Issue
4open
Volume 2, 2019
Disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer”
Article Number 13
Number of page(s) 35
Section Life Sciences - Medicine
DOI https://doi.org/10.1051/fopen/2019010
Published online 10 May 2019
  1. Brivanlou AH, Darnell JE (2002), Signal transduction and the control of gene expression. Science 295, 5556, 813–818. https://doi.org/10.1126/science.1066355. [Google Scholar]
  2. Iwai K (2012), Diverse ubiquitin signaling in NF-κB activation. Trend Cell Biol 22, 7, 355–364. https://doi.org/10.1016/j.tcb.2012.04.001. [CrossRef] [Google Scholar]
  3. Sen R, Baltimore D (1986), Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 5, 705–716. https://doi.org/10.1016/0092-8674(86)90346-6. [CrossRef] [PubMed] [Google Scholar]
  4. Baeuerle PA, Baltimore D (1988), Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-kappa B transcription factor. Cell 53, 2, 211–217. [CrossRef] [PubMed] [Google Scholar]
  5. Baeuerle PA, Baltimore D (1988), I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242, 4878, 540–546. [Google Scholar]
  6. Baltimore D (2009), Discovering NF-κB. Cold Spring Harb Perspect Biol 1, 1, a000026. https://doi.org/10.1101/cshperspect.a000026. [Google Scholar]
  7. Ghosh S, Hayden MS (2012), Celebrating 25 years of NF-κB research. Immunol Rev 246, 1, 5–13. https://doi.org/10.1111/j.1600-065X.2012.01111.x. [CrossRef] [PubMed] [Google Scholar]
  8. Gilmore TD (2006), Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25, 51, 6680–6684. [Google Scholar]
  9. Gilmore TD (1990), NF-kappa B, KBF1, dorsal, and related matters. Cell 62, 5, 841–843. [CrossRef] [PubMed] [Google Scholar]
  10. Shishodia S, Aggarwal BB (2004), Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates activation of cigarette smoke-induced nuclear factor (NF)-kappaB by suppressing activation of IkappaBalpha kinase in human non-small cell lung carcinoma: correlation with suppression of cyclin D1, COX-2, and matrix metalloproteinase-9. Cancer Res 64, 14, 5004–5012. https://doi.org/10.1158/0008-5472.CAN-04-0206 [Google Scholar]
  11. Luo JL, Kamata H, Karin M (2005), IKK/NF-kappaB signaling: balancing life and death–a new approach to cancer therapy. J Clin Invest 115, 10, 2625–2632. [CrossRef] [PubMed] [Google Scholar]
  12. Hayden MS, Gosh S (2011), NF-κB in immunobiology. Cell Res 21, 2, 223–244. https://doi.org/10.1038/cr.2011.13. [CrossRef] [PubMed] [Google Scholar]
  13. Kuwata H, Matsumoto M, Atarashi K, Morishita H, Hirotani T, Koga R, Takeda K (2006), IkappaBNS inhibits induction of a subset of Toll-like receptor-dependent genes and limits inflammation. Immunity 24, 1, 41–51. https://doi.org/10.1016/j.immuni.2005.11.004. [CrossRef] [PubMed] [Google Scholar]
  14. Papanikolaou E, Paruzynski A, Kasampalidis I, Deichmann A, Stamateris E, Schmidt M, von Kalle C, Anagnou NP (2015), Cell cycle status of CD34(+) hemopoietic stem cells determines lentiviral integration in actively transcribed and development-related genes. Mol Ther 23, 4, 683–696. https://doi.org/10.1038/mt.2014.246. [CrossRef] [PubMed] [Google Scholar]
  15. Bechill J, Muller WJ (2014), Herpesvirus entry mediator (HVEM) attenuates signals mediated by the lymphotoxin β receptor (LTβR) in human cells stimulated by the shared ligand LIGHT. Mol Immunol 62, 1, 96–103. https://doi.org/10.1016/j.molimm.2014.06.013. [Google Scholar]
  16. Qiao JT, Cui C, Qing L, Wang LS, He TY, Yan F, Liu FQ, Shen YH, Hou XG, Chen L (2018), Activation of the STING-IRF3 pathway promotes hepatocyte inflammation, apoptosis and induces metabolic disorders in nonalcoholic fatty liver disease. Metabolism 81, 13–24. https://doi.org/10.1016/j.metabol.2017.09.010. [CrossRef] [PubMed] [Google Scholar]
  17. Ni MM, Xu T, Wang YR, He YH, Zhou Q, Huang C, Meng XM, Li J (2016), Inhibition of IRF3 expression reduces TGF-β1-induced proliferation of hepatic stellate cells. J Physiol Biochem 72, 1, 9–23. https://doi.org/10.1007/s13105-015-0452-6. [Google Scholar]
  18. Pontoriero M, Fiume G, Vecchio E, de Laurentiis A, Albano F, Iaccino E, Mimmi S, Pisano A, Agosti V, Giovannone E, Altobelli A, Caiazza C, Mallardo M, Scala G, Quinto I (2019 Mar 19), Activation of NF-κB in B cell receptor signaling through Bruton’s tyrosine kinase-dependent phosphorylation of IκB-α. J Mol Med (Berl). 97, 5, 675–690. https://doi.org/10.1007/s00109-019-01777-x. [CrossRef] [PubMed] [Google Scholar]
  19. Yue C, Niu M, Shan QQ, Zhou T, Tu Y, Xie P, Hua L, Yu R, Liu X (2017), High expression of Bruton’s tyrosine kinase (BTK) is required for EGFR-induced NF-κB activation and predicts poor prognosis in human glioma. J Exp Clin Cancer Res 36, 1, 132. https://doi.org/10.1186/s13046-017-0600-7. [CrossRef] [PubMed] [Google Scholar]
  20. Li L, Tong M, Zhao YT, He Y, Zhou HY, Zhang GF, Zhang YJ (2018), Membrane translocation of Bruton kinase in multiple myeloma cells is associated with osteoclastogenic phenotype in bone metastatic lesions. Medicine (Baltimore) 97, 2, e9482. https://doi.org/10.1097/MD.0000000000009482. [CrossRef] [PubMed] [Google Scholar]
  21. Page TH, Urbaniak AM, Espirito Santo AI, Danks L, Smallie T, Williams LM, Horwood NJ (2018), Bruton’s tyrosine kinase regulates TLR7/8-induced TNF transcription via nuclear factor-κB recruitment. Biochem Biophys Res Commun 499, 2, 260–266. https://doi.org/10.1016/j.bbrc.2018.03.140. [Google Scholar]
  22. Pandey MK, Gowda K, Sung SS, Abraham T, Budak-Alpdogan T, Talamo G, Dovat S, Amin S (2017), A novel dual inhibitor of microtubule and Bruton’s tyrosine kinase inhibits survival of multiple myeloma and osteoclastogenesis. Exp Hematol 53, 31–42. https://doi.org/10.1016/j.exphem.2017.06.003. [CrossRef] [PubMed] [Google Scholar]
  23. Senol Tuncay S, Okyay P, Bardakci F (2010), Identification of NF-kappaB1 and NF-kappaBIAlpha polymorphisms using PCR-RFLP assay in a Turkish population. Biochem Genet 48, 1–2, 104–112. https://doi.org/10.1007/s10528-009-9302-y. [CrossRef] [PubMed] [Google Scholar]
  24. Wang S, Tian L, Zeng Z, Zhang M, Wu K, Chen M, Fan D, Hu P, Sung JJ, Yu J (2010), IκBα polymorphism at promoter region (rs2233408) influences the susceptibility of gastric cancer in Chinese. BMC Gastroenterol 10, 15. https://doi.org/10.1186/1471-230X-10-15. [CrossRef] [PubMed] [Google Scholar]
  25. Lim B, Ju H, Kim M, Kang C (2011), Increased genetic susceptibility to intestinal-type gastric cancer is associated with increased activity of the RUNX3 distal promoter. Cancer 117, 22, 5161–5171. https://doi.org/10.1002/cncr.26161. [CrossRef] [PubMed] [Google Scholar]
  26. Wang S, Zhang M, Zeng Z, Tian L, Wu K, Chu J, Fan D, Hu P, Sung JJ, Yu J (2011), IκBα polymorphisms were associated with increased risk of gastric cancer in a southern Chinese population: a case-control study. Life Sci 88, 17–18, 792–797. https://doi.org/10.1016/j.lfs.2011.02.016. [CrossRef] [PubMed] [Google Scholar]
  27. Lu R, Gao X, Chen Y, Ni J, Yu Y, Li S, Guo L (2012), Association of an NFKB1 intron SNP (rs4648068) with gastric cancer patients in the Han Chinese population. BMC Gastroenterol 12, 87. https://doi.org/10.1186/1471-230X-12-87. [CrossRef] [PubMed] [Google Scholar]
  28. Lo SS, Chen JH, Wu CW, Lui WY (2009), Functional polymorphism of NFKB1 promoter may correlate to the susceptibility of gastric cancer in aged patients. Surgery 145, 3, 280–285. https://doi.org/10.1016/j.surg.2008.11.001. [CrossRef] [PubMed] [Google Scholar]
  29. Levinger L, Varshavsky A (1982), Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the Drosophila genome. Cell 28, 2, 375–385. [CrossRef] [PubMed] [Google Scholar]
  30. Hochstrasser M (1998), There’s the rub: a novel ubiquitin-like modification linked to cell cycle regulation. Genes Dev 12, 7, 901–907. [CrossRef] [PubMed] [Google Scholar]
  31. Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A (1989), A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 4898, 1576–1583. [Google Scholar]
  32. Pickart CM (2001), Mechanisms underlying ubiquitination. Annu Rev Biochem 70, 503–533. https://doi.org/10.1146/annurev.biochem.70.1.503. [CrossRef] [PubMed] [Google Scholar]
  33. Glickman MH, Ciechanover A (2002), The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82, 2, 373–428. https://doi.org/10.1152/physrev.00027.2001. [CrossRef] [PubMed] [Google Scholar]
  34. Schnell JD, Hicke L (2003), Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J Biol Chem 278, 38, 35857–35860. [Google Scholar]
  35. Pickart CM, Eddins MJ (2004), Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695, 1–3, 55–72. https://doi.org/10.1016/j.bbamcr.2004.09.019. [CrossRef] [PubMed] [Google Scholar]
  36. Ciehanover A, Hod Y, Hershko A (1978), A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem Biophys Res Commun 81, 4, 1100–1105. [Google Scholar]
  37. Hershko A, Ciechanover A, Rose IA (1979), Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP. Proc Natl Acad Sci USA 76, 7, 3107–3110. [CrossRef] [Google Scholar]
  38. Ciechanover A, Heller H, Elias S, Haas AL, Hershko A (1980), ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc Natl Acad Sci USA 77, 3, 1365–1368. [CrossRef] [Google Scholar]
  39. Hershko A, Ciechanover A (1982), Mechanisms of intracellular protein breakdown. Annu Rev Biochem 51, 335–364. https://doi.org/10.1146/annurev.bi.51.070182.002003. [CrossRef] [PubMed] [Google Scholar]
  40. Kanarek N, London N, Schueler-Furman O, Ben-Neriah Y (2010), Ubiquitination and degradation of the inhibitors of NF-kappaB. Cold Spring Harb Perspect Biol 2, 2, a000166. https://doi.org/10.1101/cshperspect.a000166. [Google Scholar]
  41. Liao WT, Chang KL, Yu CL, Chen GS, Chang LW, Yu HS (2004), Arsenic induces human keratinocyte apoptosis by the FAS/FAS ligand pathway, which correlates with alterations in nuclear factor-kappa B and activator protein-1 activity. J Invest Dermatol 122, 1, 125–129. [CrossRef] [PubMed] [Google Scholar]
  42. Poligone B, Hayden MS, Chen L, Pentland AP, Jimi E, Ghosh S (2013), A role for NF-κB activity in skin hyperplasia and the development of keratoacanthomata in mice. PLoS One 8, 8, e71887. https://doi.org/10.1371/journal.pone.0071887. [CrossRef] [PubMed] [Google Scholar]
  43. Banerjee S, Bueso-Ramos C, Aggarwal BB (2002), Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res 62, 17, 4945–4954. [Google Scholar]
  44. Ni WF, Tsai CH, Yang SF, Chang YC (2007), Elevated expression of NF-kappaB in oral submucous fibrosis–evidence for NF-kappaB induction by safrole in human buccal mucosal fibroblasts. Oral Oncol 43, 6, 557–562. [CrossRef] [PubMed] [Google Scholar]
  45. Kamperos G, Nikitakis N, Sfakianou A, Avgoustidis D, Sklavounou-Andrikopoulou A (2016), Expression of NF-κB and IL-6 in oral precancerous and cancerous lesions: an immunohistochemical study. Med Oral Patol Oral Cir Bucal 21, 1, e6–e13. [Google Scholar]
  46. Huo X, Zhang X, Yu C, Cheng E, Zhang Q, Dunbar KB, Pham TH, Lynch JP, Wang DH, Bresalier RS, Spechler SJ, Souza RF (2018), Aspirin prevents NF-κB activation and CDX2 expression stimulated by acid and bile salts in oesophageal squamous cells of patients with Barrett’s oesophagus. Gut 67, 4, 606–615. https://doi.org/10.1136/gutjnl-2016-313584. [PubMed] [Google Scholar]
  47. Greenspan EJ, Madigan JP, Boardman LA, Rosenberg DW (2011), Ibuprofen inhibits activation of nuclear {beta}-catenin in human colon adenomas and induces the phosphorylation of GSK-3{beta}. Cancer Prev Res (Phila) 4, 1, 161–171. https://doi.org/10.1158/1940-6207.CAPR-10-0021. [CrossRef] [PubMed] [Google Scholar]
  48. Hasel C, Bhanot UK, Heydrich R, Sträter J, Möller P (2005), Parenchymal regression in chronic pancreatitis spares islets reprogrammed for the expression of NFkappaB and IAPs. Lab Invest 85, 10, 1263–1275. https://doi.org/10.1038/labinvest.3700323. [Google Scholar]
  49. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M (2004), IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 3, 285–296. https://doi.org/10.1016/j.cell.2004.07.013. [CrossRef] [PubMed] [Google Scholar]
  50. Karban AS, Okazaki T, Panhuysen CI, Gallegos T, Potter JJ, Bailey-Wilson JE, Silverberg MS, Duerr RH, Cho JH, Gregersen PK, Wu Y, Achkar JP, Dassopoulos T, Mezey E, Bayless TM, Nouvet FJ, Brant SR (2004), Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet 13, 1, 35–45. https://doi.org/10.1093/hmg/ddh008. [CrossRef] [PubMed] [Google Scholar]
  51. Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006), Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8, 12, 1369–1375. https://doi.org/10.1038/ncb1507. [CrossRef] [PubMed] [Google Scholar]
  52. Hardwick JC, van den Brink GR, Offerhaus GJ, van Deventer SJ, Peppelenbosch MP (2001), NF-kappaB, p38 MAPK and JNK are highly expressed and active in the stroma of human colonic adenomatous polyps. Oncogene 20, 7, 819–827. https://doi.org/10.1038/sj.onc.1204162. [Google Scholar]
  53. Dejardin E, Deregowski V, Chapelier M, Jacobs N, Gielen J, Merville MP, Bours V (1999), Regulation of NF-kappaB activity by I kappaB-related proteins in adenocarcinoma cells. Oncogene 18, 16, 2567–2577. https://doi.org/10.1038/sj.onc.1202599. [Google Scholar]
  54. Sovak MA, Bellas RE, Kim DW, Zanieski GJ, Rogers AE, Traish AM, Sonenshein GE (1997), Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. J Clin Invest 100, 12, 2952–2960. https://doi.org/10.1172/JCI119848. [CrossRef] [PubMed] [Google Scholar]
  55. Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ Jr, Sledge GW Jr (1997), Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 17, 7, 3629–3639. [Google Scholar]
  56. Bhat-Nakshatri P, Newton TR, Goulet R Jr, Nakshatri H (1998), NF-kappaB activation and interleukin 6 production in fibroblasts by estrogen receptor-negative breast cancer cell-derived interleukin 1alpha. Proc Natl Acad Sci USA 95, 12, 6971–6976. [CrossRef] [Google Scholar]
