Open Access
Review
Issue |
4open
Volume 2, 2019
Disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer”
|
|
---|---|---|
Article Number | 14 | |
Number of page(s) | 31 | |
Section | Life Sciences - Medicine | |
DOI | https://doi.org/10.1051/fopen/2018996 | |
Published online | 16 May 2019 |
- Brocklehurst JR, Freedman RB, Hancock DJ, Radda GK (1970), Membrane studies with polarity-dependent and excimer-forming fluorescent probes. Biochem J 116, 4, 721–731. PMCID: PMC1185418. [CrossRef] [PubMed] [Google Scholar]
- Euteneuer U, Jackson WT, McIntosh JR (1982), Polarity of spindle microtubules in Haemanthus endosperm. J Cell Biol 94, 3, 644–653. PMCID: PMC2112214. [CrossRef] [PubMed] [Google Scholar]
- Svetina S, Zeks B (1990), The mechanical behaviour of cell membranes as a possible physical origin of cell polarity. J Theor Biol 146, 1, 115–122. PMID: 2232827. [CrossRef] [PubMed] [Google Scholar]
- Montesano R, Schaller G, Orci L (1991), Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell 66, 4, 697–711. [CrossRef] [PubMed] [Google Scholar]
- Montesano R, Matsumoto K, Nakamura T, Orci L (1991), Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67, 5, 901–908. PMID: 1835669. [CrossRef] [PubMed] [Google Scholar]
- Graf von Stosch A, Kinzel V, Reed J (1996), Extension of the polarity-dependent “switch phenomenon” of the gp120 binding domain as a target for antiviral chemotherapy. Biochemistry 35, 2, 411–417. https://doi.org/10.1021/bi952045w. [CrossRef] [PubMed] [Google Scholar]
- O’Brien LE, Jou TS, Pollack AL, Zhang Q, Hansen SH, Yurchenco P, Mostov KE (2001), Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nat Cell Biol 3, 9, 831–838. https://doi.org/10.1038/ncb0901-831. [CrossRef] [PubMed] [Google Scholar]
- O’Brien LE, Zegers MM, Mostov KE (2002), Opinion: Building epithelial architecture: Insights from three-dimensional culture models. Nat Rev Mol Cell Biol 3, 7, 531–537. https://doi.org/10.1038/nrm859. [PubMed] [Google Scholar]
- Wedlich-Soldner R, Wai SC, Schmidt T, Li R (2004), Robust cell polarity is a dynamic state established by coupling transport and GTPase signaling. J Cell Biol 166, 6, 889–900. https://doi.org/10.1083/jcb.200405061. [CrossRef] [PubMed] [Google Scholar]
- Cui C, Chatterjee B, Lozito TP, Zhang Z, Francis RJ, Yagi H, Swanhart LM, Sanker S, Francis D, Yu Q, San Agustin JT, Puligilla C, Chatterjee T, Tansey T, Liu X, Kelley MW, Spiliotis ET, Kwiatkowski AV, Tuan R, Pazour GJ, Hukriede NA, Lo CW (2013), Wdpcp, a PCP protein required for ciliogenesis, regulates directional cell migration and cell polarity by direct modulation of the actin cytoskeleton. PLoS Biol 11, 11, e1001720. https://doi.org/10.1371/journal.pbio.1001720. [CrossRef] [PubMed] [Google Scholar]
- Roignot J, Peng X, Mostov K (2013), Polarity in mammalian epithelial morphogenesis. Cold Spring Harb Perspect Biol 5, 2, a013789. https://doi.org/10.1101/cshperspect.a013789. [PubMed] [Google Scholar]
- Burute M, Prioux M, Blin G, Truchet S, Letort G, Tseng Q, Bessy T, Lowell S, Young J, Filhol O, Théry M (2017), Polarity reversal by centrosome repositioning primes cell scattering during epithelial-to-mesenchymal transition. Dev Cell 40, 2, 168–184. https://dpo.org/10.1016/j.devcel.2016.12.004. [CrossRef] [PubMed] [Google Scholar]
