Epidemiol Biomarker Prev 15, 11, 2056–2062. https://doi.org/10.1158/1055-9965.EPI-06-0410. [CrossRef] [Google Scholar]
  16. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, Pollak M, Regensteiner JG, Yee D (2010), Diabetes and cancer: a consensus report. Diabetes Care 33, 7, 1674–1685. https://doi.org/10.2337/dc10-0666. [CrossRef] [PubMed] [Google Scholar]
  17. NIH National Institute of Health, National Center for Biotechnology Information: Metformin. Compound Summary for CID 4091, NIH U.S. National Library of Medicine. http://pubchem.ncbi.nlm.nih.gov//compound/4091?from=summary#section=Top. [Google Scholar]
  18. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM (2009), New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care 32, 9, 1620–1625. https://doi.org/10.2337/dc08-2175. [CrossRef] [PubMed] [Google Scholar]
  19. Chaiteerakij R, Yang JD, Harmsen WS (2013), Risk factors for intrahepatic cholangiocarcinoma: association between metformin use and reduced cancer risk. Hepatology 57, 2, 648–655. https://doi.org/10.1002/hep.26092. [Google Scholar]
  20. Velazquez EM, Mendoza S, Hamer T, Sosa F, Glueck CJ (1994), Metformin therapy in polycystic ovary syndrome reduces hyperinsulinemia, insulin resistance, hyperandrogenemia, and systolic blood pressure, while facilitating normal menses and pregnancy. Metabolism 43, 5, 647–654. PMID: 8177055. [CrossRef] [PubMed] [Google Scholar]
  21. Kidson W (1998), Polycystic ovary syndrome: a new direction in treatment. Med J Aust 169, 10, 537–540. PMID: 9861912. [Google Scholar]
  22. Misugi T, Ozaki K, El Beltagy K, Tokuyama O, Honda K, Ishiko O (2006), Insulin-lowering agents inhibit synthesis of testosterone in ovaries of DHEA-induced PCOS rats. Gynecol Obstet Invest 61, 4, 208–215. https://doi.org/10.1159/000091496. [CrossRef] [PubMed] [Google Scholar]
  23. U.S. Food and Drug Administration: “Off-Label” and investigational use of marketed drugs, biologics, and medical devices – information sheet, U.S. Department of Health and Human Services. http://www.fda.gov/RegulatoryInformation/Guidances/ucm126486.htm [Google Scholar]
  24. Mohamed Suhaimi NA, Phyo WM, Yap HY, Choy SHY, Wei X, Choudhury Y, Tan WJ, Tan LAPY, Foo RSY, Tan SHS, Tiang Z, Wong CF, Koh PK, Tan MH (2017), Metformin inhibits cellular proliferation and bioenergetics in colorectal cancer patient-derived xenografts. Mol Cancer Ther 16, 9, 2035–2044. https://doi.org/10.1158/1535-7163.MCT-16-0793. [Google Scholar]
  25. Blandino G, Valerio M, Cioce M, Mori F, Casadei L, Pulito C, Sacconi A, Biagioni F, Cortese G, Galanti S, Manetti C, Citro G, Muti P, Strano S (2012), Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat Commun 3, 865. https://doi.org/10.1038/ncomms1859. [Google Scholar]
  26. Ambros V (2001), microRNAs: tiny regulatos with great potential. Cell 107, 7, 823–826. https://doi.org.1016/S0092-8674(01)00616-X. [CrossRef] [PubMed] [Google Scholar]
  27. Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW (2014), An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 5, 727–735. https://doi.org/10.1136/gutjnl-2012-303839. [Google Scholar]
  28. Wang JH, Bose S, Shin NR, Chin YW, Choi YH, Kim H (2018), Pharmaceutical impact of Houttuynia Cordata and Metformin combination on high-fat-diet-induced metabolic disorders: link to intestinal Microbiota and metabolic Endotoxemia. Front Endocrinol (Lausanne) 9, 620. https://doi.org/10.3389/fendo.2018. [CrossRef] [PubMed] [Google Scholar]
  29. Elbere I, Kalnina I, Silamikelis I, Konrade I, Zaharenko L, Sekace K, Radovica-Spalvina I, Fridmanis D, Gudra D, Pirags V, Klovins J (2018), Association of metformin administration with gut microbiome dysbiosis in healthy volunteers. PLoS One 13, 9, e0204317. https://doi.org/10.1371/journal.pone.0204317. [Google Scholar]
  30. Pyra KA, Saha DC, Reimer RA (2012), Prebiotic fiber increases hepatic acetyl CoA carboxylase phosphorylation and suppresses glucose-dependent insulinotropic polypeptide secretion more effectively when used with metformin in obese rats. J Nutr 142, 2, 213–220. https://doi.org/10.3945/jn.111.147132. [Google Scholar]
  31. Lee H, Ko G (2014), Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol 80, 19, 5935–5943. https://doi.org/10.1128/AEM.01357-14. [Google Scholar]
  32. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen HK, Arumugam M, Kristiansen K, Voigt AY, Vestergaard H, Hercog R, Costea PI, Kultima JR, Li J, Jørgensen T, Levenez F, Dore J; MetaHIT consortium, Nielsen HB, Brunak S, Raes J, Hansen T, Wang J, Ehrlich SD, Bork P, Pedersen O (2015), Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 7581, 262–266. https://doi.org/10.1038/nature15766. [CrossRef] [PubMed] [Google Scholar]
  33. Zhang X, Zhao Y, Xu J, Xue Z, Zhang M, Pang X, Zhang X, Zhao L (2015), Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci Rep 5, 14405. https://doi.org/10.1038/srep14405. [CrossRef] [PubMed] [Google Scholar]
  34. Holmes D (2016), Gut microbiota: antidiabetic drug treatment confounds gut dysbiosis associated with type 2 diabetes mellitus. Nat Rev Endocrinol 12, 2, 61. https://doi.org/10.1038/nrendo.2015.222. [CrossRef] [PubMed] [Google Scholar]
  35. Mardinoglu A, Boren J, Smith U (2016), Confounding effects of metformin on the human gut microbiome in type 2 diabetes. Cell Metab 23, 1, 10–12. https://doi.org/10.1016/j.cmet.2015.12.012. [CrossRef] [PubMed] [Google Scholar]
  36. Pollak M (2017), The effects of metformin on gut microbiota and the immune system as research frontiers. Diabetologia 60, 9, 1662–1667. https://doi.org/10.1007/s00125-017-4352-x. [CrossRef] [PubMed] [Google Scholar]