  57. Biswas DK, Dai SC, Cruz A, Weiser B, Graner E, Pardee AB (2001), The nuclear factor kappa B (NF-kappa B): a potential therapeutic target for estrogen receptor negative breast cancers. Proc Natl Acad Sci USA 98, 18, 10386–10391. https://doi.org/10.1073/pnas.151257998. [CrossRef] [Google Scholar]
  58. Bachmeier B, Nerlich AG, Iancu CM, Cilli M, Schleicher E, Vené R, Dell’Eva R, Jochum M, Albini A, Pfeffer U (2007), The chemopreventive polyphenol Curcumin prevents hematogenous breast cancer metastases in immunodeficient mice. Cell Physiol Biochem 19, 1–4, 137–152. https://doi.org/10.1159/000099202. [CrossRef] [PubMed] [Google Scholar]
  59. Kim Y, Kang H, Jang SW, Ko J (2011), Celastrol inhibits breast cancer cell invasion via suppression of NF-ĸB-mediated matrix metalloproteinase-9 expression. Cell Physiol Biochem 28, 2, 175–184. https://doi.org/10.1159/000331729. [CrossRef] [PubMed] [Google Scholar]
  60. Rengarajan T, Nandakumar N, Rajendran P, Ganesh MK, Balasubramanian MP, Nishigaki I (2015), D-pinitol mitigates tumor growth by modulating interleukins and hormones and induces apoptosis in rat breast carcinogenesis through inhibition of NF-κB. J Physiol Biochem 71, 2, 191–204. https://doi.org/10.1007/s13105-015-0397-9. [Google Scholar]
  61. Bours V, Dejardin E, Goujon-Letawe F, Merville MP, Castronovo V (1994), The NF-kappa B transcription factor and cancer: high expression of NF-kappa B- and I kappa B-related proteins in tumor cell lines. Biochem Pharmacol 47, 1, 145–149. [CrossRef] [PubMed] [Google Scholar]
  62. Hagemann T, Wilson J, Kulbe H, Li NF, Leinster DA, Charles K, Klemm F, Pukrop T, Binder C, Balkwill FR (2005), Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK. J Immunol 175, 2, 1197–1205. [CrossRef] [PubMed] [Google Scholar]
  63. Guo Y, Liao Y, Jia C, Ren J, Wang J, Li T (2013), MicroRNA-182 promotes tumor cell growth by targeting transcription elongation factor A-like 7 in endometrial carcinoma. Cell Physiol Biochem 32, 3, 581–590. https://doi.org/10.1159/000354462. [CrossRef] [PubMed] [Google Scholar]
  64. Chen CD, Sawyers CL (2002), NF-kappa B activates prostate-specific antigen expression and is upregulated in androgen-independent prostate cancer. Mol Cell Biol 22, 8, 2862–2870. [Google Scholar]
  65. Papadopoulou N, Charalampopoulos I, Anagnostopoulou V, Konstantinidis G, Föller M, Gravanis A, Alevizopoulos K, Lang F, Stournaras C (2008), Membrane androgen receptor activation triggers down-regulation of PI-3K/Akt/NF-kappaB activity and induces apoptotic responses via Bad, FasL and caspase-3 in DU145 prostate cancer cells. Mol Cancer 7, 88. https://doi.org/10.1186/1476-4598-7-88. [Google Scholar]
  66. Fu W, Yao J, Huang Y, Li Q, Li W, Chen Z, He F, Zhou Z, Yan J (2014), LXR agonist regulates the carcinogenesis of PCa via the SOCS3 pathway. Cell Physiol Biochem 33, 1, 195–204. https://doi.org/10.1159/000356662. [CrossRef] [PubMed] [Google Scholar]
  67. Visconti R, Cerutti J, Battista S, Fedele M, Trapasso F, Zeki K, Miano MP, de Nigris F, Casalino L, Curcio F, Santoro M, Fusco A (1997), Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NFkappaB p65 protein expression. Oncogene 15, 16, 1987–1994. https://doi.org/10.1038/sj.onc.1201373. [Google Scholar]
  68. Ma Y, Wang Q, Liu F, Ma X, Wu L, Guo F, Zhao S, Huang F, Qin G (2018), KLF5 promotes the tumorigenesis and metastatic potential of thyroid cancer cells through the NF-κB signaling pathway. Oncol Rep 40, 5, 2608–2618. https://doi.org/10.3892/or.2018.6687. [Google Scholar]
  69. Yan C, Su H, Song X, Cao H, Kong L, Cui W (2018), Smad ubiquitination regulatory factor 1 (Smurf1) promotes thyroid cancer cell proliferation and migration via ubiquitin-dependent degradation of kisspeptin-1. Cell Physiol Biochem 49, 5, 2047–2059. https://doi.org/10.1159/000493715. [CrossRef] [PubMed] [Google Scholar]
  70. Zhang Z, Dong T, Fu Y, Zhou W, Tian X, Chen G, Liu S (2018 Sep 1), MMP-11 promotes papillary thyroid cell proliferation and invasion via the NF-κB pathway. J Cell Biochem 120, 2, 1860–1868. https://doi.org/10.1002/jcb.27500. [Google Scholar]
  71. Flodström M, Welsh N, Eizirik DL (1996), Cytokines activate the nuclear factor kappa B (NF-kappa B) and induce nitric oxide production in human pancreatic islets. FEBS Lett 385, 1–2, 4–6. [CrossRef] [PubMed] [Google Scholar]
  72. Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ (1999), The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 5, 1, 119–127. [PubMed] [Google Scholar]
  73. Wang W, Abbruzzese JL, Evans DB, Chiao PJ (1999), Overexpression of urokinase-type plasminogen activator in pancreatic adenocarcinoma is regulated by constitutively activated RelA. Oncogene 18, 32, 4554–4563. https://doi.org/10.1038/sj.onc.1202833. [Google Scholar]
  74. Takaya H, Andoh A, Shimada M, Hata K, Fujiyama Y, Bamba T (2000), The expression of chemokine genes correlates with nuclear factor-kappaB activation in human pancreatic cancer cell lines. Pancreas 21, 1, 32–40. [CrossRef] [PubMed] [Google Scholar]
  75. van Hogerlinden M, Rozell BL, Ahrlund-Richter L, Toftgard R (1999), Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-kappaB signaling. Cancer Res 59, 3299–3303. [Google Scholar]
  76. Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ, Marinkovich MP, Tao S, Lin Q, Kubo Y, Khavari PA (2003), NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421, 6923, 639–643. [CrossRef] [PubMed] [Google Scholar]
  77. Huang C, Huang Y, Li J, Hu W, Aziz R, Tang MS, Sun N, Cassady J, Stoner GD (2002), Inhibition of benzo(a)pyrene diol-epoxide-induced transactivation of activated protein 1 and nuclear factor kappaB by black raspberry extracts. Cancer Res 62, 23, 6857–6863. PMID: 12460899. [Google Scholar]
  78. Jenkins GJ, Harries K, Doak SH, Wilmes A, Griffiths AP, Baxter JN, Parry JM (2004), The bile acid deoxycholic acid (DCA) at neutral pH activates NF-kappaB and induces IL-8 expression in oesophageal cells in vitro. Carcinogenesis 25, 3, 317–323. https://doi.org/10.1093/carcin/bgh032. [CrossRef] [PubMed] [Google Scholar]
  79. Li X, Chen D, Li M, Gao X, Shi G, Zhao H (2018), Plantamajoside inhibits lipopolysaccharide-induced epithelial-mesenchymal transition through suppressing the NF-κB/IL-6 signaling in esophageal squamous cell carcinoma cells. Biomed Pharmacother 102, 1045–1051. https://doi.org/10.1016/j.biopha.2018.03.171. [CrossRef] [PubMed] [Google Scholar]
  80. Zhou Y, Xia L, Liu Q, Wang H, Lin J, Oyang L, Chen X, Luo X, Tan S, Tian Y, Su M, Wang Y, Chen P, Wu Y, Wang H, Liao Q (2018), Induction of pro-inflammatory response via activated macrophage-mediated NF-κB and STAT3 pathways in gastric cancer cells. Cell Physiol Biochem 47, 4, 1399–1410. https://doi.org/10.1159/000490829. [CrossRef] [PubMed] [Google Scholar]
  81. Lind DS, Hochwald SN, Malaty J, Rekkas S, Hebig P, Mishra G, Moldawer LL, Copeland EM 3rd, Mackay S (2001), Nuclear factor-kappa B is upregulated in colorectal cancer. Surgery 130, 2, 363–369. [CrossRef] [PubMed] [Google Scholar]
  82. Ahn DH, Crawley SC, Hokari R, Kato S, Yang SC, Li JD, Kim YS (2005), TNF-alpha activates MUC2 transcription via NF-kappaB but inhibits via JNK activation. Cell Physiol Biochem 15, 1–4, 29–40. https://doi.org/10.1159/000083636. [CrossRef] [PubMed] [Google Scholar]
  83. Clemo NK, Collard TJ, Southern SL, Edwards KD, Moorghen M, Packham G, Hague A, Paraskeva C, Williams AC (2008), BAG-1 is up-regulated in colorectal tumour progression and promotes colorectal tumour cell survival through increased NF-kappaB activity. Carcinogenesis 29, 4, 849–857. https://doi.org/10.1093/carcin/bgn004. [CrossRef] [PubMed] [Google Scholar]
  84. Tai DI, Tsai SL, Chang YH, Huang SN, Chen TC, Chang KS, Liaw YF (2000), Constitutive activation of nuclear factor kappaB in hepatocellular carcinoma. Cancer 89, 11, 2274–2281. [CrossRef] [PubMed] [Google Scholar]
  85. Tietze MK, Wuestefeld T, Paul Y, Zender L, Trautwein C, Manns MP, Kubicka S (2000), IkappaBalpha gene therapy in tumor necrosis factor-alpha- and chemotherapy-mediated apoptosis of hepatocellular carcinomas. Cancer Gene Ther 7, 10, 1315–1323. [CrossRef] [PubMed] [Google Scholar]
  86. Glauert HP, Eyigor A, Tharappel JC, Cooper S, Lee EY, Spear BT (2006), Inhibition of hepatocarcinogenesis by the deletion of the p50 subunit of NF-kappaB in mice administered the peroxisome proliferator Wy-14,643. Toxicol Sci 90, 2, 331–336. https://doi.org/10.1093/toxsci/kfj116. [CrossRef] [PubMed] [Google Scholar]
  87. Li X, Liu J, Park JK, Hamilton TA, Rayman P, Klein E, Edinger M, Tubbs R, Bukowski R, Finke J (1994), T cells from renal cell carcinoma patients exhibit an abnormal pattern of kappa B-specific DNA-binding activity: a preliminary report. Cancer Res 54, 20, 5424–5429. [Google Scholar]
  88. Oya M, Ohtsubo M, Takayanagi A, Tachibana M, Shimizu N, Murai M (2001), Constitutive activation of nuclear factor-kappaB prevents TRAIL-induced apoptosis in renal cancer cells. Oncogene 20, 29, 3888–3896. https://doi.org/10.1038/sj.onc.1204525. [Google Scholar]
  89. Oya M, Takayanagi A, Horiguchi A, Mizuno R, Ohtsubo M, Marumo K, Shimizu N, Murai M (2003), Increased nuclear factor-kappa B activation is related to the tumor development of renal cell carcinoma. Carcinogenesis 24, 3, 377–384. [CrossRef] [PubMed] [Google Scholar]
  90. Sumitomo M, Tachibana M, Ozu C, Asakura H, Murai M, Hayakawa M, Nakamura H, Takayanagi A, Shimizu N (1999), Induction of apoptosis of cytokine-producing bladder cancer cells by adenovirus-mediated IkappaBalpha over expression. Hum Gene Ther 10, 1, 37–47. https://doi.org/10.1089/10430349950019174. [Google Scholar]
  91. Naumovski L, Utz PJ, Bergstrom SK, Morgan R, Molina A, Toole JJ, Glader BE, McFall P, Weiss LM, Warnke R (1989), SUP-HD1: a new Hodgkin’s disease-derived cell line with lymphoid features produces interferon-gamma. Blood 74, 8, 2733–2742. [Google Scholar]
  92. Bargou RC, Leng C, Krappmann D, Emmerich F, Mapara MY, Bommert K, Royer HD, Scheidereit C, Dörken B (1996), High-level nuclear NF-kappa B and Oct-2 is a common feature of cultured Hodgkin/Reed-Sternberg cells. Blood 87, 10, 4340–4347. [Google Scholar]
  93. Boland MP, Foster SJ, O’Neill LA (1997), Daunorubicin activates NFkappaB and induces kappaB-dependent gene expression in HL-60 promyelocytic and Jurkat T lymphoma cells. J Biol Chem 272, 20, 12952–12960. [Google Scholar]
  94. Sánchez-Beato M, Sánchez E, García JF, Pérez-Rosado A, Montoya MC, Fraga M, Artiga MJ, Navarrete M, Abraira V, Morente M, Esteller M, Koseki H, Vidal M, Piris MA (2004), Abnormal PcG protein expression in Hodgkin’s lymphoma. Relation with E2F6 and NFkappaB transcription factors. J Pathol 204, 5, 528–537. https://doi.org/10.1002/path.1661. [Google Scholar]
  95. Keller SA, Hernandez-Hopkins D, Vider J, Ponomarev V, Hyjek E, Schattner EJ, Cesarman E (2006), NF-kappaB is essential for the progression of KSHV- and EBV-infected lymphomas in vivo. Blood 107, 8, 3295–3302. https://doi.org/10.1182/blood-2005-07-2730. [Google Scholar]
  96. Kelley DE, Pollok BA, Atchison ML, Perry RP (1988), The coupling between enhancer activity and hypomethylation of kappa immunoglobulin genes is developmentally regulated. Mol Cell Biol 8, 2, 930–937. [Google Scholar]
  97. Leung K, Nabel GJ (1988), HTLV-1 transactivator induces interleukin-2 receptor expression through an NF-kappa B-like factor. Nature 333, 6175, 776–778. [CrossRef] [PubMed] [Google Scholar]
  98. Duyao MP, Kessler DJ, Spicer DB, Bartholomew C, Cleveland JL, Siekevitz M, Sonenshein GE (1992), Transactivation of the c-myc promoter by human T cell leukemia virus type 1 tax is mediated by NF kappa B. J Biol Chem 267, 23, 16288–16291. [Google Scholar]
  99. Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann TA, Anderson KC (1996), Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 87, 3, 1104–1112. PMID: 8562936. [Google Scholar]
  100. Costes V, Portier M, Lu ZY, Rossi JF, Bataille R, Klein B (1998), Interleukin-1 in multiple myeloma: producer cells and their role in the control of IL-6 production. Br J Haematol 103, 4, 1152–1160. [CrossRef] [PubMed] [Google Scholar]
  101. Feinman R, Siegel DS, Berenson J (2004), Regulation of NF-kB in multiple myeloma: therapeutic implications. Clin Adv Hematol Oncol 2, 3, 162–166. [Google Scholar]
  102. Templin J, Atanackovic D, Hasche D, Radhakrishnan SV, Luetkens T (2017), Oscillating expression of interleukin-16 in multiple myeloma is associated with proliferation, clonogenic growth, and PI3K/NFKB/MAPK activation. Oncotarget 8, 30, 49253–49263. https://doi.org/10.18632/oncotarget.17534. [CrossRef] [PubMed] [Google Scholar]
  103. Xie TX, Aldape KD, Gong W, Kanzawa T, Suki D, Kondo S, Lang F, Ali-Osman F, Sawaya R, Huang S (2008), Aberrant NF-kappaB activity is critical in focal necrosis formation of human glioblastoma by regulation of the expression of tissue factor. Int J Oncol 33, 1, 5–15. [Google Scholar]
  104. Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD, Conroy S, Long L, Lelic N, Wang S, Gumin J, Raj D, Kodama Y, Raghunathan A, Olar A, Joshi K, Pelloski CE, Heimberger A, Kim SH, Cahill DP, Rao G, Den Dunnen WFA, Boddeke HWGM, Phillips HS, Nakano I, Lang FF, Colman H, Sulman EP, Aldape K (2013), Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell 24, 3, 331–346. https://doi.org/10.1016/j.ccr.2013.08.001. [CrossRef] [PubMed] [Google Scholar]
  105. Jiang C, Zhu Y, Zhou Z, Gumin J, Bengtsson L, Wu W, Songyang Z, Lang FF, Lin X (2017), TMEM43/LUMA is a key signaling component mediating EGFR-induced NF-κB activation and tumor progression. Oncogene 36, 20, 2813–2823. https://doi.org/10.1038/onc.2016.430. [Google Scholar]
  106. Harant H, de Martin R, Andrew PJ, Foglar E, Dittrich C, Lindley IJ (1996), Synergistic activation of interleukin-8 gene transcription by all-trans-retinoic acid and tumor necrosis factor-alpha involves the transcription factor NF-kappaB. J Biol Chem 271, 43, 26954–26961. [Google Scholar]