- Yu W, O’Brien LE, Wang F, Bourne H, Mostov KE, Zegers MM (2004), Hepatocyte growth factor switches orientation of polarity and mode of movement during morphogenesis of multicellular epithelial structures. Mol Biol Cell 14, 2, 748–763. https://doi.org/10.1091/mbc.e02-06-0350. [Google Scholar]
- Liang J, Balachandra S, Ngo S, O’Brien LE (2017), Feedback regulation of steady-state epithelial turnover and organ size. Nature 548, 7669, 588–591. https://doi.org/10.1038/nature23678. [CrossRef] [PubMed] [Google Scholar]
- Hartwell KA, Muir B, Reinhardt F, Carpenter AE, Sgroi DC, Weinberg RA (2006), The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc Natl Acad Sci USA 103, 50, 18969–18974. https://doi.org/10.1073/pnas.0608636103. [CrossRef] [Google Scholar]
- Peinado H, Olmeda D, Cano A (2007), Snail, Zeb and bHLH factors in tumour progression: An alliance against the epithelial phenotype? Nat Rev Cancer 7, 6, 415–428. https://doi.org/10.1038/nrc2131. [Google Scholar]
- Ouyang G, Wang Z, Fang X, Liu J, Yang CJ (2010), Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells. Cell Mol Life Sci 67, 15, 2605–2618. https://doi.org/10.1007/s00018-010-0338-2. [CrossRef] [PubMed] [Google Scholar]
- Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S, Morris M, Wyatt L, Farshid G, Lim YY, Lindeman GJ, Shannon MF, Drew PA, Khew-Goodall Y, Goodall GJ (2011), An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell 22, 10, 1686–1698. https://doi.org/10.1091/mbc.E11-02-0103. [CrossRef] [PubMed] [Google Scholar]
- Liu X, Fan D (2015), The epithelial-mesenchymal transition and cancer stem cells: Functional and mechanistic links. Curr Pharm Des 21, 10, 1279–1291. PMID: 25506898. [CrossRef] [PubMed] [Google Scholar]
- Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, Wu CC, LeBleu VS, Kalluri R (2015), Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 7579, 525–530. https://doi.org/10.1038/nature16064. [CrossRef] [PubMed] [Google Scholar]
- Bryant DM, Mostov KE (2008), From cells to organs: Building polarized tissue. Nat Rev Mol Cell Biol 9, 11, 887–901. https://doi.org/10.1038/nrm2523. [CrossRef] [PubMed] [Google Scholar]
- Brücher BLDM, Jamall IS (2014), Epistemology of the origin of cancer: A New paradigm. BMC Cancer 14, 1–15. https://doi.org/10.1186/1471-2407-14-331. [CrossRef] [PubMed] [Google Scholar]
- Fata JE, Werb Z, Bissell MJ (2004), Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res 6, 1, 1–11. https://doi.org/10.1186/bcr634. [CrossRef] [PubMed] [Google Scholar]
- Kass L, Erler JT, Dembo M, Weaver VM (2007), Mammary epithelial cell: Influence of extracellular matrix composition and organization during development and tumorigenesis. Int J Biochem Cell Biol 39, 11, 1987–1994. https://doi.org/10.1016/j.biocel.2007.06.025. [CrossRef] [PubMed] [Google Scholar]