  37. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix M, Xifra G, Mercader JM, Torrents D, Burcelin R, Ricart W, Perkins R, Fernàndez-Real JM, Bäckhed F (2017), Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23, 7, 850–858. https://doi.org/10.1038/nm.4345. [CrossRef] [PubMed] [Google Scholar]
  38. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI (2008), Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 4, 213–223. https://doi.org/10.1016/j.chom.2008.02.015. [CrossRef] [PubMed] [Google Scholar]
  39. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F (2015), Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 22, 4, 658–668. https://doi.org/10.1016/j.cmet.2015.07.026. [CrossRef] [PubMed] [Google Scholar]
  40. Raza GS, Putaala H, Hibberd AA, Alhoniemi E, Tiihonen K, Mäkelä KA, Herzig KH (2017), Polydextrose changes the gut microbiome and attenuates fasting triglyceride and cholesterol levels in Western diet fed mice. Sci Rep 7, 1, 5294. https://doi.org/10.1038/s41598-017-05259-3. [CrossRef] [PubMed] [Google Scholar]
  41. Lang JM, Pan C, Cantor RM, Tang WHW, Garcia-Garcia JC, Kurtz I, Hazen SL, Bergeron N, Krauss RM, Lusis AJ (2018), Impact of Individual Traits, Saturated Fat, and Protein Source on the Gut Microbiome. MBio 9, 6, pii: e01604-18. https://doi.org/10.1128/mBio.01604-18. [Google Scholar]
  42. Dávalos A, Goedeke L, Smibert P, Ramírez CM, Warrier NP, Andreo U, Cirera-Salinas D, Rayner K, Suresh U, Pastor-Pareja JC, Esplugues E, Fisher EA, Penalva LO, Moore KJ, Suárez Y, Lai EC, Fernández-Hernando C (2011), miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA 108, 22, 9232–9237. https://doi.org/10.1073/pnas.1102281108. [CrossRef] [Google Scholar]
  43. Herrera-Merchan A, Cerrato C, Luengo G, Dominguez O, Piris MA, Serrano M, Gonzalez S (2010), miR-33-mediated downregulation of p53 controls hematopoietic stem cell self-renewal. Cell Cycle (Georgetown, Tex.) 9, 16, 3277–3285. https://doi.org/10.4161/cc.9.16.12598. [CrossRef] [PubMed] [Google Scholar]
  44. Luo M, Tan X, Mu L, Luo Y, Li R, Deng X, Chen N, Ren M, Li Y, Wang L, Wu J, Wan Q (2017), MiRNA-21 mediates the antiangiogenic activity of metformin through targeting PTEN and SMAD7 expression and PI3 K/AKT pathway. Sci Rep 7, 43427. https://doi.org/10.1038/srep43427. [CrossRef] [PubMed] [Google Scholar]
  45. Yoshimatsu Y, Lee YG, Akatsu Y, Taguchi L, Suzuki HI, Cunha SI, Maruyama K, Suzuki Y, Yamazaki T, Katsura A, Oh SP, Zimmers TA, Lee SJ, Pietras K, Koh GY, Miyazono K, Watabe T (2013), Bone morphogenetic protein-9 inhibits lymphatic vessel formation via activin receptor-like kinase 1 during development and cancer progression. Proc Natl Acad Sci USA 110, 47, 18940–18945. https://doi.org/10.1073/pnas.1310479110. [CrossRef] [Google Scholar]
  46. Mitchell D, Pobre EG, Mulivor AW, Grinberg AV, Castonguay R, Monnell TE, Solban N, Ucran JA, Pearsall RS, Underwood KW, Seehra J, Kumar R (2010), ALK1-Fc inhibits multiple mediators of angiogenesis and suppresses tumor growth. Mol Cancer Ther 9, 2, 379–388. https://doi.org/10.1158/1535-7163.MCT-09-0650. [Google Scholar]
  47. Cunha SI, Bocci M, Lövrot J, Eleftheriou N, Roswall P, Cordero E, Lindström L, Bartoschek M, Haller BK, Pearsall RS, Mulivor AW, Kumar R, Larsson C, Bergh J, Pietras K (2015), Endothelial ALK1 Is a therapeutic target to block metastatic dissemination of breast cancer. Cancer Res 75, 12, 2445–2456. https://doi.org/10.1158/0008-5472.CAN-14-3706. Erratum. In: Cancer Res. 2016 Oct 15;76(20):6131-6132. [Google Scholar]
  48. Cai X, Hu X, Tan X, Cheng W, Wang Q, Chen X, Guan Y, Chen C, Jing X (2015), Metformin induced AMPK activation, G0/G1 phase cell cycle arrest and the inhibition of growth of esophageal squamous cell carcinomas in vitro and in vivo. PLoS One 10, 7, e0133349. https://doi.org/10.1371/journal.pone.0133349. [Google Scholar]
  49. Ying Y, Ueta T, Jiang S, Lin H, Wang Y, Vavvas D, Wen R, Chen YG, Luo Z (2017), Metformin inhibits ALK1-mediated angiogenesis via activation of AMPK. Oncotarget 8, 20, 32794–32806. https://doi.org/10.18632/oncotarget.15825. [PubMed] [Google Scholar]
  50. Dallaglio K, Bruno A, Cantelmo AR, Esposito AI, Ruggiero L, Orecchioni S, Calleri A, Bertolini F, Pfeffer U, Noonan DM, Albini A (2014), Paradoxic effects of metformin on endothelial cells and angiogenesis. Carcinogenesis 35, 5, 1055–1066. https://doi.org/10.1093/carcin/bgu001. [CrossRef] [PubMed] [Google Scholar]
  51. Kefas BA, Cai Y, Kerckhofs K, Ling Z, Martens G, Heimberg H, Pipeleers D, Van de Casteele M (2004), Metformin-induced stimulation of AMP-activated protein kinase in beta-cells impairs their glucose responsiveness and can lead to apoptosis. Biochem Pharmacol 68, 3, 409–416. PMID: 14678861. [CrossRef] [PubMed] [Google Scholar]
  52. Bae EJ, Cho MJ, Kim SG (2007), Metformin prevents an adaptive increase in GSH and induces apoptosis under the conditions of GSH deficiency in H4IIE cells. J Toxicol Environ Health A 70, 15–16, 1371–1380. https://doi.org/10.1080/15287390701434430. [CrossRef] [PubMed] [Google Scholar]
  53. Alimova IN, Liu B, Fan Z, Edgerton SM, Dillon T, Lind SE, Thor AD (2009), Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 8, 6, 909–915. https://doi.org/10.4161/cc.8.6.7933. [CrossRef] [PubMed] [Google Scholar]
  54. Ota K, Nakamura J, Li W, Kozakae M, Watarai A, Nakamura N, Yasuda Y, Nakashima E, Naruse K, Watabe K, Kato K, Oiso Y, Hamada Y (2007), Metformin prevents methylglyoxal-induced apoptosis of mouse Schwann cells. Biochem Biophys Res Commun 357, 1, 270–275. https://doi.org/10.1016/j.bbrc.2007.03.140. [Google Scholar]