  107. Shattuck-Brandt RL, Richmond A (1997), Enhanced degradation of I-kappaB alpha contributes to endogenous activation of NF-kappaB in Hs294T melanoma cells. Cancer Res 57, 14, 3032–3039. [Google Scholar]
  108. Yang J, Richmond A (2001), Constitutive ikappaB kinase activity correlates with nuclear factor-kappaB activation in human melanoma cells. Cancer Res 61, 12, 4901–4909. [Google Scholar]
  109. Meyskens FL Jr, Buckmeier JA, McNulty SE, Tohidian NB (1999), Activation of nuclear factor-kappa B in human metastatic melanomacells and the effect of oxidative stress. Clin Cancer Res 5, 5, 1197–1202. [PubMed] [Google Scholar]
  110. Claudio E, Segade F, Wrobel K, Ramos S, Bravo R, Lazo PS (1996), Molecular mechanisms of TNFalpha cytotoxicity: activation of NF-kappaB and nuclear translocation. Exp Cell Res 224, 1, 63–71. [CrossRef] [PubMed] [Google Scholar]
  111. Javelaud D, Poupon MF, Wietzerbin J, Besançon F (2002), Inhibition of constitutive NF-kappa B activity suppresses tumorigenicity of Ewing sarcoma EW7 cells. Int J Cancer 98, 2, 193–198. [CrossRef] [PubMed] [Google Scholar]
  112. Schmid E, Stagno MJ, Yan J, Stournaras C, Lang F, Fuchs J, Seitz G (2016), Store-operated Ca(2+) entry in rhabdomyosarcoma cells. Biochem Biophys Res Commun 477, 1, 129–136. https://doi.org/10.1016/j.bbrc.2016.06.032. [Google Scholar]
  113. Burkitt MD, Hanedi AF, Duckworth CA, Williams JM, Tang JM, O’Reilly LA, Putoczki TL, Gerondakis S, Dimaline R, Caamano JH, Pritchard DM (2015), NF-κB1, NF-κB2 and c-Rel differentially regulate susceptibility to colitis-associated adenoma development in C57BL/6 mice. J Pathol 236, 3, 326–336. https://doi.org/10.1002/path.4527. [Google Scholar]
  114. Eckmann L, Nebelsiek T, Fingerle AA, Dann SM, Mages J, Lang R, Robine S, Kagnoff MF, Schmid RM, Karin M, Arkan MC, Greten FR (2008), Opposing functions of IKKbeta during acute and chronic intestinal inflammation. Proc Natl Acad Sci USA 105, 39, 15058–15063. https://doi.org/10.1073/pnas.0808216105. [CrossRef] [Google Scholar]
  115. Kitajima I, Shinohara T, Bilakovics J, Brown DA, Xu X, Nerenberg M (1992), Ablation of transplanted HTLV-I Tax-transformed tumors in mice by antisense inhibition of NF-kappa B. Science 258, 1792. [Google Scholar]
  116. Mabuchi S, Ohmichi M, Nishio Y, Hayasaka T, Kimura A, Ohta T, Saito M, Kawagoe J, Takahashi K, Yada-Hashimoto N, Sakata M, Motoyama T, Kurachi H, Tasaka K, Murata Y (2004), Inhibition of NFkappaB increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models. J Biol Chem 279, 22, 23477–23485. https://doi.org/10.1074/jbc.M313709200. [Google Scholar]
  117. Natarajan V, Komarov AP, Ippolito T, Bonneau K, Chenchik AA, Gudkov AV (2014), Peptides genetically selected for NF-κB activation cooperate with oncogene Ras and model carcinogenic role of inflammation. Proc Natl Acad Sci USA 111, 4, E474–E483. https://doi.org/10.1073/pnas.1311945111. [CrossRef] [Google Scholar]
  118. Quinlan MP, Quatela SE, Philips MR, Settleman J (2008), Activated Kras, but not Hras or Nras, may initiate tumors of endodermal origin via stem cell expansion. Mol Cell Biol 28, 2659–2674. https://doi.org/10.1128/MCB.01661-07. [Google Scholar]
  119. Buchanan FG, McReynolds M, Couvillon A, Kam Y, Holla VR, Dubois RN, Exton JH (2005), Requirement of phospholipase D1 activity in H-RasV12-induced transformation. Proc Natl Acad Sci USA 102, 5, 1638–1642. [CrossRef] [Google Scholar]
  120. Wu CS, Chen MF, Lee IL, Tung SY (2007), Predictive role of nuclear factor-kappaB activity in gastric cancer: a promising adjuvant approach with caffeic acid phenethyl ester. J Clin Gastroenterol 41, 10, 894–900. https://doi.org/10.1097/MCG.0b013e31804c707c. [Google Scholar]
  121. Kwon HJ, Won YS, Nam KT, Yoon YD, Jee H, Yoon WK, Nam KH, Kang JS, Han SU, Choi IP, Kim DY, Kim HC (2012), Vitamin D3 upregulated protein 1 deficiency promotes N-methyl-N-nitrosourea and Helicobacter pylori-induced gastric carcinogenesis in mice. Gut 61, 1, 53–63. https://doi.org/10.1136/gutjnl-2011-300361. [CrossRef] [PubMed] [Google Scholar]
  122. Zerbini LF, Tamura RE, Correa RG, Czibere A, Cordeiro J, Bhasin M, Simabuco FM, Wang Y, Gu X, Li L, Sarkar D, Zhou JR, Fisher PB, Libermann TA (2011), Combinatorial effect of non-steroidal anti-inflammatory drugs and NF-κB inhibitors in ovarian cancer therapy. PLoS One 6, 9, e24285. https://doi.org/10.1371/journal.pone.0024285. [CrossRef] [PubMed] [Google Scholar]
  123. Brücher BLDM, Jamall IS (2014), Epistemology of the origin of cancer: a new paradigm. BMC Cancer 14, 1–15. https://doi.org/10.1186/1471-2407-14-331. [CrossRef] [PubMed] [Google Scholar]
  124. Brücher BLDM, Jamall IS (2014), Cell-Cell communication in tumor microenvironment, carcinogenesis and anticancer treatment. Cell Physiol Biochem 34, 2, 213–243. https://doi.org/10.1159/000362978. [CrossRef] [PubMed] [Google Scholar]
  125. Hammarskjöld ML, Simurda MC (1992), Epstein-Barr virus latent membrane protein transactivates the human immunodeficiency virus type 1 long terminal repeat through induction of NF-kappa B activity. J Virol 66, 11, 6496–6501. [Google Scholar]
  126. Mahé Y, Mukaida N, Kuno K, Akiyama M, Ikeda N, Matsushima K, Murakami S (1991), Hepatitis B virus X protein transactivates human interleukin-8 gene through acting on nuclear factor kB and CCAAT/enhancer-binding protein-like cis-elements. J Biol Chem 266, 21, 13759–13763. [Google Scholar]
  127. Zhu N, Khoshnan A, Schneider R, Matsumoto M, Dennert G, Ware C, Lai MM (1998), Hepatitis C virus core protein binds to the cytoplasmic domain of tumor necrosis factor (TNF) receptor 1 and enhances TNF-induced apoptosis. J Virol 72, 5, 3691–3697. [Google Scholar]
  128. Twu JS, Chu K, Robinson WS (1989), Hepatitis B virus X gene activates kappa B-like enhancer sequences in the long terminal repeat of human immunodeficiency virus 1. Proc Natl Acad Sci USA 86, 13, 5168–5172. [CrossRef] [Google Scholar]
  129. Su F, Schneider RJ (1996), Hepatitis B virus HBx protein activates transcription factor NF-kappaB by acting on multiple cytoplasmic inhibitors of rel-related proteins. J Virol 70, 7, 4558–4566. [Google Scholar]
  130. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, et al. (2004), NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466. [CrossRef] [PubMed] [Google Scholar]
  131. Maeda S, Kamata H, Luo JL, Leffert H, Karin M (2005), IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977–990. [CrossRef] [PubMed] [Google Scholar]
  132. Haybaeck J, Zeller N, Wolf MJ, Weber A, Wagner U, Kurrer MO, et al. (2009), A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell 16, 295–308. [CrossRef] [PubMed] [Google Scholar]
  133. Tseng TC, Liu CJ, Yang HC, Su TH, Wang CC, Chen CL, et al. (2013), Serum hepatitis B surface antigen levels help predict disease progression in patients with low hepatitis B virus loads. Hepatology 57, 441–450. [CrossRef] [PubMed] [Google Scholar]
  134. Kawanaka M, Nishino K, Nakamura J, Oka T, Urata N, Goto D, et al. (2014), Quantitative levels of hepatitis B virus DNA and surface antigen and the risk of hepatocellular carcinoma in patients with hepatitis B receiving long-term nucleos(t)ide analogue therapy. Liver Cancer 3, 41–52. [CrossRef] [PubMed] [Google Scholar]
  135. Sunami Y, Ringelhan M, Kokai E, Lu M, O’Connor T, Lorentzen A, Weber A, Rodewald AK, Müllhaupt B, Terracciano L, Gul S, Wissel S, Leithäuser F, Krappmann D, Riedl P, Hartmann D, Schirmbeck R, Strnad P, Hüser N, Kleeff J, Friess H, Schmid RM, Geisler F, Wirth T, Heikenwalder M (2016), Canonical NF-κB signaling in hepatocytes acts as a tumor-suppressor in hepatitis B virus surface antigen-driven hepatocellular carcinoma by controlling the unfolded protein response. Hepatology 63, 5, 1592–1607. https://doi.org/10.1002/hep.28435. [CrossRef] [PubMed] [Google Scholar]
  136. Liu J, Yang HI, Lee MH, Lu SN, Jen CL, Batrla-Utermann R, et al. (2014), Spontaneous seroclearance of hepatitis B seromarkers and subsequent risk of hepatocellular carcinoma. Gut 63, 1648–1657. [CrossRef] [PubMed] [Google Scholar]
  137. Waris G, Huh KW, Siddiqui A (2001 Nov), Mitochondrially associated hepatitis B virus X protein constitutively activates transcription factors STAT-3 and NF-kappa B via oxidative stress. Mol Cell Biol 21, 22, 7721–7730. [Google Scholar]
  138. Pollicino T, Bellinghieri L, Restuccia A, Raffa G, Musolino C, Alibrandi A, Teti D, Raimondo G (2013), Hepatitis B virus (HBV) induces the expression of interleukin-8 that in turn reduces HBV sensitivity to interferon-alpha. Virology 444, 1–2, 317–328. https://doi.org/10.1016/j.virol.2013.06.028. [CrossRef] [PubMed] [Google Scholar]
  139. zur Hausen H (2002), Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2, 342–350. https://doi.org/10.1038/nrc798. [Google Scholar]
  140. Spitkovsky D, Hehner SP, Hofmann TG, Möller A, Schmitz ML (2002), The human papillomavirus oncoprotein E7 attenuates NF-kappa B activation by targeting the Ikappa B kinase complex. J Biol Chem 277, 28, 25576–25582. [Google Scholar]
  141. Mishra A, Bharti AC, Varghese P, Saluja D, Das BC (2006), Differential expression and activation of NF-kappaB family proteins during oral carcinogenesis: role of high risk human papillomavirus infection. Int J Cancer 119, 12, 2840–2850. https://doi.org/10.1002/ijc.22262. [CrossRef] [PubMed] [Google Scholar]
  142. Nees M, Geoghegan JM, Hyman T, Frank S, Miller L, Woodworth CD (2001), Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes. J Virol 75, 9, 4283–4296. https://doi.org/10.1128/JVI.75.9.4283-4296.2001. [Google Scholar]
  143. Thompson DA, Zacny V, Belinsky GS, Classon M, Jones DL, Schlegel R, Münger K (2001), The HPV E7 oncoprotein inhibits tumor necrosis factor alpha-mediated apoptosis in normal human fibroblasts. Oncogene 20, 28, 3629–3640. https://doi.org/10.1038/sj.onc.1204483. [Google Scholar]
  144. Verma G, Vishnoi K, Tyagi A, Jadli M, Singh T, Goel A, Sharma A, Agarwal K, Prasad SC, Pandey D, Sharma S, Mehrotra R, Singh SM, Bharti AC (2017), Characterization of key transcription factors as molecular signatures of HPV-positive and HPV-negative oral cancers. Cancer Med 6, 3, 591–604. https://doi.org/10.1002/cam4.983. [Google Scholar]
  145. Fujimoto H, D’Alessandro-Gabazza CN, Palanki MS, Erdman PE, Takagi T, Gabazza EC, Bruno NE, Yano Y, Hayashi T, Tamaki S, Sumida Y, Adachi Y, Suzuki K, Taguchi O (2007), Inhibition of nuclear factor-kappaB in T cells suppresses lung fibrosis. Am J Res Crit Care Med 176, 12, 1251–1260. https://doi.org/10.1164/rccm.200609-1288OC. [CrossRef] [Google Scholar]
  146. Inazawa J, Itoh N, Abe T, Nagata S (1992), Assignment of the human Fas antigen gene (Fas) to 10q24.1. Genomics 14, 3, 821–822. [CrossRef] [PubMed] [Google Scholar]
  147. Liu F, Bardhan K, Yang D, Thangaraju M, Ganapathy V, Waller JL, Liles GB, Lee JR, Liu K (2012), NF-κB directly regulates Fas transcription to modulate Fas-mediated apoptosis and tumor suppression. J Biol Chem 287, 30, 25530–25540. https://doi.org/10.1074/jbc.M112.356279. [Google Scholar]
  148. Yang HJ, Wang M, Wang L, Cheng BF, Lin XY, Feng ZW (2015), NF-κB regulates caspase-4 expression and sensitizes neuroblastoma cells to Fas-induced apoptosis. PLoS One 10, 2, e0117953. https://doi.org/10.1371/journal.pone.0117953. [CrossRef] [PubMed] [Google Scholar]
  149. Walch-Rückheim B, Mavrova R, Henning M, Vicinus B, Kim YJ, Bohle RM, Juhasz-Böss I, Solomayer EF, Smola S (2015), Stromal fibroblasts induce CCL20 through IL6/C/EBPβ to support the recruitment of Th17 cells during cervical cancer progression. Cancer Res 75, 24, 5248–5259. https://doi.org/10.1158/0008-5472.CAN-15-0732. [Google Scholar]
  150. Huang ZW, Lien GS, Lin CH, Jiang CP, Chen BC (2017), p300 and C/EBPβ-regulated IKKβ expression are involved in thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells. Pharmacol Res 121, 33–41. https://doi.org/10.1016/j.phrs.2017.04.020. [CrossRef] [PubMed] [Google Scholar]
  151. Xie F, Li X, Wei C, Liang G, Dang Y, Shan Z (2015), C/EBPβ promotes NF-κB-mediated invasion and migration of human renal carcinoma 786-O cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 31, 11, 1483–1487. [PubMed] [Google Scholar]
  152. Xia P, Zhang R, Ge G (2015), C/EBPβ mediates TNF-α-induced cancer cell migration by inducing MMP expression dependent on p38 MAPK. J Cell Biochem 116, 12, 2766–2777. https://doi.org/10.1002/jcb.25219. [CrossRef] [PubMed] [Google Scholar]
  153. Zou J, Li H, Chen X, Zeng S, Ye J, Zhou C, Liu M, Zhang L, Yu N, Gan X, Zhou H, Xian Z, Chen S, Liu P (2014), C/EBPβ knockdown protects cardiomyocytes from hypertrophy via inhibition of p65-NFκB. Mol Cell Endocrinol 390, 1–2, 18–25. https://doi.org/10.1016/j.mce.2014.03.007. [CrossRef] [PubMed] [Google Scholar]
  154. Esteves CL, Kelly V, Breton A, Taylor AI, West CC, Donadeu FX, Péault B, Seckl JR, Chapman KE (2014), Proinflammatory cytokine induction of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in human adipocytes is mediated by MEK, C/EBPβ, and NF-κB/RelA. J Clin Endocrinol Metab 99, 1, E160–E168. https://doi.org/10.1210/jc.2013-1708. [CrossRef] [PubMed] [Google Scholar]
  155. Akgül B, Pfefferle R, Marcuzzi GP, Zigrino P, Krieg T, Pfister H, Mauch C (2006), Expression of matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and MT1-MMP in skin tumors of human papillomavirus type 8 transgenic mice. Exp Dermatol 15, 1, 35–42. https://doi.org/10.1111/j.0906-6705.2005.00387.x. [CrossRef] [PubMed] [Google Scholar]
  156. Shao R, Karunagaran D, Zhou BP, Li K, Lo SS, Deng J, Chiao P, Hung MC (1997), Inhibition of nuclear factor-kappaB activity is involved in E1A-mediated sensitization of radiation-induced apoptosis. J Biol Chem 272, 52, 32739–32742. [Google Scholar]
  157. Chen X, Shen B, Xia L, Khaletzkiy A, Chu D, Wong JY, Li JJ (2002), Activation of nuclear factor kappaB in radioresistance of TP53-inactive human keratinocytes. Cancer Res 62, 4, 1213–1221. [Google Scholar]