- Kopitz C, Gerg M, Bandapalli OR, Ister D, Pennington CJ, Hauser S, Flechsig C, Krell HW, Antolovic D, Brew K, Nagase H, Stangl M, von Weyhern CW, Brücher BL, Brand K, Coussens LM, Edwards DR, Krüger A (2007), Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Res 67, 18, 8615–8623. https://doi.org/10.1158/0008-5472.CAN-07-0232. [Google Scholar]
- Gerg M, Kopitz C, Schaten S, Tschukes A, Kahlert C, Stangl M, von Weyhern CW, Brücher BL, Edwards DR, Brand K, Krüger A (2008), Distinct functionality of tumor cell-derived gelatinases during formation of liver metastases. Mol Cancer Res 6, 3, 341–351. https://doi.org/10.1158/1541-7786.MCR-07-2032. [CrossRef] [PubMed] [Google Scholar]
- Caruso R, Fina D, Peluso I, Fantini MC, Tosti C, Del Vecchio Blanco G, Paoluzi OA, Caprioli F, Andrei F, Stolfi C, Romano M, Ricci V, MacDonald TT, Pallone F, Monteleone G (2007), IL-21 is highly produced in Helicobacter pylori-infected gastric mucosa and promotes gelatinases synthesis. J Immunol 178, 9, 5957–5965. PMID: 17442980. [CrossRef] [PubMed] [Google Scholar]
- Brücher BLDM, Jamall IS (2019), Undervalued ubiquitous proteins. 4open 2, 7, 1–13. https://doi.org/10.1051/fopen/2019002. [CrossRef] [EDP Sciences] [Google Scholar]
- Brücher BLDM, Jamall IS (2019), Chronic inflammation evoked by pathogenic stimulus during carcinogenesis. 4open 2, 8, 1–22. https://doi.org/10.1051/fopen/2018006. [CrossRef] [EDP Sciences] [Google Scholar]
- Brücher BLDM, Jamall IS (2019), Eicosanoids in carcinogenesis. 4open 2, 9, 1–34. https://doi.org/10.1051/fopen/2018008. [CrossRef] [EDP Sciences] [Google Scholar]
- Brücher BLDM, Jamall IS (2014), Cell-cell communication in tumor microenvironment, carcinogenesis and anticancer treatment. Cell Physiol Biochem 34, 2, 213–243. https://doi.org/10.1159/000362978. [CrossRef] [PubMed] [Google Scholar]
- Eskeland G (1966), Regeneration of parietal peritoneum in rats. 1. A light microscopical study. Acta Pathol Microbiol Scand 68, 3, 355–378. PMID: 5959843. [CrossRef] [PubMed] [Google Scholar]
- Eskeland G, Kjaerheim A (1966), Regeneration of parietal peritoneum in rats. 2. An electron microscopical study. Acta Pathol Microbiol Scand 68, 3, 379–395. PMID: 5959844. [CrossRef] [PubMed] [Google Scholar]
- Kitamura J, Uemura M, Kurozumi M, Sonobe M, Manabe T, Hiai H, Date H, Kinoshita K (2015), Chronic lung injury by constitutive expression of activation-induced cytidine deaminase leads to focal mucous cell metaplasia and cancer. PLoS One 10, 2, e0117986. https://doi.org/10.1371/journal.pone.0117986. Erratum in: PLoS One 2015, 10(8), e0136807. [Google Scholar]
- Thiery JP, Acloque H, Huang RY, Nieto MA (2009), Epithelial-mesenchymal transitions in development and disease. Cell 139, 5, 871–890. https://doi.org/10.1016/j.cell.2009.11.007. [CrossRef] [PubMed] [Google Scholar]
- Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008), The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 4, 704–715. https://doi.org/10.1016/j.cell.2008.03.027. [CrossRef] [PubMed] [Google Scholar]
- Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008), Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3, 8, e2888. https://doi.org/10.1371/journal.pone.0002888. [Google Scholar]