  55. Wang LW, Li ZS, Zou DW, Jin ZD, Gao J, Xu GM (2008), Metformin induces apoptosis of pancreatic cancer cells. World J Gastroenterol 14, 47, 7192–7198. PMCID: PMC4988356. [CrossRef] [PubMed] [Google Scholar]
  56. Lee BB, Kim Y, Kim D, Cho EY, Han J, Kim HK, Shim YM, Kim DH (2019), Metformin and tenovin-6 synergistically induces apoptosis through LKB1-independent SIRT1 down-regulation in non-small cell lung cancer cells. J Cell Mol Med 23, 11. https://doi.org/10.1111/jcmm.14194. [Google Scholar]
  57. Cho SY, Lee HJ, Lee HJ, Jung DB, Kim H, Sohn EJ, Kim B, Jung JH, Kwon BM, Kim SH (2013), Activation of AMP-activated protein kinase α and extracelluar signal-regulated kinase mediates CB-PIC-induced apoptosis in hypoxic SW620 colorectal cancer cells. Evid Based Complement Alternat Med 2013, 974313. https://doi.org/10.1155/2013/974313. [Google Scholar]
  58. Sena P, Mancini S, Benincasa M, Mariani F, Palumbo C, Roncucci L (2018), Metformin induces apoptosis and alters cellular responses to oxidative stress in Ht29 colon cancer cells: preliminary findings. Int J Mol Sci 19, 5, 1–16.https://doi.org/10.3390/ijms19051478. [Google Scholar]
  59. Wang L, Li K, Lin X, Yao Z, Wang S, Xiong X, Ning Z, Wang J, Xu X, Jiang Y, Liu D, Chen Y, Zhang D, Zhang H (2019 Feb 13), Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 Axis. Cancer Lett 450, 22–31, pii: S0304-3835(19)30086-2. https://doi.org/10.1016/j.canlet.2019.02.014. [Google Scholar]
  60. Tomic T, Botton T, Cerezo M, Robert G, Luciano F, Puissant A, Gounon P, Allegra M, Bertolotto C, Bereder JM, Tartare-Deckert S, Bahadoran P, Auberger P, Ballotti R, Rocchi S (2011), Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis 2, e199. https://doi.org/10.1038/cddis.2011.86. [Google Scholar]
  61. Janjetovic K, Vucicevic L, Misirkic M, Vilimanovich U, Tovilovic G, Zogovic N, Nikolic Z, Jovanovic S, Bumbasirevic V, Trajkovic V, Harhaji-Trajkovic L (2011), Metformin reduces cisplatin-mediated apoptotic death of cancer cells through AMPK-independent activation of Akt. Eur J Pharmacol 651, 1–3, 41–50. https://doi.org/10.1016/j.ejphar.2010.11.005. [CrossRef] [PubMed] [Google Scholar]
  62. Garofalo C, Capristo M, Manara MC, Mancarella C, Landuzzi L, Belfiore A, Lollini PL, Picci P, Scotlandi K (2013), Metformin as an adjuvant drug against pediatric sarcomas: hypoxia limits therapeutic effects of the drug. PLoS One 8, 12, e83832. https://doi.org/10.1371/journal.pone.0083832. [Google Scholar]
  63. Gatenby RA, Kessler HB, Rosenblum JS, Coia LR, Moldofsky PJ, Hartz WH, Broder GJ (1988), Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys 14, 5, 831–838. PMID: 3360652. [CrossRef] [PubMed] [Google Scholar]
  64. Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I (2018), The hypoxic tumour microenvironment. Oncogenesis 7, 1, 10. https://doi.org/10.1038/s41389-017-0011-9. [CrossRef] [PubMed] [Google Scholar]
  65. Queiroz EA, Puukila S, Eichler R, Sampaio SC, Forsyth HL, Lees SJ, Barbosa AM, Dekker RF, Fortes ZB, Khaper N (2014), Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells. PLoS One 9, 5, e98207. https://doi.org/10.1371/journal.pone.0098207. [Google Scholar]
  66. Curry J, Johnson J, Tassone P, Vidal MD, Menezes DW, Sprandio J, Mollaee M, Cotzia P, Birbe R, Lin Z, Gill K, Duddy E, Zhan T, Leiby B, Reyzer M, Cognetti D, Luginbuhl A, Tuluc M, Martinez-Outschoorn U (2017), Metformin effects on head and neck squamous carcinoma microenvironment: window of opportunity trial. Laryngoscope 127, 8, 1808–1815. https://doi.org/10.1002/lary.26489. [CrossRef] [PubMed] [Google Scholar]
  67. Brücher BLDM, Jamall IS (2019), Chronic inflammation evoked by pathogenic stimulus during carcinogenesis. 4open 2, 8, 1–22. https://doi.org/10.1051/fopen/2018006. [CrossRef] [EDP Sciences] [Google Scholar]
  68. Morin-Papunen L, Rautio K, Ruokonen A, Hedberg P, Puukka M, Tapanainen JS (2003), Metformin reduces serum C-reactive protein levels in women with polycystic ovary syndrome. J Clin Endocrinol Metab 88, 10, 4649–4654. https://doi.org/10.1210/jc.2002-021688. [CrossRef] [PubMed] [Google Scholar]
  69. Wu B, Li S, Sheng L, Zhu J, Gu L, Shen H, La D, Hambly BD, Bao S, Di W (2012), Metformin inhibits the development and metastasis of ovarian cancer. Oncol Rep 28, 3, 903–908. https://doi.org/10.3892/or.2012.1890. [CrossRef] [PubMed] [Google Scholar]
  70. He G, Pedersen SB, Bruun JM, Lihn AS, Richelsen B (2003), Metformin, but not thiazolidinediones, inhibits plasminogen activator inhibitor-1 production in human adipose tissue in vitro. Horm Metab Res 35, 1, 18–23. https://doi.org/10.1055/s-2003-38386. [CrossRef] [PubMed] [Google Scholar]
  71. de Jager J, Kooy A, Schalkwijk C, van der Kolk J, Lehert P, Bets D, Wulffelé MG, Donker AJ, Stehouwer CD (2014), Long-term effects of metformin on endothelial function in type 2 diabetes: a randomized controlled trial. J Intern Med 275, 1, 59–70. https://doi.org/10.1111/joim.12128. [Google Scholar]
  72. Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, Lefer DJ (2008), Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 57, 3, 696–705. https://doi.org/10.2337/db07-1098. [CrossRef] [PubMed] [Google Scholar]
  73. Kitadai Y, Haruma K, Sumii K, Yamamoto S, Ue T, Yokozaki H, Yasui W, Ohmoto Y, Kajiyama G, Fidler IJ, Tahara E (1998), Expression of interleukin-8 correlates with vascularity in human gastric carcinomas. Am J Pathol 152, 1, 93–100. PMCID: PMC1858127. [PubMed] [Google Scholar]