  158. McCormick BA, Colgan SP, Delp-Archer C, Miller SI, Madara JL (1993), Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J Cell Biol 123, 4, 895–907. [CrossRef] [PubMed] [Google Scholar]
  159. Jung HC, Eckmann L, Yang SK, Panja A, Fierer J, Morzycka-Wroblewska E, Kagnoff MF (1995), A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest 95, 1, 55–65. https://doi.org/10.1172/JCI117676. [CrossRef] [PubMed] [Google Scholar]
  160. Elewaut D, DiDonato JA, Kim JM, Truong F, Eckmann L, Kagnoff MF (1999), NF-kappa B is a central regulator of the intestinal epithelial cell innate immune response induced by infection with enteroinvasive bacteria. J Immunol 163, 3, 1457–1466. [PubMed] [Google Scholar]
  161. Resta-Lenert S, Barrett KE (2002), Enteroinvasive bacteria alter barrier and transport properties of human intestinal epithelium: role of iNOS and COX-2. Gastroenterology 122, 4, 1070–1087. [CrossRef] [PubMed] [Google Scholar]
  162. Hauf N, Chakraborty T (2003), Suppression of NF-kappa B activation and proinflammatory cytokine expression by Shiga toxin-producing Escherichia coli. J Immunol 170, 4, 2074–2082. [CrossRef] [PubMed] [Google Scholar]
  163. Ruchaud-Sparagano MH, Mühlen S, Dean P, Kenny B (2011), The enteropathogenic E. coli (EPEC) Tir effector inhibits NF-κB activity by targeting TNFα receptor-associated factors. PLoS Pathog 7, 12, e1002414. https://doi.org/10.1371/journal.ppat.1002414. [CrossRef] [PubMed] [Google Scholar]
  164. Karikó K, Buckstein M, Ni H, Weissman D (2005), Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 2, 165–175. https://doi.org/10.1016/j.immuni.2005.06.008. [CrossRef] [PubMed] [Google Scholar]
  165. Karin M, Ben-Neriah Y (2000), Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Ann Rev Immunol 18, 621–663. https://doi.org/10.1146/annurev.immunol.18.1.621. [CrossRef] [Google Scholar]
  166. West AP, Koblansky AA, Ghosh S (2006), Recognition and signaling by toll-like receptors. Ann Rev Cell Dev Biol 22, 409–437. https://doi.org/10.1146/annurev.cellbio.21.122303.115827. [CrossRef] [PubMed] [Google Scholar]
  167. Maglione PJ, Simchoni N, Cunningham-Rundles C (2015), Toll-like receptor signaling in primary immune deficiencies. Ann NY Acad Sci 1356, 1–21. https://doi.org/10.1111/nyas.12763. [CrossRef] [Google Scholar]
  168. Sen R, Baltimore D (1986), Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47, 6, 921–928. [CrossRef] [PubMed] [Google Scholar]
  169. Read MA, Cordle SR, Veach RA, Carlisle CD, Hawiger J (1993), Cell-free pool of CD14 mediates activation of transcription factor NF-kappa B by lipopolysaccharide in human endothelial cells. Proc Natl Acad Sci USA 90, 21, 9887–9891. [CrossRef] [Google Scholar]
  170. Aihara M, Tsuchimoto D, Takizawa H, Azuma A, Wakebe H, Ohmoto Y, Imagawa K, Kikuchi M, Mukaida N, Matsushima K (1997), Mechanisms involved in Helicobacter pylori-induced interleukin-8 production by a gastric cancer cell line, MKN45. Infect Immun 65, 8, 3218–3224. [PubMed] [Google Scholar]
  171. Sharma SA, Tummuru MK, Blaser MJ, Kerr LD (1998), Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-kappa B in gastric epithelial cells. J Immunol 160, 5, 2401–2407. [PubMed] [Google Scholar]
  172. Isomoto H, Miyazaki M, Mizuta Y, Takeshima F, Murase K, Inoue K, Yamasaki K, Murata I, Koji T, Kohno S (2000), Expression of nuclear factor-kappaB in Helicobacter pylori-infected gastric mucosa detected with southwestern histochemistry. Scand J Gastroenterol 35, 3, 247–254. [CrossRef] [PubMed] [Google Scholar]
  173. Yang GF, Deng CS, Xiong YY, Gong LL, Wang BC, Luo J (2004), Expression of nuclear factor-kappa B and target genes in gastric precancerous lesions and adenocarcinoma: association with Helicobactor pylori cagA (+) infection. World J Gastroenterol 10, 4, 491–496. [CrossRef] [PubMed] [Google Scholar]
  174. Wroblewski LE, Noble PJ, Pagliocca A, Pritchard DM, Hart CA, Campbell F, Dodson AR, Dockray GJ, Varro A (2003), Stimulation of MMP-7 (matrilysin) by Helicobacter pylori in human gastric epithelial cells: role in epithelial cell migration. J Cell Sci 116, Pt 14, 3017–3026. https://doi.org/10.1242/jcs.00518. [Google Scholar]
  175. Suzuki M, Mimuro H, Kiga K, Fukumatsu M, Ishijima N, Morikawa H, Nagai S, Koyasu S, Gilman RH, Kersulyte D, Berg DE, Sasakawa C (2009), Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microb 5, 1, 23–34. https://doi.org/10.1016/j.chom.2008.11.010. [CrossRef] [Google Scholar]
  176. Takayama S, Takahashi H, Matsuo Y, Okada Y, Takeyama H (2010), Effect of Helicobacter bilis infection on human bile duct cancer cells. Dig Dis Sci 55, 7, 1905–1910. https://doi.org/10.1007/s10620-009-0946-6. [CrossRef] [PubMed] [Google Scholar]
  177. Segura-López FK, Avilés-Jiménez F, Güitrón-Cantú A, Valdéz-Salazar HA, León-Carballo S, Guerrero-Pérez L, Fox JG, Torres J (2015), Infection with Helicobacter bilis but not Helicobacter hepaticus was Associated with Extrahepatic Cholangiocarcinoma. Helicobacter 20, 3, 223–230. https://doi.org/10.1111/hel.12195. [CrossRef] [PubMed] [Google Scholar]
  178. Feng SH, Tsai S, Rodriguez J, Lo SC (1999), Mycoplasmal infections prevent apoptosis and induce malignant transformation of interleukin-3-dependent 32D hematopoietic cells. Mol Cell Biol 19, 12, 7995–8002. [Google Scholar]
  179. Logunov DY, Scheblyakov DV, Zubkova OV, Shmarov MM, Rakovskaya IV, Gurova KV, Tararova ND, Burdelya LG, Naroditsky BS, Ginzburg AL, Gudkov AV (2008), Mycoplasma infection suppresses p53, activates NF-kappaB and cooperates with oncogenic Ras in rodent fibroblast transformation. Oncogene 27, 33, 4521–4531. https://doi.org/10.1038/onc.2008.103. [Google Scholar]
  180. Cao S, Shen D, Wang Y, Li L, Zhou L, Wang Y (2017), Potential malignant transformation in the gastric mucosa of immunodeficient mice with persistent Mycoplasma penetrans infection. PLoS One 12, 7, e0180514. https://doi.org/10.1371/journal.pone.0180514. [CrossRef] [PubMed] [Google Scholar]
  181. Duan H, Chen L, Qu L, Yang H, Song SW, Han Y, Ye M, Chen W, He X, Shou C (2014), Mycoplasma hyorhinis infection promotes NF-κB-dependent migration of gastric cancer cells. Cancer Res 74, 20, 5782–5794. https://doi.org/10.1158/0008-5472.CAN-14-0650. [Google Scholar]
  182. Feige MH, Vieth M, Sokolova O, Täger C, Naumann M (2018), Helicobacter pylori induces direct activation of the lymphotoxin beta receptor and non-canonical nuclear factor-kappa B signaling. Biochim Biophys Acta 1865, 4, 545–550. https://doi.org/10.1016/j.bbamcr.2018.01.006. [CrossRef] [PubMed] [Google Scholar]
  183. Tsai S, Wear DJ, Shih JW, Lo SC (1995), Mycoplasmas and oncogenesis: persistent infection and multistage malignant transformation. Proc Natl Acad Sci USA 92, 22, 10197–10201. [CrossRef] [Google Scholar]
  184. White L, Cox D (1967), Chromosome changes in a rhabdomyosarcoma during recurrence and in cell culture. Br J Cancer 21, 4, 684–693. [CrossRef] [PubMed] [Google Scholar]
  185. Paton GR, Jacobs JP, Perkins FT (1965), Chromosome changes in human diploid-cell cultures infected with mycoplasma. Nature 207, 43–45. [CrossRef] [PubMed] [Google Scholar]
  186. Fogh J, Fogh H (1965), Chromosome changes in PPLO-infected FL human amnion cells. Proc Soc Exp Biol Med 119, 233–238. [CrossRef] [PubMed] [Google Scholar]
  187. Adebamowo SN, Ma B, Zella D, Famooto A, Ravel J, Adebamowo C, ACCME Research Group (2017), Mycoplasma hominis and Mycoplasma genitalium in the vaginal microbiota and persistent high-risk human papillomavirus infection. Front Public Health 5, 140. https://doi.org/10.3389/fpubh.2017.00140. [CrossRef] [PubMed] [Google Scholar]
  188. Brücher BLDM, Jamall IS (2016), Somatic mutation theory – Why it’s wrong for most cancers. Cell Physiol Biochem 38, 5, 1663–1680. https://doi.org/10.1159/000443106.. [CrossRef] [PubMed] [Google Scholar]
  189. Brücher BLDM, Jamall IS (2019), Chronic inflammation evoked by pathogenic stimulus during carcinogenesis. 4open 2, 8, 1–22. https://doi.org/10.1051/fopen/2018006. [CrossRef] [EDP Sciences] [Google Scholar]
  190. Brücher BLDM, Jamall IS (2019), Eicosanoids evolved in chronic inflammation during carcinogenesis. 4open 2, 9, 1–34. https://doi.org/10.1051/fopen/2018008 [CrossRef] [EDP Sciences] [Google Scholar]
  191. Brücher BLDM, Jamall IS (2019), Microbiome and morbid obesity increase pathogenic stimulus diversity. 4open 2, 10, 1–16. https://doi.org/10.1051/fopen/2018007. [CrossRef] [EDP Sciences] [Google Scholar]
  192. Wilson RA, Coulson PS, Dixon B (1986), Migration of the schistosomula of Schistosoma mansoni in mice vaccinated with radiation-attenuated cercariae, and normal mice: an attempt to identify the timing and site of parasite death. Parasitology 92, Pt 1, 101–116. [CrossRef] [PubMed] [Google Scholar]
  193. Trottein F, Descamps L, Nutten S, Dehouck MP, Angeli V, Capron A, Cecchelli R, Capron M (1999), Schistosoma mansoni activates host microvascular endothelial cells to acquire an anti-inflammatory phenotype. Infect Immun 67, 7, 3403–3409. [PubMed] [Google Scholar]
  194. Trottein F, Nutten S, Angeli V, Delerive P, Teissier E, Capron A, Staels B, Capron M (1999), Schistosoma mansoni schistosomula reduce E-selectin and VCAM-1 expression in TNF-alpha-stimulated lung microvascular endothelial cells by interfering with the NF-kappaB pathway. Eur J Immunol 29, 11, 3691–3701. https://doi.org/10.1002/(SICI)1521-4141(199911)29:11<691::AID-IMMU3691>3.0.CO;2-L. [CrossRef] [PubMed] [Google Scholar]
  195. Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y, Collins T (1997), CREB-binding protein/p300 are transcriptional coactivators of p65. Proc Natl Acad Sci USA 94, 7, 2927–2932. [CrossRef] [Google Scholar]
  196. Aksoy E, Zouain CS, Vanhoutte F, Fontaine J, Pavelka N, Thieblemont N, Willems F, Ricciardi-Castagnoli P, Goldman M, Capron M, Ryffel B, Trottein F (2005), Double-stranded RNAs from the helminth parasite Schistosoma activate TLR3 in dendritic cells. J Biol Chem 280, 1, 277–283. [Google Scholar]
  197. Nakashima T, Okuda K, Kojiro M, Sakamoto K, Kubo Y (1975), Primary liver cancer coincident with Schistosomiasis japonica. A study of 24 necropsies. Cancer 36, 4, 1483–1489. [CrossRef] [PubMed] [Google Scholar]
  198. Andoh H, Yasui O, Kurokawa T, Sato T (2004), Cholangiocarcinoma coincident with Schistosomiasis japonica. J Gastroenterol 39, 1, 64–68. [CrossRef] [PubMed] [Google Scholar]
  199. Abd El-Aal NF, Hamza RS, Harb O (2017), Paeoniflorin targets apoptosis and ameliorates fibrosis in murine Schistosomiasis mansoni: a novel insight. Exp Parasitol 183, 23–32. https://doi.org/10.1016/j.exppara.2017. [CrossRef] [PubMed] [Google Scholar]
  200. Wan C, Jin F, Du Y, Yang K, Yao L, Mei Z, Huang W (2017), Genistein improves schistosomiasis liver granuloma and fibrosis via dampening NF-kB signaling in mice. Parasitol Res 116, 4, 1165–1174. https://doi.org/10.1007/s00436-017-5392-3. [Google Scholar]
  201. Liu M, Wu Q, Chen P, Büchele B, Bian M, Dong S, Huang D, Ren C, Zhang Y, Hou X, Simmet T, Shen J (2014), A boswellic acid-containing extract ameliorates schistosomiasis liver granuloma and fibrosis through regulating NF-κB signaling in mice. PLoS One 9, 6, e100129. https://doi.org/10.1371/journal.pone.0100129. [CrossRef] [PubMed] [Google Scholar]
  202. Pan JX, Ding K, Wang CY (2012), Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking multiple signaling pathways of cancer stem cells. Chin J Cancer 31, 4, 178–184. https://doi.org/10.5732/cjc.011.10290. [Google Scholar]
  203. Sommer P, Gleyzal C, Raccurt M, Delbourg M, Serrar M, Joazeiro P, Peyrol S, Kagan H, Trackman PC, Grimaud JA (1993), Transient expression of lysyl oxidase by liver myofibroblasts in murine schistosomiasis. Lab Invest 69, 4, 460–470. [Google Scholar]
  204. Ouzzine M, Boyd A, Hulmes DJ (1996), Expression of active, human lysyl oxidase in Escherichia coli. FEBS Lett 399, 3, 215–219. [CrossRef] [PubMed] [Google Scholar]
  205. Saito H, Papaconstantinou J, Sato H, Goldstein S (1997), Regulation of a novel gene encoding a lysyl oxidase-related protein in cellular adhesion and senescence. J Biol Chem 272, 13, 8157–8160. [Google Scholar]
  206. Decitre M, Gleyzal C, Raccurt M, Peyrol S, Aubert-Foucher E, Csiszar K, Sommer P (1998), Lysyl oxidase-like protein localizes to sites of de novo fibrinogenesis in fibrosis and in the early stromal reaction of ductal breast carcinomas. Lab Invest 78, 2, 143–151. [Google Scholar]
  207. Salvador F, Martin A, López-Menéndez C, Moreno-Bueno G, Santos V, Vázquez-Naharro A, Santamaria PG, Morales S, Dubus PR, Muinelo-Romay L, López-López R, Tung JC, Weaver VM, Portillo F, Cano A (2017), Lysyl oxidase-like protein LOXL2 promotes lung metastasis of breast cancer. Cancer Res 77, 21, 5846–5859. https://doi.org/10.1158/0008-5472.CAN-16-3152. [Google Scholar]
  208. Milward MR, Chapple IL, Carter K, Matthews JB, Cooper PR (2013), Micronutrient modulation of NF-κB in oral keratinocytes exposed to periodontal bacteria. Innate Immun 19, 2, 140–151. https://doi.org/10.1177/1753425912454761. [CrossRef] [PubMed] [Google Scholar]
  209. Biswas S, Quante M, Leedham S, Jansen M (2018), The metaplastic mosaic of Barrett’s oesophagus. Virchows Arch 472, 1, 43–54. https://doi.org/10.1007/s00428-018-2317-1. [CrossRef] [PubMed] [Google Scholar]
  210. Sikkema M, de Jonge PJ, Steyerberg EW, Kuipers EJ (2010), Risk of esophageal adenocarcinoma and mortality in patients with Barrett’s esophagus: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 8, 3, 235–244. https://doi.org/10.1016/j.cgh.2009.10.010. [CrossRef] [PubMed] [Google Scholar]
  211. Desai TK, Krishnan K, Samala N, Singh J, Cluley J, Perla S, Howden CW (2012), The incidence of oesophageal adenocarcinoma in non-dysplastic Barrett’s oesophagus: a meta-analysis. Gut 61, 7, 970–976. https://doi.org/10.1136/gutjnl-2011-300730. [CrossRef] [PubMed] [Google Scholar]