- Shahbazian MD, Grunstein M (2007), Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76, 75–100. https://doi.org/10.1146/annurev.biochem.76.052705.162114. [CrossRef] [PubMed] [Google Scholar]
- Haberland M, Mokalled MH, Montgomery RL, Olson EN (2009), Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev 23, 14, 1625–1630. https://doi.org/10.1101/gad.1809209. [Google Scholar]
- Yang XJ, Seto E (2008), The Rpd3/Hda1 family of lysine deacetylases: From bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9, 3, 206–218. https://doi.org/10.1038/nrm2346. [PubMed] [Google Scholar]
- Saito S, Zhuang Y, Suzuki T, Ota Y, Bateman ME, Alkhatib AL, Morris GF, Lasky JA (2019), HDAC8 inhibition ameliorates pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 316, 1, L175–L186. https://doi.org/10.1152/ajplung.00551.2017. [CrossRef] [PubMed] [Google Scholar]
- Oehme I, Deubzer HE, Wegener D, Pickert D, Linke JP, Hero B, Kopp-Schneider A, Westermann F, Ulrich SM, von Deimling A, Fischer M, Witt O (2009), Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res 15, 1, 91–99. https://doi.org/10.1158/1078-0432.CCR-08-0684. [CrossRef] [PubMed] [Google Scholar]
- Vannini A, Volpari C, Filocamo G, Casavola EC, Brunetti M, Renzoni D, Chakravarty P, Paolini C, De Francesco R, Gallinari P, Steinkühler C, Di Marco S (2004), Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci USA 101, 42, 15064–15069. https://doi.org/10.1073/pnas.0404603101. [CrossRef] [Google Scholar]
- Wang LT, Chiou SS, Chai CY, Hsi E, Wang SN, Huang SK, Hsu SH (2017), Aryl hydrocarbon receptor regulates histone deacetylase 8 expression to repress tumor suppressive activity in hepatocellular carcinoma. Oncotarget 8, 5, 7489–7501. https://doi.org/10.18632/oncotarget.9841. Erratum. In: Oncotarget 2018 9(102), 37807. [PubMed] [Google Scholar]
- Khurana SS, Riehl TE, Moore BD, Fassan M, Rugge M, Romero-Gallo J, Noto J, Peek RM Jr, Stenson WF, Mills JC (2013), The hyaluronic acid receptor CD44 coordinates normal and metaplastic gastric epithelial progenitor cell proliferation. J Biol Chem 288, 22, 16085–16097. https://doi.org/10.1074/jbc.M112.445551. [CrossRef] [PubMed] [Google Scholar]
- Orian-Rousseau V (2015), CD44 acts as a signaling platform controlling tumor progression and metastasis. Front Immunol 6, 154. https://doi.org/10.3389/fimmu.2015.00154. [PubMed] [Google Scholar]
- Zhang F, Li T, Han L, Qin P, Wu Z, Xu B, Gao Q, Song Y (2018), TGFβ1-induced down-regulation of microRNA-138 contributes to epithelial-mesenchymal transition in primary lung cancer cells. Biochem Biophys Res Commun 496, 4, 1169–1175. https://doi.org/10.1016/j.bbrc.2018.01.164. [Google Scholar]
- Kidan N, Khamaisie H, Ruimi N, Roitman S, Eshel E, Dally N, Ruthardt M, Mahajna J (2017), Ectopic expression of snail and twist in Ph+ leukemia cells upregulates CD44 expression and alters their differentiation potential. J Cancer 8, 19, 3952–3968. https://doi.org/10.7150/jca.19633. [CrossRef] [PubMed] [Google Scholar]
- Walter J, Schirrmacher V, Mosier D (1995), Induction of CD44 expression by the Epstein-Barr virus latent membrane protein LMP1 is associated with lymphoma dissemination. Int J Cancer 61, 3, 363–369. Erratum in: Int J Cancer 1995, 63(2), 318. [CrossRef] [PubMed] [Google Scholar]