  74. Green AR, Green VL, White MC, Speirs V (1997), Expression of cytokine messenger RNA in normal and neoplastic human breast tissue: identification of interleukin-8 as a potential regulatory factor in breast tumours. Int J Cancer 72, 6, 937–941. PMID: 9378554. [CrossRef] [PubMed] [Google Scholar]
  75. Freund A, Chauveau C, Brouillet J-P, Lucas A, Lacroix M, Licznar A, Vignon F, Lazennec G (2003), IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells. Oncogene 22, 2, 256–265. https://doi.org/10.1038/sj.onc.1206113. [Google Scholar]
  76. Shi Q, Abbruzzese JL, Huang S, Fidler IJ, Xiong Q, Xie K (1999), Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res 5, 11, 3711–3721. PMID: 10589791. [PubMed] [Google Scholar]
  77. Seaton A, Scullin P, Maxwell PJ, Wilson C, Pettigrew J, Gallagher R, O’Sullivan JM, Johnston PG, Waugh DJ (2008), Interleukin-8 signaling promotes androgen-independent proliferation of prostate cancer cells via induction of androgen receptor expression and activation. Carcinogenesis 29, 6, 1148–1156. https://doi.org/10.1093/carcin/bgn109. [CrossRef] [PubMed] [Google Scholar]
  78. Brew R, Erikson JS, West DC, Kinsella AR, Slavin J, Christmas SE (2000), Interleukin-8 as an autocrine growth factor for human colon carcinoma cells in vitro. Cytokine 12, 1, 78–85. https://doi.org/10.1006/cyto.1999.0518. [Google Scholar]
  79. Ladanyi A (2015), Prognostic and predictive significance of immune cells infiltrating cutaneous melanoma. Pigm Cell Melanoma Res 28, 5, 490–500. https://doi.org/10.1111/pcmr.12371. [CrossRef] [Google Scholar]
  80. Xiao Z, Wu W, Poltoratsky V (2017), Metformin suppressed CXCL8 expression and cell migration in HEK293/TLR4 cell line. Mediat Inflamm 2017, 6589423. https://doi.org/10.1155/2017/6589423. [CrossRef] [Google Scholar]
  81. Brücher BLDM, Jamall IS (2019), Precancerous niche (PCN), a product of fibrosis with remodeling by incessant chronic inflammation. 4open 2, 11, 1–21. https://doi.org/10.1051/fopen/2018009. [CrossRef] [EDP Sciences] [Google Scholar]
  82. Azmoonfar R, Amini P, Saffar H, Rezapoor S, Motevaseli E, Cheki M, Yahyapour R, Farhood B, Nouruzi F, Khodamoradi E, Shabeeb D, Eleojo Musa A, Najafi M (2018), Metformin protects against radiation-induced pneumonitis and fibrosis and attenuates upregulation of dual oxidase genes expression. Adv Pharm Bull 8, 4, 697–704. https://doi.org/10.15171/apb.2018.078. [Google Scholar]
  83. Mortezaee K, Shabeeb D, Musa AE, Najafi M, Farhood B (2018), Metformin as a radiation modifier; implications to normal tissue protection and tumor sensitization. Curr Clin Pharmacol. 14, 1, 41–53. https://doi.org/10.2174/1574884713666181025141559. [Google Scholar]
  84. Al-Hashem F, Al-Humayed S, Amin SN, Kamar SS, Mansy SS, Hassan S, Abdel-Salam LO, Ellatif MA, Alfaifi M, Haidara MA, Al-Ani B (2018), Metformin inhibits mTOR-HIF-1α axis and profibrogenic and inflammatory biomarkers in thioacetamide-induced hepatic tissue alterations. J Cell Physiol 234, 6, 9328–9337. https://doi.org/10.1002/jcp.27616. [Google Scholar]
  85. Tan BK, Adya R, Chen J, Farhatullah S, Heutling D, Mitchell D, Lehnert H, Randeva HS (2009), Metformin decreases angiogenesis via NF-kappaB and Erk1/2/Erk5 pathways by increasing the antiangiogenic thrombospondin-1. Cardiovasc Res 83, 3, 566–574. https://doi.org/10.1093/cvr/cvp131. [CrossRef] [PubMed] [Google Scholar]
  86. Peng M, Darko KO, Tao T, Huang Y, Su Q, He C, Yin T, Liu Z, Yang X (2017), Combination of metformin with chemotherapeutic drugs via different molecular mechanisms. Cancer Treat Rev 54, 24–33. https://doi.org/10.1016/j.ctrv.2017.01.005. [CrossRef] [PubMed] [Google Scholar]
  87. Wang JC, Li GY, Li PP, Sun X, Li WM, Li Y, Lu SY, Liu PJ (2017), Suppression of hypoxia-induced excessive angiogenesis by metformin via elevating tumor blood perfusion. Oncotarget 8, 43, 73892–73904. https://doi.org/10.18632/oncotarget.18029. [PubMed] [Google Scholar]
  88. Li X, Li J, Wang L, Li A, Qiu Z, Qi LW, Kou J, Liu K, Liu B, Huang F (2016), The role of metformin and resveratrol in the prevention of hypoxia-inducible factor 1α accumulation and fibrosis in hypoxic adipose tissue. Br J Pharmacol 173, 12, 2001–2015. https://doi.org/10.1111/bph.13493. [CrossRef] [PubMed] [Google Scholar]
  89. Ishibashi Y, Matsui T, Takeuchi M, Yamagishi S (2013), Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase. Horm Metab Res 45, 5, 387–390. https://doi.org/10.1055/s-0032-1331204. [PubMed] [Google Scholar]
  90. Joe SG, Yoon YH, Choi JA, Koh JY (2015), Anti-angiogenic effect of metformin in mouse oxygen-induced retinopathy is mediated by reducing levels of the vascular endothelial growth factor receptor Flk-1. PLoS One 10, 3, e0119708. https://doi.org/10.1371/journal.pone.0119708. [Google Scholar]
  91. Orecchioni S, Reggiani F, Talarico G, Mancuso P, Calleri A, Gregato G, Labanca V, Noonan DM, Dallaglio K, Albini A, Bertolini F (2015), The biguanides metformin and phenformin inhibit angiogenesis, local and metastatic growth of breast cancer by targeting both neoplastic and microenvironment cells. Int J Cancer 136, 6, E534–E544. https://doi.org/10.1002/ijc.29193. [CrossRef] [PubMed] [Google Scholar]
  92. Wang J, Li G, Wang Y, Tang S, Sun X, Feng X, Li Y, Bao G, Li P, Mao X, Wang M, Liu P (2015), Suppression of tumor angiogenesis by metformin treatment via a mechanism linked to targeting of HER2/HIF-1α/VEGF secretion axis. Oncotarget 6, 42, 44579–44592. https://doi.org/10.18632/oncotarget.6373. [CrossRef] [PubMed] [Google Scholar]