  212. Masuda A, Fujita T, Murakami M, Yamazaki Y, Kobayashi M, Terao S, Sanuki T, Okada A, Adachi M, Shiomi H, Arisaka Y, Kutsumi H, Umegaki E, Azuma T (2018), Influence of hiatal hernia and male sex on the relationship between alcohol intake and occurrence of Barrett’s esophagus. PLoS One 13, 2, e0192951. https://doi.org/10.1371/journal.pone.0192951. [CrossRef] [PubMed] [Google Scholar]
  213. Locke GR 3rd, Talley NJ, Fett SL, Zinsmeister AR, Melton LJ 3rd (1997), Prevalence and clinical spectrum of gastroesophageal reflux: a population-based study in Olmsted County, Minnesota. Gastroenterology 112, 5, 1448–1456. [CrossRef] [PubMed] [Google Scholar]
  214. Takubo K, Aida J, Naomoto Y, Sawabe M, Arai T, Shiraishi H, Matsuura M, Ell C, May A, Pech O, Stolte M, Vieth M (2009), Cardiac rather than intestinal-type background in endoscopic resection specimens of minute Barrett adenocarcinoma. Hum Pathol 40, 1, 65–74. https://doi.org/10.1016/j.humpath.2008.06.008. [CrossRef] [PubMed] [Google Scholar]
  215. Aida J, Vieth M, Shepherd NA, Ell C, May A, Neuhaus H, Ishizaki T, Nishimura M, Fujiwara M, Arai T, Takubo K (2015), Is carcinoma in columnar-lined esophagus always located adjacent to intestinal metaplasia? a histopathologic assessmen. Am J Surg Pathol 39, 2, 188–196. https://doi.org/10.1097/PAS.0000000000000350. [CrossRef] [PubMed] [Google Scholar]
  216. Lavery DL, Martinez P, Gay LJ, Cereser B, Novelli MR, Rodriguez-Justo M, Meijer SL, Graham TA, McDonald SA, Wright NA, Jansen M (2016), Evolution of oesophageal adenocarcinoma from metaplastic columnar epithelium without goblet cells in Barrett’s oesophagus. Gut 65, 6, 907–913. https://doi.org/10.1136/gutjnl-2015-310748. [CrossRef] [PubMed] [Google Scholar]
  217. Liu W, Hahn H, Odze RD, Goyal RK (2009), Metaplastic esophageal columnar epithelium without goblet cells shows DNA content abnormalities similar to goblet cell-containing epithelium. Am J Gastroenterol 104, 4, 816–824. https://doi.org/10.1038/ajg.2009.85. [Google Scholar]
  218. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, Shen R, Taylor AM, Cherniack AD, Thorsson V, Akbani R, Bowlby R, Wong CK, Wiznerowicz M, Sanchez-Vega F, Robertson AG, Schneider BG, Lawrence MS, Noushmehr H, Malta TM, Cancer Genome Atlas Network, Stuart JM, Benz CC, Laird PW (2018), Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 2, 291–304.e6. https://doi.org/10.1016/j.cell.2018.03.022. [CrossRef] [PubMed] [Google Scholar]
  219. Ellrott K, Bailey MH, Saksena G, Covington KR, Kandoth C, Stewart C, Hess J, Ma S, Chiotti KE, McLellan M, Sofia HJ, Hutter C, Getz G, Wheeler D, Ding L; MC3 Working Group; Cancer Genome Atlas Research Network (2018), Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines. Cell Syst 6, 3, 271–281.e7. https://doi.org/10.1016/j.cels.2018.03.002. [CrossRef] [PubMed] [Google Scholar]
  220. Babar M, Ennis D, Abdel-Latif M, Byrne PJ, Ravi N, Reynolds JV (2010), Differential molecular changes in patients with asymptomatic long-segment Barrett’s esophagus treated by antireflux surgery or medical therapy. Am J Surg 199, 2, 137–143. https://doi.org/10.1016/j.amjsurg.2008.11.032. [CrossRef] [PubMed] [Google Scholar]
  221. Li WT, Luo QQ, Wang B, Chen X, Yan XJ, Qiu HY, Chen SL (2019), Bile acids induce visceral hypersensitivity via mucosal mast cell-to-nociceptor signaling that involves the farnesoid X receptor/nerve growth factor/transient receptor potential vanilloid 1 axis. FASEB J 33, 2, 2435–2450. https://doi.org/10.1096/fj.201800935RR. [CrossRef] [PubMed] [Google Scholar]
  222. Kim DH, Xiao Z, Kwon S, Sun X, Ryerson D, Tkac D, Ma P, Wu SY, Chiang CM, Zhou E, Xu HE, Palvimo JJ, Chen LF, Kemper B, Kemper JK (2015), A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity. EMBO J 34, 2, 184–199. https://doi.org/10.15252/embj.201489527. [CrossRef] [PubMed] [Google Scholar]
  223. Gai Z, Visentin M, Gui T, Zhao L, Thasler WE, Häusler S, Hartling I, Cremonesi A, Hiller C, Kullak-Ublick GA (2018), Effects of farnesoid X receptor activation on arachidonic acid metabolism, NF-kB signaling, and hepatic inflammation. Mol Pharmacol 94, 2, 802–811. https://doi.org/10.1124/mol.117.111047. [CrossRef] [PubMed] [Google Scholar]
  224. Zhang Y, Xu Y, Qi Y, Xu L, Song S, Yin L, Tao X, Zhen Y, Han X, Ma X, Liu K, Peng J (2017), Protective effects of dioscin against doxorubicin-induced nephrotoxicity via adjusting FXR-mediated oxidative stress and inflammation. Toxicology 378, 53–64. https://doi.org/10.1016/j.tox.2017.01.007. [CrossRef] [PubMed] [Google Scholar]
  225. Park JH, Kang SS, Kim JY, Tchah H (2016), Nerve growth factor attenuates apoptosis and inflammation in the diabetic cornea. Invest Ophthalmol Vis Sci 57, 15, 6767–6775. https://doi.org/10.1167/iovs.16-19747. [CrossRef] [PubMed] [Google Scholar]
  226. Hathway GJ, Fitzgerald M (2006), Time course and dose-dependence of nerve growth factor-induced secondary hyperalgesia in the mouse. J Pain 7, 1, 57–61. https://doi.org/10.1016/j.jpain.2005.08.003. [Google Scholar]
  227. Eskander MA, Ruparel S, Green DP, Chen PB, Por ED, Jeske NA, Gao X, Flores ER, Hargreaves KM (2015), Persistent nociception triggered by nerve growth factor (NGF) is mediated by TRPV1 and oxidative mechanisms. J Neurosci 35, 22, 8593–8603. https://doi.org/10.1523/JNEUROSCI.3993-14.2015. [CrossRef] [PubMed] [Google Scholar]
  228. Matsuda H, Switzer J, Coughlin MD, Bienenstock J, Denburg JA (1988), Human basophilic cell differentiation promoted by 2.5S nerve growth factor. Int Arch Allergy Appl Immunol 86, 4, 453–457. PMID: 3261719. [CrossRef] [PubMed] [Google Scholar]
  229. Oddiah D, Anand P, McMahon SB, Rattray M (1998), Rapid increase of NGF, BDNF and NT-3 mRNAs in inflamed bladder. Neuroreport 9, 7, 1455–1458. PMID: 9631447. [CrossRef] [PubMed] [Google Scholar]
  230. Gentry JJ, Casaccia-Bonnefil P, Carter BD (2000), Nerve growth factor activation of nuclear factor kappaB through its p75 receptor is an anti-apoptotic signal in RN22 schwannoma cells. J Biol Chem 275, 11, 7558–7565. PMID: 10713062. [Google Scholar]
  231. Maggirwar SB, Sarmiere PD, Dewhurst S, Freeman RS (1998), Nerve growth factor-dependent activation of NF-kappaB contributes to survival of sympathetic neurons. J Neurosci 18, 24, 10356–10365. PMID: 9852573. [CrossRef] [PubMed] [Google Scholar]
  232. Bui NT, Livolsi A, Peyron JF, Prehn JH (2001), Activation of nuclear factor kappaB and Bclx survival gene expression by nerve growth factor requires tyrosine phosphorylation of IkappaBalpha. J Cell Biol 152, 4, 753–764. PMCID: PMC2195773. [CrossRef] [PubMed] [Google Scholar]
  233. Takei Y, Laskey R (2008), Tumor necrosis factor alpha regulates responses to nerve growth factor, promoting neural cell survival but suppressing differentiation of neuroblastoma cells. Mol Biol Cell 19, 3, 855–864. https://doi.org/10.1091/mbc.e07-06-0624. [CrossRef] [PubMed] [Google Scholar]
  234. Kwon K, Park SH, Han BS, Oh SW, Lee SE, Yoo JA, Park SJ, Kim J, Kim JW, Cho JY, Lee J (2018), Negative cellular effects of urban particulate matter on human keratinocytes are mediated by P38 MAPK and NF-κB-dependent expression of TRPV 1. Int J Mol Sci 19, 9, 1–15. pii: E2660. https://doi.org/10.3390/ijms19092660. [Google Scholar]
  235. Nakanishi M, Morita Y, Hata K, Muragaki Y (2016), Acidic microenvironments induce lymphangiogenesis and IL-8 production via TRPV1 activation in human lymphatic endothelial cells. Exp Cell Res 345, 2, 180–189. https://doi.org/10.1016/j.yexcr.2016.06.006. [CrossRef] [PubMed] [Google Scholar]
  236. Debruyne PR, Witek M, Gong L, Birbe R, Chervoneva I, Jin T, Domon-Cell C, Palazzo JP, Freund JN, Li P, Pitari GM, Schulz S, Waldman SA (2006), Bile acids induce ectopic expression of intestinal guanylyl cyclase C through nuclear factor-kappaB and Cdx2 in human esophageal cellsm. Gastroenterology 130, 4, 1191–1206. https://doi.org/10.1053/j.gastro.2005.12.032. [CrossRef] [PubMed] [Google Scholar]
  237. Jenkins GJ, Cronin J, Alhamdani A, Rawat N, D’Souza F, Thomas T, Eltahir Z, Griffiths AP, Baxter JN (2008), The bile acid deoxycholic acid has a non-linear dose response for DNA damage and possibly NF-kappaB activation in oesophageal cells, with a mechanism of action involving ROS. Mutagenesis 23, 5, 399–405. https://doi.org/10.1093/mutage/gen029. [CrossRef] [PubMed] [Google Scholar]
  238. Gong L, Debruyne PR, Witek M, Nielsen K, Snook A, Lin JE, Bombonati A, Palazzo J, Schulz S, Waldman SA (2009), Bile acids initiate lineage-addicted gastroesophageal tumorigenesis by suppressing the EGF receptor-AKT axis. Clin Transl Sci 2, 4, 286–293. https://doi.org/10.1111/j.1752-8062.2009.00131.x. [Google Scholar]
  239. Chen BJ, Zeng S, Xie R, Hu CJ, Wang SM, Wu YY, Xiao YF, Yang SM (2017), hTERT promotes gastric intestinal metaplasia by upregulating CDX2 via NF-κB signaling pathway. Oncotarget 8, 16, 26969–26978. https://doi.org/10.18632/oncotarget.15926. [PubMed] [Google Scholar]
  240. Wang W, Luo HS, Yu BP (2004), Expression of NF-kappaB and human telomerase reverse transcriptase in gastric cancer and precancerous lesions. World J Gastroenterol 10, 2, 177–181. [CrossRef] [PubMed] [Google Scholar]
  241. Yan F, Polk DB (2010), Disruption of NF-kappaB signalling by ancient microbial molecules: novel therapies of the future? Gut 59, 4, 421–426. https://doi.org/10.1136/gut.2009.179614. [CrossRef] [PubMed] [Google Scholar]
  242. Chen JH, Huang SM, Chen CC, Tsai CF, Yeh WL, Chou SJ, Hsieh WT, Lu DY (2011), Ghrelin induces cell migration through GHS-R, CaMKII, AMPK, and NF-κB signaling pathway in glioma cells. J Cell Biochem 112, 10, 2931–2941. https://doi.org/10.1002/jcb.23209. [CrossRef] [PubMed] [Google Scholar]
  243. Ishigami S, Arigami T, Uchikado Y, Setoyama T, Kita Y, Sasaki K, Okumura H, Kurahara H, Kijima Y, Harada A, Ueno S, Natsugoe S (2013), IL-32 expression is an independent prognostic marker for gastric cancer. Med Oncol 30, 2, 472. https://doi.org/10.1007/s12032-013-0472-4. [CrossRef] [PubMed] [Google Scholar]
  244. Atchison ML, Perry RP (1987), The role of the kappa enhancer and its binding factor NF-kappa B in the developmental regulation of kappa gene transcription. Cell 48, 1, 121–128. [CrossRef] [PubMed] [Google Scholar]
  245. Giri DK, Mehta RT, Kansal RG, Aggarwal BB (1998), Mycobacterium avium-intracellulare complex activates nuclear transcription factor-kappaB in different cell types through reactive oxygen intermediates. J Immunol 161, 9, 4834–4841. [PubMed] [Google Scholar]
  246. Laflamme N, Lacroix S, Rivest S (1999), An essential role of interleukin-1beta in mediating NF-kappaB activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J Neurosci 19, 24, 10923–10930. [CrossRef] [PubMed] [Google Scholar]
  247. Rivest S, Lacroix S, Vallières L, Nadeau S, Zhang J, Laflamme N (2000), How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. Proc Soc Exp Biol Med 223, 1, 22–38. [CrossRef] [PubMed] [Google Scholar]
  248. Hiscott J, Lin R, Nakhaei P, Paz S (2006), MasterCARD: a priceless link to innate immunity. Trends Mol Med 12, 2, 53–56. https://doi.org/10.1016/j.molmed.2005.12.003. [CrossRef] [PubMed] [Google Scholar]
  249. Hong GS, Jung YK (2002), Caspase recruitment domain (CARD) as a bi-functional switch of caspase regulation and NF-kappaB signals. J Biochem Mol Biol 35, 1, 19–23. [PubMed] [Google Scholar]
  250. Dufner A, Pownall S, Mak TW (2006), Caspase recruitment domain protein 6 is a microtubule-interacting protein that positively modulates NF-kappaB activation. Proc Natl Acad Sci USA 103, 4, 988–993. https://doi.org/10.1073/pnas.0510380103. [CrossRef] [Google Scholar]
  251. Kim SS, Ahn CH, Kang MR, Kim YR, Kim HS, Yoo NJ, Lee SH (2010), Expression of CARD6, an NF-kappaB activator, in gastric, colorectal and oesophageal cancers. Pathology 42, 1, 50–53. https://doi.org/10.3109/00313020903434421. [Google Scholar]
  252. Kim H, Lim JW, Kim KH (2001), Helicobacter pylori-induced expression of interleukin-8 and cyclooxygenase-2 in AGS gastric epithelial cells: mediation by nuclear factor-kappaB. Scand J Gastroenterol 36, 7, 706–716. https://doi.org/10.1074/jbc.M104141200. [PubMed] [Google Scholar]
  253. Chen Z, Liu M, Liu X, Huang S, Li L, Song B, Li H, Ren Q, Hu Z, Zhou Y, Qiao L (2013), COX-2 regulates E-cadherin expression through the NF-κB/Snail signaling pathway in gastric cancer. Int J Mol Med 32, 1, 93–100. https://doi.org/10.3892/ijmm.2013.1376. [CrossRef] [PubMed] [Google Scholar]
  254. Lin MT, Zuon CY, Chang CC, Chen ST, Chen CP, Lin BR, Wang MY, Jeng YM, Chang KJ, Lee PH, Chen WJ, Kuo ML (2005), Cyr61 induces gastric cancer cell motility/invasion via activation of the integrin/nuclear factor-kappaB/cyclooxygenase-2 signaling pathway. Clin Cancer Res 11, 16, 5809–5820. https://doi.org/10.1158/1078-0432.CCR-04-2639. [CrossRef] [PubMed] [Google Scholar]
  255. Ma HF, Zhao ZS (2008), Relationship of cysteine-rich protein 61 and NF-kappaB expression with metastasis and prognosis of gastric carcinoma. Zhonghua Bing Li Xue Za Zhi 37, 12, 815–821. [PubMed] [Google Scholar]
  256. Wu L, Pu Z, Feng J, Li G, Zheng Z, Shen W (2008), The ubiquitin-proteasome pathway and enhanced activity of NF-kappaB in gastric carcinoma. J Surg Oncol 97, 5, 439–444. https://doi.org/10.1002/jso.20952. [Google Scholar]
  257. Gravallese EM, Boothby MR, Smas CM, Glimcher LH (1989), A lipopolysaccharide-induced DNA-binding protein for a class II gene in B cells is distinct from NF-kappa B. Mol Cell Biol 9, 8, 3184–3192. [Google Scholar]
  258. Joshi-Barve SS, Rangnekar VV, Sells SF, Rangnekar VM (1993), Interleukin-1-inducible expression of gro-beta via NF-kappa B activation is dependent upon tyrosine kinase signaling. J Biol Chem 268, 24, 18018–18029. [Google Scholar]
  259. Stoeckle MY (1991), Post-transcriptional regulation of gro alpha, beta, gamma, and IL-8 mRNAs by IL-1 beta. Nucleic Acids Res 19, 4, 917–920. [CrossRef] [PubMed] [Google Scholar]
  260. Anisowicz A, Bardwell L, Sager R (1987), Constitutive overexpression of a growth-regulated gene in transformed Chinese hamster and human cells. Proc Natl Acad Sci USA 84, 7188–7192. [CrossRef] [Google Scholar]