- Groma V, Kazanceva A, Nora-Krukle Z, Murovska M (2012), Oropharyngeal malignant epithelial cell, lymphocyte and macrophage CD44 surface receptors for hyaluronate are expressed in sustained EBV infection: Immunohistochemical data and EBV DNA tissue indices. Pathol Res Pract 208, 9, 518–526. https://doi.org/10.1016/j.prp.2012.05.017. [CrossRef] [PubMed] [Google Scholar]
- Chong JM, Fukayama M, Hayashi Y, Funata N, Takizawa T, Koike M, Muraoka M, Kikuchi-Yanoshita R, Miyaki M, Mizuno S (1997), Expression of CD44 variants in gastric carcinoma with or without Epstein-Barr virus. Int J Cancer 74, 4, 450–454. PMID: 9291438. [CrossRef] [PubMed] [Google Scholar]
- Lee MA, Hong YS, Kang JH, Lee KS, You JY, Lee KY, Park CH (2004), Detection of Epstein-Barr virus by PCR and expression of LMP1, p53, CD44 in gastric cancer. Korean J Intern Med 19, 1, 43–47. PMCID: PMC4531546. [CrossRef] [PubMed] [Google Scholar]
- Gee K, Kozlowski M, Kryworuchko M, Diaz-Mitoma F, Kumar A (2001), Differential effect of IL-4 and IL-13 on CD44 expression in the Burkitt’s lymphoma B cell line BL30/B95-8 and in Epstein-Barr virus (EBV) transformed human B cells: loss of IL-13 receptors on Burkitt’s lymphoma B cells. Cell Immunol 211, 2, 131–142. https://doi.org/10.1006/cimm.2001.1829. [Google Scholar]
- Park GB, Kim D, Kim YS, Kim S, Lee HK, Yang JW, Hur DY (2014), The Epstein-Barr virus causes epithelial-mesenchymal transition in human corneal epithelial cells via Syk/src and Akt/Erk signaling pathways. Invest Ophthalmol Vis Sci 55, 3, 1770–1779. https://doi.org/10.1167/iovs.13-12988. [CrossRef] [PubMed] [Google Scholar]
- Liu XM, Xu CX, Zhang LF, Huang LH, Hu TZ, Li R, Xia XJ, Xu LY, Luo L, Jiang XX, Li M (2017), PBX1 attributes as a determinant of connexin 32 downregulation in Helicobacter pylori-related gastric carcinogenesis. World J Gastroenterol 23, 29, 5345–5355. https://doi.org/10.3748/wjg.v23.i29.5345. [CrossRef] [PubMed] [Google Scholar]
- Jee H, Nam KT, Kwon HJ, Han SU, Kim DY (2011), Altered expression and localization of connexin32 in human and murine gastric carcinogenesis. Dig Dis Sci 56, 5, 1323–1332. https://doi.org/10.1007/s10620-010-1467-z. [CrossRef] [PubMed] [Google Scholar]
- Hudry B, Thomas-Chollier M, Volovik Y, Duffraisse M, Dard A, Frank D, Technau U, Merabet S (2014), Molecular insights into the origin of the Hox-TALE patterning system, . eLife 18, 3, e01939. https://doi.org/10.7554/eLife.01939. [Google Scholar]
- Longobardi E, Penkov D, Mateos D, De Florian G, Torres M, Blasi F (2014), Biochemistry of the tale transcription factors PREP, MEIS, and PBX in vertebrates. Dev Dyn 243, 1, 59–75. https://doi.org/10.1002/dvdy.24016. [CrossRef] [PubMed] [Google Scholar]
- Blasi F, Bruckmann C (2017), A tale of TALE, PREP1, PBX1, and MEIS1: Interconnections and competition in cancer. Bioessays 39, 5. https://doi.org/10.1002/bies.201600245. [Google Scholar]