  93. Cameron AR, Morrison VL, Levin D, Mohan M, Forteath C, Beall C, McNeilly AD, Balfour DJ, Savinko T, Wong AK, Viollet B, Sakamoto K, Fagerholm SC, Foretz M, Lang CC, Rena G (2016), Anti-Inflammatory effects of metformin irrespective of diabetes status. Circ Res 119, 5, 652–665. https://doi.org/10.1161/CIRCRESAHA.116.308445. [Google Scholar]
  94. Bakhashab S, Ahmed FW, Schulten HJ, Bashir A, Karim S, Al-Malki AL, Gari MA, Abuzenadah AM, Chaudhary AG, Alqahtani MH, Lary S, Ahmed F, Weaver JU (2016), Metformin improves the angiogenic potential of human CD34+ cells co-incident with downregulating CXCL10 and TIMP1 gene expression and increasing VEGFA under hyperglycemia and hypoxia within a therapeutic window for myocardial infarction. Cardiovasc Diabetol 15, 27. https://doi.org/10.1186/s12933-016-0344-2. [PubMed] [Google Scholar]
  95. Kopitz C, Gerg M, Bandapalli OR, Ister D, Pennington CJ, Hauser S, Flechsig C, Krell HW, Antolovic D, Brew K, Nagase H, Stangl M, von Weyhern CW, Brücher BLDM, Brand K, Coussens LM, Edwards DR, Krüger A (2007), Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Res 67, 18, 8615–8623. https://doi.org/10.1158/0008-5472.CAN-07-0232. [Google Scholar]
  96. Kim YW, Kim JY, Park YH, Park SY, Won KC, Choi KH, Huh JY, Moon KH (2006), Metformin restores leptin sensitivity in high-fat-fed obese rats with leptin resistance. Diabetes 55, 3, 716–724. https://doi.org/10.2337/diabetes.55.03.06.db05-0917. [CrossRef] [PubMed] [Google Scholar]
  97. Lee CK, Choi YJ, Park SY, Kim JY, Won KC, Kim YW (2012), Intracerebroventricular injection of metformin induces anorexia in rats. Diabetes Metab J 36, 4, 293–299. https://doi.org/10.4093/dmj.2012.36.4.293. [CrossRef] [PubMed] [Google Scholar]
  98. Spillane S, Bennett K, Sharp L, Barron TI (2013), A cohort study of metformin exposure and survival in patients with stage I-III colorectal cancer. Cancer Epidemiol Biomarker Prev 22, 8, 1364–1373. https://doi.org/10.1158/1055-9965.EPI-13-0347. [CrossRef] [Google Scholar]
  99. Kim YD, Park KG, Lee YS, Park YY, Kim DK, Nedumaran B, Jang WG, Cho WJ, Ha J, Lee IK, Lee CH, Choi HS (2008), Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes 57, 2, 306–314. https://doi.org/10.2337/db07-0381. [CrossRef] [PubMed] [Google Scholar]
  100. Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ (2013), Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 7436, 256–260. https://doi.org/10.1038/nature11808. [CrossRef] [PubMed] [Google Scholar]
  101. Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, Jurczak MJ, Camporez JP, Lee HY, Cline GW, Samuel VT, Kibbey RG, Shulman GI (2014), Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycyerophosphate dehydrogenase. Nature 510, 7506, 542–546. https://doi.org/10.1038/nature13270. [CrossRef] [PubMed] [Google Scholar]
  102. Mohammed A, Janakiram NB, Brewer M, Ritchie RL, Marya A, Lightfoot S, Steele VE, Rao CV (2013), Antidiabetic drug metformin prevents progression of pancreatic cancer by targeting in part cancer stem cells and mTOR signaling. Transl Oncol 6, 6, 649–659. https://doi.org/10.1593/tlo.13556. [Google Scholar]
  103. Howell JJ, Hellberg K, Turner M, Talbott G, Kolar MJ, Ross DS, Hoxhaj G, Saghatelian A, Shaw RJ, Manning BD (2017), Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab 25, 2, 463–471. https://doi.org/10.1016/j.cmet.2016.12.009. [CrossRef] [PubMed] [Google Scholar]
  104. Memmott RM, Mercado JR, Maier CR, Kawabata S, Fox SD, Dennis PA (2010), Metformin prevents tobacco carcinogen–induced lung tumorigenesis. Cancer Prev Res (Phila) 3, 9, 1066–1076. https://doi.org/10.1158/1940-6207.CAPR-10-0055. [CrossRef] [PubMed] [Google Scholar]
  105. Yoshida S, Hong S, Suzuki T, Nada S, Mannan AM, Wang J, Okada M, Guan KL, Inoki K (2011), Redox regulates mammalian target of rapamycin complex 1 (mTORC1) activity by modulating the TSC1/TSC2-Rheb GTPase pathway. J Biol Chem 286, 37, 32651–32660. https://doi.org/10.1074/jbc.M111.238014. [PubMed] [Google Scholar]
  106. Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, Marette A, Kozma SC, Thomas G (2010), Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 11, 5, 390–401. https://doi.org/10.1016/j.cmet.2010.03.014. [CrossRef] [PubMed] [Google Scholar]
  107. Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA (2009), The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein overexpression via inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells. Cell Cycle 8, 1, 88–96. https://doi.org/10.4161/cc.8.1.7499. [CrossRef] [PubMed] [Google Scholar]
  108. Kasznicki J, Sliwinska A, Drzewoski J (2014), Metformin in cancer prevention and therapy. Ann Transl Med 2, 6, 57. https://doi.org/10.3978/j.issn.2305-5839.2014.06.01. [Google Scholar]
  109. Tong D, Liu Q, Liu G, Xu J, Lan W, Jiang Y, Xiao H, Zhang D, Jiang J (2017), Metformin inhibits castration-induced EMT in prostate cancer by repressing COX2/PGE2/STAT3 axis. Cancer Lett 389, 23–32. https://doi.org/10.1016/j.canlet.2016.12.031. [Google Scholar]
  110. Abdelmonsif DA, Sultan AS, El-Hadidy WF, Abdallah DM (2018), Targeting AMPK, mTOR and β-catenin by combined metformin and aspirin therapy in HCC: an appraisal in Egyptian HCC patients. Mol Diagn Ther 22, 1, 115–127. https://doi.org/10.1007/s40291-017-0307-7. [Google Scholar]
  111. You A, Cao M, Guo Z, Zuo B, Gao J, Zhou H, Li H, Cui Y, Fang F, Zhang W, Song T, Li Q, Zhu X, Yin H, Sun H, Zhang T (2016), Metformin sensitizes sorafenib to inhibit postoperative recurrence and metastasis of hepatocellular carcinoma in orthotopic mouse models. J Hematol Oncol 9, 20. https://doi.org/10.1186/s13045-016-0253-6. [CrossRef] [PubMed] [Google Scholar]