  261. Haskill S, Peace A, Morris J, Sporn SA, Anisowicz A, Lee SW, Smith T, Martin G, Ralph P, Sager R (1990), Identification of three related human GRO genes encoding cytokine functions. Proc Natl Acad Sci USA 87, 19, 7732–7736. [CrossRef] [Google Scholar]
  262. Iida N, Grotendorst GR (1990), Cloning and sequencing of a new gro transcript from activated human monocytes: expression in leukocytes and wound tissue. Mol Cell Biol 10, 10, 5596–5599. [Google Scholar]
  263. Balentien E, Mufson BE, Shattuck RL, Derynck R, Richmond A (1991), Effects of MGSA/GROα on melanocyte transformation. Oncogene 6, 1115–1124. [Google Scholar]
  264. Li A, Varney ML, Singh RK (2004), Constitutive expression of growth regulated oncogene (gro) in human colon carcinoma cells with different metastatic potential and its role in regulating their metastatic phenotype. Clin Exp Metastasis 21, 7, 571–579. [CrossRef] [PubMed] [Google Scholar]
  265. Li X, Sun S, Li N, Gao J, Yu J, Zhao J, Li M, Zhao Z (2017), High expression of CCR5 predicts lymph node metastasis and good prognosis in triple negative breast cancer. Cell Physiol Biochem 43, 2, 531–539. https://doi.org/10.1159/000480526. [CrossRef] [PubMed] [Google Scholar]
  266. Chen E, Qin X, Peng K, Xu X, Li W, Cheng X, Tang C, Cui Y, Wang Z, Liu T (2018), Identification of potential therapeutic targets among CXC chemokines in breast tumor microenvironment using integrative bioinformatics analysis. Cell Physiol Biochem 45, 5, 1731–1746. https://doi.org/10.1159/000487782. [CrossRef] [PubMed] [Google Scholar]
  267. Dhawan P, Richmond A (2002), Role of CXCL1 in tumorigenesis of melanoma. J Leukoc Biol 72, 1, 9–18. [Google Scholar]
  268. Opdenakker G, Van Damme J (2014), The countercurrent principle in invasion and metastasis of cancer cells. Recent insights on the roles of chemokines. Int J Dev Biol 48, 5–6, 519–527. https://doi.org/10.1387/ijdb.041796go. [Google Scholar]
  269. Duscharla D, Reddy Kami Reddy K, Dasari C, Bhukya S, Ummanni R (2018 Apr 25), Interleukin-6 induced over expression of valosin-containing protein (VCP)/p97 is associated with androgen-independent prostate cancer (AIPC) progression. J Cell Physiol 233, 10, 7148–7164. https://doi.org/10.1002/jcp.26639. [Google Scholar]
  270. Dai RM, Li CC (2001), Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat Cell Biol 3, 740–744. [CrossRef] [PubMed] [Google Scholar]
  271. Asai T, Tomita Y, Nakatsuka S, et al. (2002), VCP (p97) regulates NFkappaB signaling pathway, which is important for metastasis of osteosarcoma cell line. Jpn J Cancer Res 93, 296–304. [Google Scholar]
  272. Yamamoto S, Tomita Y, Hoshida Y, Iizuka N, Kidogami S, Miyata H, Takiguchi S, Fujiwara Y, Yasuda T, Yano M, Nakamori S, Sakon M, Monden M, Aozasa K (2004), Expression level of valosin-containing protein (p97) is associated with prognosis of esophageal carcinoma. Clin Cancer Res 10, 16, 5558–5565. https://doi.org/10.1158/1078-0432.CCR-0723-03. [CrossRef] [PubMed] [Google Scholar]
  273. Yamamoto S, Tomita Y, Hoshida Y, Takiguchi S, Fujiwara Y, Yasuda T, Yano M, Nakamori S, Sakon M, Monden M, Aozasa K (2003), Expression level of valosin-containing protein is strongly associated with progression and prognosis of gastric carcinoma. J Clin Oncol 21, 13, 2537–2544. https://doi.org/10.1200/JCO.2003.12.102. [CrossRef] [PubMed] [Google Scholar]
  274. Buzzelli JN, Chalinor HV, Pavlic DI, Sutton P, Menheniott TR, Giraud AS, Judd LM (2015), IL33 Is a stomach alarmin that initiates a skewed Th2 response to injury and infection. Cell Mol Gastroenterol Hepatol 1, 2, 203–221.e3. https://doi.org/10.1016/j.jcmgh.2014.12.003. [Google Scholar]
  275. Bockerstett KA, DiPaolo RJ (2017), Regulation of gastric carcinogenesis by inflammatory cytokines. Cell Mol Gastroenterol Hepatol 4, 1, 47–53. https://doi.org/10.1016/j.jcmgh.2017.03.005. [Google Scholar]
  276. Wu L, Zhang X, Zhang B, Shi H, Yuan X, Sun Y, Pan Z, Qian H, Xu W (2016), Exosomes derived from gastric cancer cells activate NF-κB pathway in macrophages to promote cancer progression. Tumour Biol 37, 9, 12169–12180. https://doi.org/10.1007/s13277-016-5071-5. [CrossRef] [PubMed] [Google Scholar]
  277. Zhu YW, Yan JK, Li JJ, Ou YM, Yang Q (2016), Knockdown of radixin suppresses gastric cancer metastasis in vitro by up-regulation of E-Cadherin via NF-κB/snail pathway. Cell Physiol Biochem 39, 6, 2509–2521. https://doi.org/10.1159/000452518. [CrossRef] [PubMed] [Google Scholar]
  278. Wang Y, Lin Z, Sun L, Fan S, Huang Z, Zhang D, Yang Z, Li J, Chen W (2014), Akt/Ezrin Tyr353/NF-κB pathway regulates EGF-induced EMT and metastasis in tongue squamous cell carcinoma. Br J Cancer 110, 3, 695–705. https://doi.org/10.1038/bjc.2013.770. [CrossRef] [PubMed] [Google Scholar]
  279. Zhang Q, Helfand BT, Jang TL, Zhu LJ, Chen L, Yang XJ, Kozlowski J, Smith N, Kundu SD, Yang G, Raji AA, Javonovic B, Pins M, Lindholm P, Guo Y, Catalona WJ, Lee C (2009), Nuclear factor-kappaB-mediated transforming growth factor-beta-induced expression of vimentin is an independent predictor of biochemical recurrence after radical prostatectomy. Clin Cancer Res 15, 10, 3557–3567. https://doi.org/10.1158/1078-0432.CCR-08-1656. [CrossRef] [PubMed] [Google Scholar]
  280. Lee KS, Buck M, Houglum K, Chojkier M (1995), Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest 96, 5, 2461–2468. https://doi.org/10.1172/JCI118304. [CrossRef] [PubMed] [Google Scholar]
  281. Mirza A, Liu SL, Frizell E, Zhu J, Maddukuri S, Martinez J, Davies P, Schwarting R, Norton P, Zern MA (1997), A role for tissue transglutaminase in hepatic injury and fibrogenesis, and its regulation by NF-kappaB. Am J Physiol 272, 2 Pt 1, G281–G288. https://doi.org/10.1152/ajpgi.1997.272.2.G281. [Google Scholar]
  282. Kessler DJ, Duyao MP, Spicer DB, Sonenshein GE (1992), NF-kappa B-like factors mediate interleukin 1 induction of c-myc gene transcription in fibroblasts. J Exp Med 176, 3, 787–792. [CrossRef] [PubMed] [Google Scholar]
  283. Yokoo T, Kitamura M (1996), Dual regulation of IL-1 beta-mediated matrix metalloproteinase-9 expression in mesangial cells by NF-kappa B and AP-1. Am J Physiol 270, 1 Pt 2, F123–F130. https://doi.org/10.1152/ajprenal.1996.270.1.F123. [Google Scholar]
  284. Tewari M, Tuncay OC, Milchman A, Reddy PJ, Reddy CD, Cressman DE, Taub R, Newton RC, Tewari DS (1996), Association of interleukin-1-induced, NF kappa B DNA-binding activity with collagenase gene expression in human gingival fibroblasts. Arch Oral Biol 41, 5, 461–468. [CrossRef] [PubMed] [Google Scholar]
  285. Chintala SK, Sawaya R, Aggarwal BB, Majumder S, Giri DK, Kyritsis AP, Gokaslan ZL, Rao JS (1998), Induction of matrix metalloproteinase-9 requires a polymerized actin cytoskeleton in human malignant glioma cells. J Biol Chem 273, 22, 13545–13551. https://doi.org/10.1074/jbc.273.22.13545. [Google Scholar]
  286. Brücher BLDM, Jamall IS (2019), Transition from normal to cancerous cell by precancerous niche (PCN) induced chronic cell-matrix stress. 4open, 2, https://doi.org/10.1051/fopen/2018996. [Google Scholar]
  287. Kim BR, Dong SM, Seo SH, Lee JH, Lee JM, Lee SH, Rho SB (2014), Lysyl oxidase-like 2 (LOXL2) controls tumor-associated cell proliferation through the interaction with MARCKSL1. Cell Signal 26, 9, 1765–1773. https://doi.org/10.1016/j.cellsig.2014.05.010. [CrossRef] [PubMed] [Google Scholar]
  288. Casanova ML, Bravo A, Martínez-Palacio J, Fernández-Aceñero MJ, Villanueva C, Larcher F, Conti CJ, Jorcano JL (2004), Epidermal abnormalities and increased malignancy of skin tumors in human epidermal keratin 8-expressing transgenic mice. FASEB J 18, 13, 1556–1558. https://doi.org/10.1096/fj.04-1683fje. [CrossRef] [PubMed] [Google Scholar]
  289. Tiwari R, Sahu I, Soni BL, Sathe GJ, Thapa P, Patel P, Sinha S, Vadivel CK, Patel S, Jamghare SN, Oak S, Thorat R, Gowda H, Vaidya MM (2018), Depletion of keratin 8/18 modulates oncogenic potential by governing multiple signaling pathways. FEBS J 285, 7, 1251–1276. https://doi.org/10.1111/febs.14401. [CrossRef] [PubMed] [Google Scholar]
  290. Kim H (2008), DNA repair Ku proteins in gastric cancer cells and pancreatic acinar cells. Amino Acids 34, 2, 195–202. https://doi.org/10.1007/s00726-006-0411-1. [CrossRef] [PubMed] [Google Scholar]
  291. Um JH, Kang CD, Lee BG, Kim DW, Chung BS, Kim SH (2001), Increased and correlated nuclear factor-kappa B and Ku autoantigen activities are associated with development of multidrug resistance. Oncogene 20, 42, 6048–6056. https://doi.org/10.1038/sj.onc.1204732. [Google Scholar]
  292. Lim JW, Kim H, Kim KH (2002), Expression of Ku70 and Ku80 mediated by NF-kappa B and cyclooxygenase-2 is related to proliferation of human gastric cancer cells. J Biol Chem 277, 48, 46093–46100. https://doi.org/10.1074/jbc.M206603200. [Google Scholar]
  293. Brücher BLDM, Jamall IS (2019), Precancerous niche (PCN), a product of fibrosis with remodeling by incessant chronic inflammation. 4open 2, 11, 1–21. https://doi.org/10.1051/fopen/2018009. [CrossRef] [EDP Sciences] [Google Scholar]
  294. Le CP, Nowell CJ, Kim-Fuchs C, Botteri E, Hiller JG, Ismail H, Pimentel MA, Chai MG, Karnezis T, Rotmensz N, Renne G, Gandini S, Pouton CW, Ferrari D, Möller A, Stacker SA, Sloan EK (2016), Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat Commun 7, 10634. https://doi.org/10.1038/ncomms10634. [CrossRef] [PubMed] [Google Scholar]
  295. Fan P, Tyagi AK, Agboke FA, Mathur R, Pokharel N, Jordan VC (2018), Modulation of nuclear factor-kappa B activation by the endoplasmic reticulum stress sensor PERK to mediate estrogen-induced apoptosis in breast cancer cells. Cell Death Discov 4, 15. https://doi.org/10.1038/s41420-017-0012-7. [Google Scholar]
  296. Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P (2013), Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol 5, 3, a013169. https://doi.org/10.1101/cshperspect.a013169. [Google Scholar]
  297. Qiao Y, Zhang C, Li A, Wang D, Luo Z, Ping Y, Zhou B, Liu S, Li H, Yue D, Zhang Z, Chen X, Shen Z, Lian J, Li Y, Wang S, Li F, Huang L, Wang L, Zhang B, Yu J, Qin Z, Zhang Y (2018), IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR9 in esophageal squamous cell carcinoma. Oncogene 37, 7, 873–883. https://doi.org/10.1038/onc. [Google Scholar]
  298. Thelen M, Thelen S (2008), CXCR10, CXCR10 and CXCL12: an eccentric trio? J Neuroimmunol 198, 1–2, 9–13. https://doi.org/10.1016/j.jneuroim.2008.04.020. [CrossRef] [PubMed] [Google Scholar]
  299. Peng H, Zhang H, Zhu H (2016), Blocking CXCR11-mediated adipose tissue macrophages chemotaxis attenuates insulin resistance and inflammation in obesity. Biochem Biophys Res Commun 479, 4, 649–655. https://doi.org/10.1016/j.bbrc.2016.09.158. [Google Scholar]
  300. Liu FY, Zhao ZJ, Li P, Ding X, Guo N, Yang LL, Zong ZH, Sun CF (2011), NF-κB participates in chemokine receptor 7-mediated cell survival in metastatic squamous cell carcinoma of the head and neck. Oncol Rep 25, 2, 383–391. https://doi.org/10.3892/or.2010.1090. [Google Scholar]
  301. McCubrey JA, Steelman LS, Bertrand FE, Davis NM, Abrams SL, Montalto G, D’Assoro AB, Libra M, Nicoletti F, Maestro R, Basecke J, Cocco L, Cervello M, Martelli AM (2014), Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia 28, 1, 15–33. https://doi.org/10.1038/leu.2013.184. [Google Scholar]
  302. Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL (2000), Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275, 47, 36803–36810. https://doi.org/10.1074/jbc.M005912200. [Google Scholar]
  303. Yeh YH, Hsiao HF, Yeh YC, Chen TW, Li TK (2018), Inflammatory interferon activates HIF-1α-mediated epithelial-to-mesenchymal transition via PI3K/AKT/mTOR pathway. J Exp Clin Cancer Res 37, 1, 70. https://doi.org/10.1186/s13046-018-0730-6. [CrossRef] [PubMed] [Google Scholar]
  304. Yang J, Pi C, Wang G (2018), Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed Pharmacother 103, 699–707. https://doi.org/10.1016/j.biopha.2018.04.072. [CrossRef] [PubMed] [Google Scholar]
  305. Hussain AR, Ahmed SO, Ahmed M, Khan OS, Al Abdulmohsen S, Platanias LC, Al-Kuraya KS, Uddin S (2012), Cross-talk between NFkB and the PI3-kinase/AKT pathway can be targeted in primary effusion lymphoma (PEL) cell lines for efficient apoptosis. PLoS One 7, 6, e39945. https://doi.org/10.1371/journal.pone.0039945. [CrossRef] [PubMed] [Google Scholar]
  306. Liu P, Cheng H, Roberts TM, Zhao JJ (2009), Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8, 8, 627–644. https://doi.org/10.1038/nrd2926. [CrossRef] [PubMed] [Google Scholar]
  307. Mori T, Li Y, Hata H, Ono K, Kochi H (2002), NIRF, a novel RING finger protein, is involved in cell-cycle regulation. Biochem Biophys Res Commun 296, 3, 530–536. [Google Scholar]
  308. Mori T, Li Y, Hata H, Kochi H (2004), NIRF is a ubiquitin ligase that is capable of ubiquitinating PCNP, a PEST-containing nuclear protein. FEBS Lett 557, 1–3, 209–214. [CrossRef] [PubMed] [Google Scholar]
  309. Wu DD, Gao YR, Li T, Wang DY, Lu D, Liu SY, Hong Y, Ning HB, Liu JP, Shang J, Shi JF, Wei JS, Ji XY (2018), PEST-containing nuclear protein mediates the proliferation, migration, and invasion of human neuroblastoma cells through MAPK and PI3K/AKT/mTOR signaling pathways. BMC Cancer 18, 1, 499. https://doi.org/10.1186/s12885-018-4391-9. [CrossRef] [PubMed] [Google Scholar]
  310. Ali A, Kim SH, Kim MJ, Choi MY, Kang SS, Cho GJ, Kim YS, Choi JY, Choi WS (2017), O-glcnacylation of NF-κB Promotes lung metastasis of cervical cancer cells via upregulation of CXCR22 expression. Mol Cells 40, 7, 476–484. https://doi.org/10.14348/molcells.2017.2309. [PubMed] [Google Scholar]
  311. Shen H, Lentsch AB (2004), Progressive dysregulation of transcription factors NF-kappa B and STAT1 in prostate cancer cells causes proangiogenic production of CXC chemokines. Am J Physiol Cell Physiol 286, 4, C840–C847. https://doi.org/10.1152/ajpcell.00335.2003. [CrossRef] [PubMed] [Google Scholar]