- Crijns AP, de Graeff P, Geerts D, Ten Hoor KA, Hollema H, van der Sluis T, Hofstra RM, de Bock GH, de Jong S, van der Zee AG, de Vries EG (2007), MEIS and PBX homeobox proteins in ovarian cancer. Eur J Cancer 43, 17, 2495–2505. https://doi.org/10.1016/j.ejca.2007.08.025. [CrossRef] [PubMed] [Google Scholar]
- Hisa T, Spence SE, Rachel RA, Fujita M, Nakamura T, Ward JM, Devor-Henneman DE, Saiki Y, Kutsuna H, Tessarollo L, Jenkins NA, Copeland NG (2004), Hematopoietic, angiogenic and eye defects in Meis1 mutant animals. EMBO J 23, 2, 450–459. https://doi.org/10.1038/sj.emboj.7600038. [CrossRef] [PubMed] [Google Scholar]
- Jones TA, Flomen RH, Senger G, Nizetić D, Sheer D (2000), The homeobox gene MEIS1 is amplified in IMR-32 and highly expressed in other neuroblastoma cell lines. Eur J Cancer 36, 18, 2368–2374. PMID: 11094311. [CrossRef] [PubMed] [Google Scholar]
- Sabates-Bellver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, Rehrauer H, Laczko E, Kurowski MA, Bujnicki JM, Menigatti M, Luz J, Ranalli TV, Gomes V, Pastorelli A, Faggiani R, Anti M, Jiricny J, Clevers H, Marra G (2007), Transcriptome profile of human colorectal adenomas. Mol Cancer Res 5, 12, 1263–1275. https://doi.org/10.1158/1541-7786.MCR-07-0267. [CrossRef] [PubMed] [Google Scholar]
- Crist RC, Roth JJ, Waldman SA, Buchberg AM (2011), A conserved tissue-specific homeodomain-less isoform of MEIS1 is downregulated in colorectal cancer. PLoS One 6, 8, e23665. https://doi.org/10.1371/journal.pone.0023665. [Google Scholar]
- Song F, Wang H, Wang Y (2017), Myeloid ecotropic viral integration site 1 inhibits cell proliferation, invasion or migration in human gastric cancer. Oncotarget 8, 52, 90050–90060. https://doi.org/10.18632/oncotarget.21376. [PubMed] [Google Scholar]
- Zhu J, Cui L, Xu A, Yin X, Li F, Gao J (2017), MEIS1 inhibits clear cell renal cell carcinoma cells proliferation and in vitro invasion or migration. BMC Cancer 17, 1, 176. https://doi.org/10.1186/s12885-017-3155-2. [CrossRef] [PubMed] [Google Scholar]
- Zhu X, Wei L, Bai Y, Wu S, Han S (2017), FoxC1 promotes epithelial-mesenchymal transition through PBX1 dependent transactivation of ZEB2 in esophageal cancer. Am J Cancer Res 7, 8, 1642–1653. PMCID: PMC5574937. [Google Scholar]
- Bellaoui M, Pidkowich MS, Samach A, Kushalappa K, Kohalmi SE, Modrusan Z, Crosby WL, Haughn GW (2001), The Arabidopsis BELL1 and KNOX TALE homeodomain proteins interact through a domain conserved between plants and animals. Plant Cell 13, 11, 2455–2470. PMCID: PMC139464. [Google Scholar]
- Feng Y, Li L, Zhang X, Zhang Y, Liang Y, Lv J, Fan Z, Guo J, Hong T, Ji B, Ji Q, Mei G, Ding L, Zhang S, Xu X, Ye Q (2015), Hematopoietic pre-B cell leukemia transcription factor interacting protein is overexpressed in gastric cancer and promotes gastric cancer cell proliferation, migration, and invasion. Cancer Sci 106, 10, 1313–1322. https://doi.org/10.1111/cas.12754. [CrossRef] [PubMed] [Google Scholar]
- He C, Wang Z, Zhang L, Yang L, Li J, Chen X, Zhang J, Chang Q, Yu Y, Liu B, Zhu Z (2017), A hydrophobic residue in the TALE homeodomain of PBX1 promotes epithelial-to-mesenchymal transition of gastric carcinoma. Oncotarget 8, 29, 46818–46833. https://doi.org/10.18632/oncotarget.17473. [PubMed] [Google Scholar]