  112. Kim JH, Lee KJ, Seo Y, Kwon JH, Yoon JP, Kang JY, Lee HJ, Park SJ, Hong SP, Cheon JH, Kim WH, Il Kim T (2018), Effects of metformin on colorectal cancer stem cells depend on alterations in glutamine metabolism. Sci Rep 8, 1, 409. https://doi.org/10.1038/s41598-017-18762-4. Erratum. In: Sci Rep 8(1), 13111. https://doi.org/10.1038/s41598-018-29895-5. [CrossRef] [PubMed] [Google Scholar]
  113. Reshef L, Hanson RW, Ballard FJ (1969), Glyceride-glycerol synthesis from pyruvate. Adaptive changes in phosphoenolpyruvate carboxykinase and pyruvate carboxylase in adipose tissue and liver. J Biol Chem 244, 8, 1994–2001. [PubMed] [Google Scholar]
  114. Beale EG, Chrapkiewicz NB, Scoble HA, Metz RJ, Quick DP, Noble RL, Donelson JE, Biemann K, Granner DK (1985), Rat hepatic cytosolic phosphoenolpyruvate carboxykinase (GTP). Structures of the protein, messenger RNA, and gene. J Biol Chem 260, 19, 10748–10760. PMID: 2993287. [PubMed] [Google Scholar]
  115. Mukhopadhyay B, Concar EM, Wolfe RS (2001), A GTP-dependent vertebrate-type phosphoenolpyruvate carboxykinase from Mycobacterium smegmatis. J Biol Chem 276, 19, 16137–16145. https://doi.org/10.1074/jbc.M008960200. [PubMed] [Google Scholar]
  116. Yang J, Kalhan SC, Hanson RW (2009), What is the metabolic role of phosphoenolpyruvate carboxykinase? J Biol Chem 284, 40, 27025–27029. https://doi.org/10.1074/jbc.R109.040543. [PubMed] [Google Scholar]
  117. O’Brien RM, Lucas PC, Forest CD, Magnuson MA, Granner DK (1990), Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription. Science 249, 4968, 533–537. PMID: 2166335. [Google Scholar]
  118. Montal ED, Dewi R, Bhalla K, Ou L, Hwang BJ, Ropell AE, Gordon C, Liu WJ, DeBerardinis RJ, Sudderth J, Twaddel W, Boros LG, Shroyer KR, Duraisamy S, Drapkin R, Powers RS, Rohde JM, Boxer MB, Wong KK, Girnun GD (2015), PEPCK coordinates the regulation of central carbon metabolism to promote cancer cell growth. Mol Cell 60, 4, 571–583. https://doi.org/10.1016/j.molcel.2015.09.025. [CrossRef] [PubMed] [Google Scholar]
  119. Vincent EE, Sergushichev A, Griss T, Gingras MC, Samborska B, Ntimbane T, Coelho PP, Blagih J, Raissi TC, Choinière L, Bridon G, Loginicheva E, Flynn BR, Thomas EC, Tavaré JM, Avizonis D, Pause A, Elder DJ, Artyomov MN, Jones RG (2015), Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growth. Mol Cell 60, 2, 195–207. https://doi.org/10.1016/j.molcel.2015.08.013. [CrossRef] [PubMed] [Google Scholar]
  120. Ma R, Zhang W, Tang K, Zhang H, Zhang Y, Li D, Li Y, Xu P, Luo S, Cai W, Ji T, Katirai F, Ye D, Huang B (2013), Switch of glycolysis to gluconeogenesis by dexamethasone for treatment of hepatocarcinoma. Nat Commun 4, 2508. https://doi.org/10.1038/ncomms3508. [Google Scholar]
  121. Liu MX, Jin L, Sun SJ, Liu P, Feng X, Cheng ZL, Liu WR, Guan KL, Shi YH, Yuan HX, Xiong Y (2018), Metabolic reprogramming by PCK1 promotes TCA cataplerosis, oxidative stress and apoptosis in liver cancer cells and suppresses hepatocellular carcinoma. Oncogene 37, 12, 1637–1653. https://doi.org/10.1038/s41388-017-0070-6. [Google Scholar]
  122. Tuo L, Xiang J, Pan X, Hu J, Tang H, Liang L, Xia J, Hu Y, Zhang W, Huang A, Wang K, Tang N (2019), PCK1 negatively regulates cell cycle progression and hepatoma cell proliferation via the AMPK/p27Kip1 axis. J Exp Clin Cancer Res 38, 1, 50. https://doi.org/10.1186/s13046-019-1029-y. [CrossRef] [PubMed] [Google Scholar]
  123. Stimson RH, Walker BR (2013), The role and regulation of 11β-hydroxysteroid dehydrogenase type 1 in obesity and the metabolic syndrome. Horm Mol Biol Clin Investig 15, 2, 37–48. https://doi.org/10.1515/hmbci-2013-0015. [PubMed] [Google Scholar]
  124. Onodera Y, Nam JM, Bissell MJ (2014), Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways. J Clin Invest 124, 1, 367–384. https://doi.org/10.1172/JCI63146. [CrossRef] [PubMed] [Google Scholar]
  125. Zhou X, Zhang P, Wang Q, Ji N, Xia S, Ding Y, Wang Q (2019), Metformin ameliorates experimental diabetic periodontitis independently of mammalian target of rapamycin (mTOR) inhibition by reducing NIMA-related kinase 7(Nek7) expression. J Periodontol. [Epub ahead of print] https://doi.org/10.1002/jper.10311. [Google Scholar]
  126. Brücher BLDM, Jamall IS (2019), Transition from normal to cancerous cell by precancerous niche (PCN) induced chronic cell-matrix stress. 4open 2. https://doi.org/10.1051/fopen/2018996. [Google Scholar]
  127. Lee JH, Kim JH, Kim JS, Chang JW, Kim SB, Park JS, Lee SK (2013), AMP-activated protein kinase inhibits TGF-β-, angiotensin II-, aldosterone-, high glucose-, and albumin-induced epithelial-mesenchymal transition. Am J Physiol Renal Physiol 304, 6, F686–F697. https://doi.org/10.1152/ajprenal.00148.2012. [Google Scholar]
  128. Zhang J, Shen C, Wang L, Ma Q, Xia P, Qi M, Yang M, Han B (2014), Metformin inhibits epithelial-mesenchymal transition in prostate cancer cells: involvement of the tumor suppressor miR30a and its target gene SOX4. Biochem Biophys Res Commun 452, 3, 746–752. https://doi.org/10.1016/j.bbrc.2014.08.154. [Google Scholar]
  129. Cheng K, Hao M (2016), Metformin inhibits TGF-β1-induced epithelial-to-mesenchymal transition via PKM2 relative-mTOR/p70s6 k signaling pathway in cervical carcinoma cells. Int J Mol Sci 17, 12, 1–14. https://doi.org/10.3390/ijms17122000. [Google Scholar]
  130. Li YG, Han BB, Li F, Yu JW, Dong ZF, Niu GM, Qing YW, Li JB, Wei M, Zhu W (2016), High glucose induces down-regulated GRIM-19 expression to activate STAT3 signaling and promote cell proliferation in cell culture. PLoS One 11, 4, e0153659. https://doi.org/10.1371/journal.pone.0153659. [Google Scholar]