  312. Engler AJ, Sen S, Sweeney HL, Discher DE (2006), Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689. https://doi.org/10.1016/j.cell.2006.06.044. [CrossRef] [PubMed] [Google Scholar]
  313. Griffin GE, Leung K, Folks TM, Kunkel S, Nabel GJ (1989), Activation of HIV gene expression during monocyte differentiation by induction of NF-kappa B. Nature 339, 6219, 70–73. https://doi.org/10.1038/339070a0. [CrossRef] [PubMed] [Google Scholar]
  314. Baldwin AS Jr, Azizkhan JC, Jensen DE, Beg AA, Coodly LR (1991), Induction of NF-kappa B DNA-binding activity during the G0-to-G1 transition in mouse fibroblasts. Mol Cell Biol 11, 10, 4943–4951. [Google Scholar]
  315. Dong W, Sun S, Cao X, Cui Y, Chen A, Li X, Zhang J, Cao J, Wang Y (2017), Exposure to TNF-α combined with TGF-β induces carcinogenesis in vitro via NF-κB/Twist axis. Oncol Rep 37, 3, 1873–1882. https://doi.org/10.3892/or.2017.5369. [Google Scholar]
  316. Han D, Wu G, Chang C, Zhu F, Xiao Y, Li Q, Zhang T, Zhang L (2015), Disulfiram inhibits TGF-β-induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-κB/Snail pathway. Oncotarget 6, 38, 40907–40919. https://doi.org/10.18632/oncotarget.5723. [PubMed] [Google Scholar]
  317. Huber MA, Azoitei N, Baumann B, Grünert S, Sommer A, Pehamberger H, Kraut N, Beug H, Wirth T (2004), NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114, 4, 569–581. https://doi.org/10.1172/JCI21358. [CrossRef] [PubMed] [Google Scholar]
  318. Park JI, Lee MG, Cho K, Park BJ, Chae KS, Byun DS, Ryu BK, Park YK, Chi SG (2003), Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways. Oncogene 22, 28, 4314–4332. https://doi.org/10.1038/sj.onc.1206478. [Google Scholar]
  319. Bash J, Zong WX, Gélinas C (1997), c-Rel arrests the proliferation of HeLa cells and affects critical regulators of the G1/S-phase transition. Mol Cell Biol 17, 11, 6526–6536. [Google Scholar]
  320. Herzog NK, Bargmann WJ, Bose HR Jr (1986), Oncogene expression in reticuloendotheliosis virus-transformed lymphoid cell lines and avian tissues. J Virol 57, 1, 371–375. [Google Scholar]
  321. Gerondakis S, Grumont R, Gugasyan R, Wong L, Isomura I, Ho W, Banerjee A (2006), Unravelling the complexities of the NF-kappaB signalling pathway using mouse knockout and transgenic models. Oncogene 25, 51, 6781–6799. https://doi.org/10.1038/sj.onc.1209944. [Google Scholar]
  322. Abbadie C, Kabrun N, Bouali F, Smardova J, Stéhelin D, Vandenbunder B, Enrietto PJ (1993), High levels of c-rel expression are associated with programmed cell death in the developing avian embryo and in bone marrow cells in vitro. Cell 75, 5, 899–912. [CrossRef] [PubMed] [Google Scholar]
  323. Zong WX, Edelstein LC, Chen C, Bash J, Gélinas C (1999), The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappaB that blocks TNFalpha-induced apoptosis. Genes Dev 13, 4, 382–387. [CrossRef] [PubMed] [Google Scholar]
  324. Chen C, Edelstein LC, Gélinas C (2000), The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 20, 8, 2687–2695. [Google Scholar]
  325. Bendinelli P, Matteucci E, Maroni P, Desiderio MA (2009), NF-kappaB activation, dependent on acetylation/deacetylation, contributes to HIF-1 activity and migration of bone metastatic breast carcinoma cells. Mol Cancer Res 7, 8, 1328–1341. https://doi.org/10.1158/1541-7786.MCR-08-0548. [CrossRef] [PubMed] [Google Scholar]
  326. Harada N, Nakayama M, Nakano H, Fukuchi Y, Yagita H, Okumura K (2002), Pro-inflammatory effect of TWEAK/Fn14 interaction on human umbilical vein endothelial cells. Biochem Biophys Res Commun 299, 3, 488–493. [Google Scholar]
  327. Itoigawa Y, Harada N, Harada S, Katsura Y, Makino F, Ito J, Nurwidya F, Kato M, Takahashi F, Atsuta R, Takahashi K (2015), TWEAK enhances TGF-β-induced epithelial-mesenchymal transition in human bronchial epithelial cells. Respir Res 16, 48. https://doi.org/10.1186/s12931-015-0207-5. [CrossRef] [PubMed] [Google Scholar]
  328. Meighan-Mantha RL, Hsu DK, Guo Y, Brown SA, Feng SL, Peifley KA, Alberts GF, Copeland NG, Gilbert DJ, Jenkins NA, Richards CM, Winkles JA (1999), The mitogen-inducible Fn14 gene encodes a type I transmembrane protein that modulates fibroblast adhesion and migration. J Biol Chem 274, 46, 33166–33176. [Google Scholar]
  329. Kawakita T, Shiraki K, Yamanaka Y, Yamaguchi Y, Saitou Y, Enokimura N, Yamamoto N, Okano H, Sugimoto K, Murata K, Nakano T (2004), Functional expression of TWEAK in human hepatocellular carcinoma: possible implication in cell proliferation and tumor angiogenesis. Biochem Biophys Res Commun 318, 3, 726–733. https://doi.org/10.1016/j.bbrc.2004.04.084. [Google Scholar]
  330. Di Martino L, Dave M, Menghini P, Xin W, Arseneau KO, Pizarro TT, Cominelli F (2016), Protective role for TWEAK/Fn14 in regulating acute intestinal inflammation and colitis-associated tumorigenesis. Cancer Res 76, 22, 6533–6542. https://doi.org/10.1158/0008-5472.CAN-16-0400. [Google Scholar]
  331. Brown SA, Richards CM, Hanscom HN, Feng SL, Winkles JA (2003), The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kappaB activation. Biochem J 371, Pt 2, 395–403. https://doi.org/10.1042/BJ20021730. [CrossRef] [PubMed] [Google Scholar]
  332. Tran NL, McDonough WS, Savitch BA, Fortin SP, Winkles JA, Symons M, Nakada M, Cunliffe HE, Hostetter G, Hoelzinger DB, Rennert JL, Michaelson JS, Burkly LC, Lipinski CA, Loftus JC, Mariani L, Berens ME (2006), Increased fibroblast growth factor-inducible 14 expression levels promote glioma cell invasion via Rac1 and nuclear factor-kappaB and correlate with poor patient outcome. Cancer Res 66, 19, 9535–9542. https://doi.org/10.1158/0008-5472.CAN-06-0418. [Google Scholar]
  333. Kim SH, Kang YJ, Kim WJ, Woo DK, Lee Y, Kim DI, Park YB, Kwon BS, Park JE, Lee WH (2004), TWEAK can induce pro-inflammatory cytokines and matrix metalloproteinase-9 in macrophages. Circ J 68, 4, 396–399. [CrossRef] [PubMed] [Google Scholar]
  334. Michaelson JS, Cho S, Browning B, Zheng TS, Lincecum JM, Wang MZ, Hsu YM, Burkly LC (2005), Tweak induces mammary epithelial branching morphogenesis. Oncogene 24, 16, 2613–2624. https://doi.org/10.1038/sj.onc.1208208. [Google Scholar]
  335. Gu L, Dai L, Cao C, Zhu J, Ding C, Xu HB, Qiu L, Di W (2013), Functional expression of TWEAK and the receptor Fn14 in human malignant ovarian tumors: possible implication for ovarian tumor intervention. PLoS One 8, 3, e57436. https://doi.org/10.1371/journal.pone.0057436. [CrossRef] [PubMed] [Google Scholar]
  336. Zhou H, Ekmekcioglu S, Marks JW, Mohamedali KA, Asrani K, Phillips KK, Brown SA, Cheng E, Weiss MB, Hittelman WN, Tran NL, Yagita H, Winkles JA, Rosenblum MG (2013), The TWEAK receptor Fn14 is a therapeutic target in melanoma: immunotoxins targeting Fn14 receptor for malignant melanoma treatment. J Invest Dermatol 133, 4, 1052–1062. https://doi.org/10.1038/jid.2012.402. [CrossRef] [PubMed] [Google Scholar]
  337. Whitsett TG, Cheng E, Inge L, Asrani K, Jameson NM, Hostetter G, Weiss GJ, Kingsley CB, Loftus JC, Bremner R, Tran NL, Winkles JA (2012), Elevated expression of Fn14 in non-small cell lung cancer correlates with activated EGFR and promotes tumor cell migration and invasion. Am J Pathol 181, 1, 111–120. https://doi.org/10.1016/j.ajpath.2012.03.026. Erratum in: Am J Pathol 2012, 181(5), 1889. [CrossRef] [PubMed] [Google Scholar]
  338. Feng SL, Guo Y, Factor VM, Thorgeirsson SS, Bell DW, Testa JR, Peifley KA, Winkles JA (2000), The Fn14 immediate-early response gene is induced during liver regeneration and highly expressed in both human and murine hepatocellular carcinomas. Am J Pathol 156, 4, 1253–1261. [CrossRef] [PubMed] [Google Scholar]
  339. Han H, Bearss DJ, Browne LW, Calaluce R, Nagle RB, Von Hoff DD (2002), Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res 62, 10, 2890–2896. [Google Scholar]
  340. Kawakita T, Shiraki K, Yamanaka Y, Yamaguchi Y, Saitou Y, Enokimura N, Yamamoto N, Okano H, Sugimoto K, Murata K, Nakano T (2005), Functional expression of TWEAK in human colonic adenocarcinoma cells. Int J Oncol 26, 1, 87–93. [Google Scholar]
  341. Watts GS, Tran NL, Berens ME, Bhattacharyya AK, Nelson MA, Montgomery EA, Sampliner RE (2007), Identification of Fn14/TWEAK receptor as a potential therapeutic target in esophageal adenocarcinoma. Int J Cancer 121, 10, 2132–2139. https://doi.org/10.1002/ijc.22898. [CrossRef] [PubMed] [Google Scholar]
  342. Kwon OH, Park SJ, Kang TW, Kim M, Kim JH, Noh SM, Song KS, Yoo HS, Wang Y, Pocalyko D, Paik SG, Kim YH, Kim SY, Kim YS (2012), Elevated fibroblast growth factor-inducible 14 expression promotes gastric cancer growth via nuclear factor-κB and is associated with poor patient outcome. Cancer Lett 314, 1, 73–81. https://doi.org/10.1016/j.canlet.2011.09.016. [Google Scholar]
  343. Li X, Zhu W, Chen Z, Luo L, Huang J, Zhang F, Li M, Guo Y, Guo L (2014), Fibroblast growth factor-inducible 14 regulates cell growth and multidrug resistance of small-cell lung cancer through the nuclear factor-κB pathway. Anticanc Drug 25, 10, 1152–1164. https://doi.org/10.1097/CAD.0000000000000153. [CrossRef] [Google Scholar]
  344. Wang S, Zhan M, Yin J, Abraham JM, Mori Y, Sato F, Xu Y, Olaru A, Berki AT, Li H, Schulmann K, Kan T, Hamilton JP, Paun B, Yu MM, Jin Z, Cheng Y, Ito T, Mantzur C, Greenwald BD, Meltzer SJ (2006), Transcriptional profiling suggests that Barrett’s metaplasia is an early intermediate stage in esophageal adenocarcinogenesis. Oncogene 25, 23, 3346–3356. https://doi.org/10.1038/sj.onc.1209357. [Google Scholar]
  345. Cheng H, Zhan N, Ding D, Liu X, Zou X, Li K, Xia Y (2015), HPV type 16 infection switches keratinocytes from apoptotic to proliferative fate under TWEAK/Fn14 interaction. J Invest Dermatol 135, 10, 2427–2436. https://doi.org/10.1038/jid. [CrossRef] [PubMed] [Google Scholar]
  346. Girgenrath M, Weng S, Kostek CA, Browning B, Wang M, Brown SA, Winkles JA, Michaelson JS, Allaire N, Schneider P, Scott ML, Hsu YM, Yagita H, Flavell RA, Miller JB, Burkly LC, Zheng TS (2006), TWEAK, via its receptor Fn14, is a novel regulator of mesenchymal progenitor cells and skeletal muscle regeneration. EMBO J 25, 24, 5826–5839. https://doi.org/10.1038/sj.emboj.7601441. [CrossRef] [PubMed] [Google Scholar]
  347. Lynch CN, Wang YC, Lund JK, Chen YW, Leal JA, Wiley SR (1999), TWEAK induces angiogenesis and proliferation of endothelial cells. J Biol Chem 274, 13, 8455–8459. [Google Scholar]
  348. Sanz AB, Aroeira LS, Bellon T, del Peso G, Jimenez-Heffernan J, Santamaria B, Sanchez-Niño MD, Blanco-Colio LM, Lopez-Cabrera M, Ruiz-Ortega M, Egido J, Selgas R, Ortiz A (2014), TWEAK promotes peritoneal inflammation. PLoS One 9, 3, e90399. https://doi.org/10.1371/journal.pone.0090399. [CrossRef] [PubMed] [Google Scholar]
  349. Berzal S, González-Guerrero C, Rayego-Mateos S, Ucero Á, Ocaña-Salceda C, Egido J, Ortiz A, Ruiz-Ortega M, Ramos AM (2015), TNF-related weak inducer of apoptosis (TWEAK) regulates junctional proteins in tubular epithelial cells via canonical NF-κB pathway and ERK activation. J Cell Physiol 230, 7, 1580–1593. https://doi.org/10.1002/jcp.24905. [Google Scholar]
  350. Wong BR, Josien R, Lee SY, Sauter B, Li HL, Steinman RM, Choi Y (1997), TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med 186, 12, 2075–2080. [CrossRef] [PubMed] [Google Scholar]
  351. Huang B, Eberstadt M, Olejniczak ET, Meadows RP, Fesik SW (1996), NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 384, 6610, 638–641. https://doi.org/10.1038/384638a0. [CrossRef] [PubMed] [Google Scholar]
  352. Min JK, Kim YM, Kim YM, Kim EC, Gho YS, Kang IJ, Lee SY, Kong YY, Kwon YG (2003), Vascular endothelial growth factor up-regulates expression of receptor activator of NF-kappa B (RANK) in endothelial cells. Concomitant increase of angiogenic responses to RANK ligand. J Biol Chem 278, 41, 39548–39557. https://doi.org/10.1074/jbc.M300539200. [Google Scholar]
  353. Grewal IS (Ed.) (2009), Therapeutic targets of the TNF superfamily, in: Cohen IR, Lajtha A, Lambris JD, Paoletti R, Rezaei N (Eds.), Advances in Experimental Medicine and Biology Vol. 647, Springer Science + Business Media, New York, NY, pp. 1–215. Springer ISBN 9780387895192. https://doi.org/10.1007/978-0-387-89520-8. [CrossRef] [PubMed] [Google Scholar]
  354. Raisz LG (1999), Physiology and pathophysiology of bone remodeling. Clin Chem 45, 8Pt2, 1353–1358. Erratum in: Clin Chem 1999 Oct;45(10):1885. [PubMed] [Google Scholar]
  355. Rodan GA (2003), The development and function of the skeleton and bone metastases. Cancer 97, 3 Suppl, 726–732. https://doi.org/10.1002/cncr.11147. [CrossRef] [PubMed] [Google Scholar]
  356. Luo G, Li F, Li X, Wang ZG, Zhang B (2018), TNF-α and RANKL promote osteoclastogenesis by upregulating RANK via the NF-κB pathway. Mol Med Rep 17, 5, 6605–6611. https://doi.org/10.3892/mmr.2018.8698. [PubMed] [Google Scholar]
  357. Bubendorf L, Schöpfer A, Wagner U, Sauter G, Moch H, Willi N, Gasser TC, Mihatsch MJ (2000), Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol 31, 5, 578–583. [CrossRef] [PubMed] [Google Scholar]
  358. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997), A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 6656, 175–179. https://doi.org/10.1038/36593. [CrossRef] [PubMed] [Google Scholar]
  359. Chen G, Sircar K, Aprikian A, Potti A, Goltzman D, Rabbani SA (2006), Expression of RANKL/RANK/OPG in primary and metastatic human prostate cancer as markers of disease stage and functional regulation. Cancer 107, 2, 289–298. https://doi.org/10.1002/cncr.21978. [CrossRef] [PubMed] [Google Scholar]
  360. Yorke R, Younes A, Chirala M, Younes M (2003), Receptor activator of nuclear factor kappaB (RANK) is expressed as a late event during malignant progression in Barrett’s metaplasia. Eur J Cancer 39, 14, 2099–2102. [CrossRef] [PubMed] [Google Scholar]