  131. Zhao Z, Cheng X, Wang Y, Han R, Li L, Xiang T, He L, Long H, Zhu B, He Y (2014), Metformin inhibits the IL-6-induced epithelial-mesenchymal transition and lung adenocarcinoma growth and metastasis. PLoS One 9, 4, e95884. https://doi.org/10.1371/journal.pone.0095884. [Google Scholar]
  132. Hirsch HA, Iliopoulos D, Struhl K (2013), Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci USA 110, 3, 972–977. https://doi.org/10.1073/pnas.1221055110. [CrossRef] [Google Scholar]
  133. Akinyeke T, Matsumura S, Wang X, Wu Y, Schalfer ED, Saxena A, Yan W, Logan SK, Li X (2013), Metformin targets c-MYC oncogene to prevent prostate cancer. Carcinogenesis 34, 12, 2823–2832. https://doi.org/10.1093/carcin/bgt307. [CrossRef] [PubMed] [Google Scholar]
  134. Kawashima I, Kirito K (2016), Metformin inhibits JAK2V617F activity in MPN cells by activating AMPK and PP2A complexes containing the B56α subunit. Exp Hematol 44, 12, 1156–1165.e4. https://doi.org/10.1016/j.exphem.2016.08.005. [CrossRef] [PubMed] [Google Scholar]
  135. Yang Y, Jin G, Liu H, Liu K, Zhao J, Chen X, Wang D, Bai R, Li X, Jang Y, Lu J, Xing Y, Dong Z (2017), Metformin inhibits esophageal squamous cell carcinoma-induced angiogenesis by suppressing JAK/STAT3 signaling pathway. Oncotarget 8, 43, 74673–74687. https://doi.org/10.18632/oncotarget.20341. [PubMed] [Google Scholar]
  136. Feng Y, Ke C, Tang Q, Dong H, Zheng X, Lin W, Ke J, Huang J, Yeung SC, Zhang H (2014), Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis 5, e1088. https://doi.org/10.1038/cddis.2014.59. [Google Scholar]
  137. Leonel C, Borin TF, de Carvalho Ferreira L, Moschetta MG, Bajgelman MC, Viloria-Petit AM, de Campos Zuccari DA (2017), Inhibition of epithelial-mesenchymal transition and metastasis by combined TGFbeta knockdown and metformin treatment in a canine mammary cancer Xenograft model. J Mammary Gland Biol Neoplasia 22, 1, 27–41. https://doi.org/10.1007/s10911-016-9370-7. [CrossRef] [PubMed] [Google Scholar]
  138. Valaee S, Yaghoobi MM, Shamsara M (2017), Metformin inhibits gastric cancer cells metastatic traits through suppression of epithelial-mesenchymal transition in a glucose-independent manner. PLoS One 12, 3, e0174486. https://doi.org/10.1371/journal.pone.0174486. [Google Scholar]
  139. Trinh SX, Nguyen HT, Saimuang K, Prachayasittikul V, Chan On W (2017), Metformin inhibits migration and invasion of cholangiocarcinoma cells. Asian Pac J Cancer Prev 18, 2, 473–477. https://doi.org/10.22034/APJCP.2017.18.2.473. [PubMed] [Google Scholar]
  140. Sun XJ, Zhang P, Li HH, Jiang ZW, Jiang CC, Liu H ((2104)), Cisplatin combined with metformin inhibits migration and invasion of human nasopharyngeal carcinoma cells by regulating E-cadherin and MMP-9. Asian Pac J Cancer Prev 15, 9, 4019–4023. https://doi.org/10.7314/APJCP.2014.15.9.4019. [CrossRef] [PubMed] [Google Scholar]
  141. ClinicalTrials.gov [Internet], Bethesda, MD, USA (2019 Feb), National Library of Medicine (US), access 2019 Feb 20, https://clinicaltrials.gov/ct2/results?term=cancer&cond=Metformin. [Google Scholar]
  142. Brücher BLDM, Jamall IS (2019), Eicosanoids in carcinogenesis. 4open 2, 9, 1–34. https://doi.org/10.1051/fopen/2018008. [CrossRef] [EDP Sciences] [Google Scholar]
  143. Chin-Hsiao T (2019), Metformin and the risk of dementia in type 2 diabetes patients. Aging Dis 10, 1, 37–48. https://doi.org/10.14336/AD.2017.1202. [PubMed] [Google Scholar]
  144. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD (2005), Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 7503, 1304–1305. https://doi.org/10.1136/bmj.38415.708634.F7. [Google Scholar]
  145. Bosco JL, Antonsen S, Sørensen HT, Pedersen L, Lash TL (2011), Metformin and incident breast cancer among diabetic women: a population-based case-control study in Denmark. Cancer Epidemiol Biomarkers Prev 20, 1, 101–111. https://doi.org/10.1158/1055-9965.EPI-10-0817. [Google Scholar]
  146. Tseng CH (2014), Metformin significantly reduces incident prostate cancer risk in Taiwanese men with type 2 diabetes mellitus. Eur J Cancer 50, 2831–2837. https://doi.org/10.1016/j.ejca.2014.08.007. [CrossRef] [PubMed] [Google Scholar]
  147. Peñafiel Ramos C, Olarte Carrillo I, Ceron Maldonado R, Miranda Peralta E, Rozen Fuller E, Kassack Ipiña JJ, Centeno Cruz F, Collazo Jaloma J, Martínez Tovar A, (2018), Effect of metformin added to chemotherapy on the survival of patients with acute lymphoblastic leukemia. Rev Med Chil 146, 7, 846–853. https://doi.org/10.4067/s0034-98872018000700846. [CrossRef] [PubMed] [Google Scholar]
  148. Malik M, Tasnim N, Mahmud G (2018), Effect of metformin alone compared with metformin plus simvastatin on polycystic ovarian syndrome in Pakistani women. J Coll Physicians Surg Pak 28, 3, 184–187. https://doi.org/10.29271/jcpsp.2018.03.184. [Google Scholar]
  149. Geagea AG, Rizzo M, Jurjus A, Cappello F, Leone A, Tomasello G, Gracia C, Al Kattar S, Massaad-Massade L, Eid A (2019), A novel therapeutic approach to colorectal cancer in diabetes: role of metformin and rapamycin. Oncotarget 10, 13, 1284–1305. https://doi.org/10.18632/oncotarget.26641. [CrossRef] [PubMed] [Google Scholar]
  150. Martin-Castillo B, Pernas S, Dorca J, Álvarez I, Martínez S, Pérez-Garcia JM, Batista-López N, Rodríguez-Sánchez CA, Amillano K, Domínguez S, Luque M, Stradella A, Morilla I, Viñas G, Cortés J, Cuyàs E, Verdura S, Fernández-Ochoa Á, Fernández-Arroyo S, Segura-Carretero A, Joven J, Pérez E, Bosch N, Garcia M, López-Bonet E, Saidani S, Buxó M, Menendez JA (2018), A phase 2 trial of neoadjuvant metformin in combination with trastuzumab and chemotherapy in women with early HER2-positive breast cancer: the METTEN study. Oncotarget 9, 86, 35687–35704. https://doi.org/10.18632/oncotarget.26286. [CrossRef] [PubMed] [Google Scholar]
  151. Davis SR, Robinson PJ, Jane F, White S, Brown KA, Piessens S, Edwards A, McNeilage J, Woinarski J, Chipman M, Bell RJ (2018), The benefits of adding metformin to tamoxifen to protect the endometrium-A randomized placebo-controlled trial. Clin Endocrinol (Oxf) 89, 5, 605–612. https://doi.org/10.1111/cen.13830. [Google Scholar]
  152. Dowling RJ, Niraula S, Chang MC, Done SJ, Ennis M, McCready DR, Leong WL, Escallon JM, Reedijk M, Goodwin PJ, Stambolic V (2015), Changes in insulin receptor signaling underlie neoadjuvant metformin administration in breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res 17, 32. https://doi.org/10.1186/s13058-015-0540-0. [CrossRef] [PubMed] [Google Scholar]
  153. Tanti JF, Grémeaux T, Van Obberghen E, Le Marchand-Brustel Y (1991), Effects of okadaic acid, an inhibitor of protein phosphatases-1 and -2A, on glucose transport and metabolism in skeletal muscle. J Biol Chem 266, 4, 2099–2103. PMID: 1846612. [PubMed] [Google Scholar]
  154. Lavoie L, Bollen M, Stalmans W, van de Werve G (1991), Increased synthase phosphatase activity is responsible for the super-activation of glycogen synthase in hepatocytes from fasted obese Zucker rats. Endocrinology 129, 5, 2674–2678. [CrossRef] [PubMed] [Google Scholar]
  155. Li X, Scuderi A, Letsou A, Virshup DM (2002), B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in Drosophila melanogaster. Mol Cell Biol 22, 11, 3674–3684. PMCID: PMC133809. [PubMed] [Google Scholar]
  156. Yu LG, Packman LC, Weldon M, Hamlett J, Rhodes JM (2004), Protein phosphatase 2A, a negative regulator of the ERK signaling pathway, is activated by tyrosine phosphorylation of putative HLA class II-associated protein I (PHAPI)/pp32 in response to the antiproliferative lectin, jacalin. J Biol Chem 279, 40, 41377–41383. https://doi.org/10.1074/jbc.M400017200. [PubMed] [Google Scholar]
  157. Messner DJ, Romeo C, Boynton A, Rossie S (2006), Inhibition of PP2A, but not PP5, mediates p53 activation by low levels of okadaic acid in rat liver epithelial cells. J Cell Biochem 99, 1, 241–255. https://doi.org/10.1002/jcb.20919. [CrossRef] [PubMed] [Google Scholar]
  158. Van Kanegan MJ, Adams DG, Wadzinski BE, Strack S (2005), Distinct protein phosphatase 2A heterotrimers modulate growth factor signaling to extracellular signal-regulated kinases and Akt. J Biol Chem 280, 43, 36029–36036. https://doi.org/10.1074/jbc.M506986200. [PubMed] [Google Scholar]
  159. Lin JX, Xie XS, Weng XF, Zheng CH, Xie JW, Wang JB, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Huang CM, Li P (2018), The prognostic value of cyclin-dependent kinase 5 and protein phosphatase 2A in gastric cancer. J Cancer 9, 23, 4404–4412. https://doi.org/10.7150/jca.27015. [CrossRef] [PubMed] [Google Scholar]
  160. Ho WS, Wang H, Maggio D, Kovach JS, Zhang Q, Song Q, Marincola FM, Heiss JD, Gilbert MR, Lu R, Zhuang Z (2018), Pharmacologic inhibition of protein phosphatase-2A achieves durable immune-mediated antitumor activity when combined with PD-1 blockade. Nat Commun 9, 1, 2126. https://doi.org/10.1038/s41467-018-04425-z. [Google Scholar]
  161. Hanawa S, Mitsuhashi A, Shozu M (2018), Antitumor effects of metformin via indirect inhibition of protein phosphatase 2A in patients with endometrial cancer. PLoS One 13, 2, e0192759. https://doi.org/10.1371/journal.pone.0192759. [Google Scholar]
  162. Marrone KA, Zhou X, Forde PM, Purtell M, Brahmer JR, Hann CL, Kelly RJ, Coleman B, Gabrielson E, Rosner GL, Ettinger DS (2018), A randomized phase II study of metformin plus paclitaxel/carboplatin/bevacizumab in patients with chemotherapy-naïve advanced or metastatic nonsquamous non-small cell lung cancer. Oncologist 23, 7, 859–865. https://doi.org/10.1634/theoncologist.2017-0465. [CrossRef] [PubMed] [Google Scholar]
  163. Moro M, Caiola E, Ganzinelli M, Zulato E, Rulli E, Marabese M, Centonze G, Busico A, Pastorino U, de Braud FG, Vernieri C, Simbolo M, Bria E, Scarpa A, Indraccolo S, Broggini M, Sozzi G, Garassino MC (2018), Metformin enhances cisplatin-induced apoptosis and prevents resistance to cisplatin in co-mutated KRAS/LKB1 NSCLC. J Thorac Oncol 13, 11, 1692–1704. https://doi.org/10.1016/j.jtho.2018.07.102. [Google Scholar]
  164. Richards KA, Liou JI, Cryns VL, Downs TM, Abel EJ, Jarrard DF (2018), Metformin use is associated with improved survival for patients with advanced prostate cancer on androgen deprivation therapy. J Urol 200, 6, 1256–1263, pii: S0022–5347(18)43412-X. https://doi.org/10.1016/j.juro.2018.06.031. [Google Scholar]
  165. Curry JM, Johnson J, Mollaee M, Tassone P, Amin D, Knops A, Whitaker-Menezes D, Mahoney MG, South A, Rodeck U, Zhan T, Harshyne L, Philp N, Luginbuhl A, Cognetti D, Tuluc M, Martinez-Outschoorn U (2018), Metformin clinical trial in HPV+ and HPV− head and neck squamous cell carcinoma: impact on cancer cell apoptosis and immune infiltrate. Front Oncol 8, 436. https://doi.org/10.3389/fonc.2018.00436. [CrossRef] [PubMed] [Google Scholar]
  166. Chak A, Buttar NS, Foster NR, Seisler DK, Marcon NE, Schoen R, Cruz-Correa MR, Falk GW, Sharma P, Hur C, Katzka DA, Rodriguez LM, Richmond E, Sharma AN, Smyrk TC, Mandrekar SJ, Limburg PJ; Cancer Prevention Network (2015), Metformin does not reduce markers of cell proliferation in esophageal tissues of patients with Barrett’s esophagus. Clin Gastroenterol Hepatol 13, 4, 665–672.e1-4. https://doi.org/10.1016/j.cgh.2014.08.040. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.