  361. Cui X, Peng H, Jin J, Li T, Zhang S, Jin T, Li S, Liu C, Liang W, Li F, Chen Y (2015), RANK overexpression as a novel esophageal cancer marker: validated immunohistochemical analysis of two different ethnicities. Int J Clin Exp Pathol 8, 2, 2249–2258. [Google Scholar]
  362. Bhatia P, Sanders MM, Hansen MF (2005), Expression of receptor activator of nuclear factor-kappaB is inversely correlated with metastatic phenotype in breast carcinoma. Clin Cancer Res 11, 1, 162–165. [PubMed] [Google Scholar]
  363. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, Morony S, Rubin E, Sarao R, Hojilla CV, Komnenovic V, Kong YY, Schreiber M, Dixon SJ, Sims SM, Khokha R, Wada T, Penninger JM (2006), Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440, 7084, 692–696. https://doi.org/10.1038/nature04524. [CrossRef] [PubMed] [Google Scholar]
  364. Gonzalez-Suarez E, Branstetter D, Armstrong A, Dinh H, Blumberg H, Dougall WC (2007), RANK overexpression in transgenic mice with mouse mammary tumor virus promoter-controlled RANK increases proliferation and impairs alveolar differentiation in the mammary epithelia and disrupts lumen formation in cultured epithelial acini. Mol Cell Biol 27, 4, 1442–1454. https://doi.org/10.1128/MCB.01298-06. [Google Scholar]
  365. González-Suárez E, Sanz-Moreno A (2014), RANK as a therapeutic target in cancer. FEBS J 283, 11, 2018–2033. https://doi.org/10.1111/febs.13645. [Google Scholar]
  366. Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, Morony S, Capparelli C, Van G, Kaufman S, van der Heiden A, Itie A, Wakeham A, Khoo W, Sasaki T, Cao Z, Penninger JM, Paige CJ, Lacey DL, Dunstan CR, Boyle WJ, Goeddel DV, Mak TW (1999), TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13, 8, 1015–1024. [CrossRef] [PubMed] [Google Scholar]
  367. Ray A, Dhar S, Ray BK (2010), ADAM-12 expression in mammary carcinoma cells. Mol Cancer Res 8, 9, 1261–1270. https://doi.org/10.1158/1541-7786.MCR-10-0212. [CrossRef] [PubMed] [Google Scholar]
  368. Ooi CH, Ivanova T, Wu J, Lee M, Tan IB, Tao J, Ward L, Koo JH, Gopalakrishnan V, Zhu Y, Cheng LL, Lee J, Rha SY, Chung HC, Ganesan K, So J, Soo KC, Lim D, Chan WH, Wong WK, Bowtell D, Yeoh KG, Grabsch H, Boussioutas A, Tan P (2009), Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet 5, 10, e1000676. https://doi.org/10.1371/journal.pgen.1000676. [Google Scholar]
  369. Zwergal A, Quirling M, Saugel B, Huth KC, Sydlik C, Poli V, Neumeier D, Ziegler-Heitbrock HW, Brand K (2006), C/EBP beta blocks p65 phosphorylation and thereby NF-kappa B-mediated transcription in TNF-tolerant cells. J Immunol 177, 1, 665–672. https://doi.org/10.4049/jimmunol.177.1.665. [CrossRef] [PubMed] [Google Scholar]
  370. Thomasova D, Mulay SR, Bruns H, Anders HJ (2012), p53-independent roles of MDM2 in NF-κB signaling: implications for cancer therapy, wound healing, and autoimmune diseases. Neoplasia 14, 12, 1097–1101. [Google Scholar]
  371. Faustman D, Davis M (2010), TNF receptor 2 pathway: drug target for autoimmune diseases. Nat Rev Drug Discov 9, 6, 482–493. https://doi.org/10.1038/nrd3030. [CrossRef] [PubMed] [Google Scholar]
  372. Nakahara C, Nakamura K, Yamanaka N, Baba E, Wada M, Matsunaga H, Noshiro H, Tanaka M, Morisaki T, Katano M (2003), Cyclosporin-A enhances docetaxel-induced apoptosis through inhibition of nuclear factor-kappaB activation in human gastric carcinoma cells. Clin Cancer Res 9, 14, 5409–5416. [PubMed] [Google Scholar]
  373. Hibberd AD, Trevillian PR, Wlodarczyk JH, Kemp DG, Stein AM, Gillies AH, Heer MK, Sheil AG (2013), Effect of immunosuppression for primary renal disease on the risk of cancer in subsequent renal transplantation: a population-based retrospective cohort study. Transplantation 95, 1, 122–127. https://doi.org/10.1097/TP.0b013e3182782f59. [CrossRef] [PubMed] [Google Scholar]
  374. Li ZM, Pu YW, Zhu BS (2013), Blockade of NF-κB nuclear translocation results in the inhibition of the invasiveness of human gastric cancer cells. Oncol Lett 6, 2, 432–436. https://doi.org/10.3892/ol.2013.1390. [CrossRef] [PubMed] [Google Scholar]
  375. Nishikawa S, Tanaka A, Matsuda A, Oida K, Jang H, Jung K, Amagai Y, Ahn G, Okamoto N, Ishizaka S, Matsuda H (2014), A molecular targeting against nuclear factor-κB, as a chemotherapeutic approach for human malignant mesothelioma. Cancer Med 3, 2, 416–425. https://doi.org/10.1002/cam4.202. [Google Scholar]
  376. Purcell JW, Kim HK, Tanlimco SG, Doan M, Fox M, Lambert P, Chao DT, Sho M, Wilson KE, Starling GC, Culp PA (2014), Nuclear factor κB is required for tumor growth inhibition mediated by Enavatuzumab (PDL192), a humanized monoclonal antibody to TweakR. Front Immunol 4, 505. https://doi.org/10.3389/fimmu.2013.00505. [Google Scholar]
  377. Redlak MJ, Power JJ, Miller TA (2008), Prevention of deoxycholate-induced gastric apoptosis by aspirin: roles of NF-kappaB and PKC signaling. J Surg Res 145, 1, 66–73. https://doi.org/10.1016/j.jss.2007.04.039. [CrossRef] [PubMed] [Google Scholar]
  378. Petersen LC, Lund LR, Nielsen LS, Dano K, Skiriver L (1988), One-chain urokinase-type plasminogen activator from human sarcoma cells is a proenzyme with little or no intrinsic activity. J Biol Chem 263, 11189–11195. [Google Scholar]
  379. Waltz DA, Fujita RM, Yang X, Natkin L, Zhuo S, Gerard CJ, Rosenberg S, Chapman HA (2003), Nonproteolytic role for the urokinase receptor in cellular migration in vivo. Am J Respir Cell Mol Biol 22, 316–322. [Google Scholar]
  380. Chang HJ, Kim MH, Baek MK, Park JS, Chung IJ, Shin BA, Ahn BW, Jung YD (2007), Triptolide inhibits tumor promoter-induced uPAR expression via blocking NF-kappaB signaling in human gastric AGS cells. Anticancer Res 27, 5A, 3411–3417. [PubMed] [Google Scholar]
  381. Uetsuka H, Haisa M, Kimura M, Gunduz M, Kaneda Y, Ohkawa T, Takaoka M, Murata T, Nobuhisa T, Yamatsuji T, Matsuoka J, Tanaka N, Naomoto Y (2003), Inhibition of inducible NF-kappaB activity reduces chemoresistance to 5-fluorouracil in human stomach cancer cell line. Exp Cell Res 289, 1, 27–35. [CrossRef] [PubMed] [Google Scholar]
  382. Ambrosini G, Do C, Tycko B, Realubit RB, Karan C, Musi E, Carvajal RD, Chua V, Aplin AE, Schwartz GK (2019 Mar 18), Inhibition of NF-κB-dependent signaling enhances sensitivity and overcomes resistance to BET inhibition in uveal melanoma. Cancer Res, pii: canres.3177.2018. https://doi.org/10.1158/0008-5472.CAN-18-3177. [Google Scholar]
  383. Wu H, Li W, Wang T, Shu Y, Liu P (2008), Paeoniflorin suppress NF-kappaB activation through modulation of I kappaB alpha and enhances 5-fluorouracil-induced apoptosis in human gastric carcinoma cells. Biomed Pharmacother 62, 9, 659–666. https://doi.org/10.1016/j.biopha.2008.08.002. [CrossRef] [PubMed] [Google Scholar]
  384. Kopp E, Ghosh S (1994), Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265, 5174, 956–959. [Google Scholar]
  385. DeWitt D, Smith WL (1995), Yes, but do they still get headaches? Cell 83, 3, 345–348. [CrossRef] [PubMed] [Google Scholar]
  386. Palayoor ST, Youmell MY, Calderwood SK, Coleman CN, Price BD (1999), Constitutive activation of IkappaB kinase alpha and NF-kappaB in prostate cancer cells is inhibited by ibuprofen. Oncogene 18, 51, 7389–7394. https://doi.org/10.1038/sj.onc.1203160. [Google Scholar]
  387. Hirsch HA, Iliopoulos D, Struhl K (2013), Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci USA 110, 3, 972–977. https://doi.org/10.1073/pnas.1221055110. [CrossRef] [Google Scholar]
  388. Brücher BLDM, Jamall IS (2018), Metformin alters signaling homeostasis induced crosstalk. 4open 2, 12, 1–17. https://doi.org/10.1051/fopen/2019006. [CrossRef] [EDP Sciences] [Google Scholar]
  389. Kheirandish M, Mahboobi H, Yazdanparast M, Kamal W, Kamal MA (2018 Apr 16), Anti-cancer effects of metformin: recent evidences for its role in prevention and treatment of cancer. Curr Drug Metab 19, 9, 793–797. https://doi.org/10.2174/1389200219666180416161846. [CrossRef] [PubMed] [Google Scholar]
  390. Mao Z, Ma X, Rong Y, Cui L, Wang X, Wu W, Zhang J, Jin D (2011), Connective tissue growth factor enhances the migration of gastric cancer through downregulation of E-cadherin via the NF-κB pathway. Cancer Sci 102, 1, 104–110. https://doi.org/10.1111/j.1349-7006.2010.01746.x. [CrossRef] [PubMed] [Google Scholar]
  391. Brücher BLDM, Jamall IS (2018), Undervalued ubiquitous proteins. 4open 2, 7, 1–13. https://doi.org/10.1051/fopen/2019002. [CrossRef] [EDP Sciences] [Google Scholar]
  392. Li SN, Wang X, Zeng QT, Feng YB, Cheng X, Mao XB, Wang TH, Deng HP (2009), Metformin inhibits nuclear factor kappaB activation and decreases serum high-sensitivity C-reactive protein level in experimental atherogenesis of rabbits. Heart Vessels 24, 6, 446–453. https://doi.org/10.1007/s00380-008-1137-7. [CrossRef] [PubMed] [Google Scholar]
  393. Grivennikov SI, Karin M (2010), Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21, 1, 11–19. https://doi.org/10.1016/j.cytogfr.2009.11.005. [CrossRef] [PubMed] [Google Scholar]
  394. Katiyar SK, Korman NJ, Mukhtar H, Agarwal R (1997), Protective effects of silymarin against photocarcinogenesis in a mouse skin model. J Natl Cancer Inst 89, 8, 556–566. [CrossRef] [PubMed] [Google Scholar]
  395. Zi X, Agarwal R (1999), Silibinin decreases prostate-specific antigen with cell growth inhibition via G1 arrest, leading to differentiation of prostate carcinoma cells: implications for prostate cancer intervention. Proc Natl Acad Sci USA 96, 13, 7490–7495. [CrossRef] [Google Scholar]
  396. Singh RP, Dhanalakshmi S, Tyagi AK, Chan DC, Agarwal C, Agarwal R (2002), Dietary feeding of silibinin inhibits advance human prostate carcinoma growth in athymic nude mice and increases plasma insulin-like growth factor-binding protein-3 levels. Cancer Res 62, 11, 3063–3069. [Google Scholar]
  397. Singh RP, Agarwal R (2004), Prostate cancer prevention by silibinin. Curr Cancer Drug Targets 4, 1, 1–11. [CrossRef] [PubMed] [Google Scholar]
  398. Verdura S, Cuyàs E, Llorach-Parés L, Pérez-Sánchez A, Micol V, Nonell-Canals A, Joven J, Valiente M, Sánchez-Martínez M, Bosch-Barrera J, Menendez JA (2018), Silibinin is a direct inhibitor of STAT3. Food Chem Toxicol 116, Pt B, 161–172. https://doi.org/10.1016/j.fct.2018.04.028. [CrossRef] [PubMed] [Google Scholar]
  399. Wu K, Zeng J, Li L, Fan J, Zhang D, Xue Y, Zhu G, Yang L, Wang X, He D (2010), Silibinin reverses epithelial-to-mesenchymal transition in metastatic prostate cancer cells by targeting transcription factors. Oncol Rep 23, 6, 1545–1552. [Google Scholar]
  400. Raina K, Agarwal C, Agarwal R (2013), Effect of silibinin in human colorectal cancer cells: targeting the activation of NF-κB signaling. Mol Carcinog 52, 3, 195–206. https://doi.org/10.1002/mc.21843. [CrossRef] [PubMed] [Google Scholar]
  401. Toyoda T, Tsukamoto T, Takasu S, Shi L, Hirano N, Ban H, Kumagai T, Tatematsu M (2009), Anti-inflammatory effects of caffeic acid phenethyl ester (CAPE), a nuclear factor-kappaB inhibitor, on Helicobacter pylori-induced gastritis in Mongolian gerbils. Int J Cancer 125, 8, 1786–1795. https://doi.org/10.1002/ijc.24586. [CrossRef] [PubMed] [Google Scholar]
  402. Zhang J, Chen Y, Xin XL, Li QN, Li M, Lin LP, Geng MY, Ding J (2010), Oligomannurarate sulfate blocks tumor growth by inhibiting NF-kappaB activation. Acta Pharmacol Sin 31, 3, 375–381. https://doi.org/10.1038/aps.2010.13. [CrossRef] [PubMed] [Google Scholar]
  403. Miller SC, Huang R, Sakamuru S, Shukla SJ, Attene-Ramos MS, Shinn P, Van Leer D, Leister W, Austin CP, Xia M (2010), Identification of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action. Biochem Pharmacol 79, 9, 1272–1280. https://doi.org/10.1016/j.bcp.2009.12.021. [CrossRef] [PubMed] [Google Scholar]
  404. Freitas RHCN, Fraga CAM (2018), NF-κB-IKKβ pathway as a target for drug development: realities, challenges and perspectives. Curr Drug Target 19, 16, 1933–1942. https://doi.org/10.2174/1389450119666180219120534. [CrossRef] [Google Scholar]
  405. Song J, Zhang W, Wang J, Yang H, Zhao X, Zhou Q, Wang H, Li L, Du G (2018), Activation of Nrf2 signaling by salvianolic acid C attenuates NF-κB mediated inflammatory response both in vivo and in vitro. Int Immunopharmacol 63, 299–310. https://doi.org/10.1016/j.intimp.2018.08.004. [CrossRef] [PubMed] [Google Scholar]
  406. Zhang Q, Yang D (2019), Allicin suppresses the migration and invasion in cervical cancer cells mainly by inhibiting NRF2. Exp Ther Med 17, 3, 1523–1528. https://doi.org/10.3892/etm.2018.7104. [PubMed] [Google Scholar]
  407. Zhang C, Wang HJ, Bao QC, Wang L, Guo TK, Chen WL, Xu LL, Zhou HS, Bian JL, Yang YR, Sun HP, Xu XL, You QD (2016), NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction. Oncotarget 7, 45, 73593–73606. https://doi.org/10.18632/oncotarget.12435. [PubMed] [Google Scholar]
  408. Zhang HS, Zhang ZG, Du GY, Sun HL, Liu HY, Zhou Z, Gou XM, Wu XH, Yu XY, Huang YH (2019 Feb 26), Nrf2 promotes breast cancer cell migration via up-regulation of G6PD/HIF-1α/Notch1 axis. J Cell Mol Med 51, 4, 375–385. https://doi.org/10.1111/jcmm.14241. [Google Scholar]
  409. Zhang B, Wu J, Cai Y, Luo M, Wang B, Gu Y (2019), TCF7L1 indicates prognosis and promotes proliferation through activation of Keap1/NRF2 in gastric cancer. Acta Biochim Biophys Sin (Shanghai) 51, 4, 375–385. pii, gmz015. https://doi.org/10.1093/abbs/gmz015. [CrossRef] [PubMed] [Google Scholar]
  410. Lin PL, Chang JT, Wu DW, Huang CC, Lee H (2016), Cytoplasmic localization of Nrf2 promotes colorectal cancer with more aggressive tumors via upregulation of PSMD4. Free Radic Biol Med 95, 121–132. https://doi.org/10.1016/j.freeradbiomed.2016.03.014. Erratum. In: Free Radic Biol Med 2017, 104: 80-381. [CrossRef] [PubMed] [Google Scholar]
  411. Rocha CR, Kajitani GS, Quinet A, Fortunato RS, Menck CF (2016), NRF2 and glutathione are key resistance mediators to temozolomide in glioma and melanoma cells. Oncotarget 7, 30, 48081–48092. https://doi.org/10.18632/oncotarget.10129. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.