- Risolino M, Mandia N, Iavarone F, Dardaei L, Longobardi E, Fernandez S, Talotta F, Bianchi F, Pisati F, Spaggiari L, Harter PN, Mittelbronn M, Schulte D, Incoronato M, Di Fiore PP, Blasi F, Verde P (2014), Transcription factor PREP1 induces EMT and metastasis by controlling the TGF-β-SMAD3 pathway in non-small cell lung adenocarcinoma. Proc Natl Acad Sci USA 111, 36, E3775–E3784. https://doi.org/10.1073/pnas.1407074111. [CrossRef] [Google Scholar]
- Argiropoulos B, Yung E, Xiang P, Lo CY, Kuchenbauer F, Palmqvist L, Reindl C, Heuser M, Sekulovic S, Rosten P, Muranyi A, Goh SL, Featherstone M, Humphries RK (2010), Linkage of the potent leukemogenic activity of Meis1 to cell-cycle entry and transcriptional regulation of cyclin D3. Blood 115, 20, 4071–4482. https://doi.org/10.1182/blood-2009-06-225573. [Google Scholar]
- Montoya-Durango DE, Ramos KS (2011), Retinoblastoma family of proteins and chromatin epigenetics: A repetitive story in a few LINEs. Biomol Concepts 2, 4, 233–245. https://doi.org/10.1515/bmc.2011.027. [PubMed] [Google Scholar]
- Mihara K, Cao XR, Yen A, Chandler S, Driscoll B, Murphree AL, T’Ang A, Fung YK (1989), Cell cycle-dependent regulation of phosphorylation of the human retinoblastoma gene product. Science 246, 4935, 1300–1303. [Google Scholar]
- Goodrich DW, Wang NP, Qian YW, Lee EY, Lee WH (1991), The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 67, 2, 293–302. [CrossRef] [PubMed] [Google Scholar]
- Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P, Dowdy SF (2014), Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. eLife 3, e02872. https://doi.org/10.7554/eLife.02872. [Google Scholar]
- Sobhani N, Corona SP, Zanconati F, Generali D (2017), Cyclin dependent kinase 4 and 6 inhibitors as novel therapeutic agents for targeted treatment of malignant mesothelioma. Genes Cancer 8, 3–4, 495–496. https://doi.org/10.18632/genesandcancer.138. [PubMed] [Google Scholar]
- Ewens KG, Bhatti TR, Moran KA, Richards-Yutz J, Shields CL, Eagle RC, Ganguly A (2017), Phosphorylation of pRb: Mechanism for RB pathway inactivation in MYCN-amplified retinoblastoma. Cancer Med 6, 3, 619–630. https://doi.org/10.1002/cam4.1010. [Google Scholar]
- Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR (1991), The E2F transcription factor is a cellular target for the RB protein. Cell 65, 6, 1053–1061. [CrossRef] [PubMed] [Google Scholar]
- Holley SL, Matthias C, Jahnke V, Fryer AA, Strange RC, Hoban PR (2005), Association of cyclin D1 polymorphism with increased susceptibility to oral squamous cell carcinoma. Oral Oncol 41, 2, 156–160. https://doi.org/10.1016/j.oraloncology.2004.08.005. [CrossRef] [PubMed] [Google Scholar]
- Al-Salam S, Awwad A, Alashari M (2014), Epstein-Barr virus infection is inversely correlated with the expression of retinoblastoma protein in Reed-Sternberg cells in classic Hodgkin lymphoma. Int J Clin Exp Pathol 7, 11, 7508–7517. [PubMed] [Google Scholar]
- Claudio PP, Russo G, Kumar CA, Minimo C, Farina A, Tutton S, Nuzzo G, Giuliante F, Angeloni G, Maria V, Vecchio FM, Campli CD, Giordano A (2004), pRb2/p130, vascular endothelial growth factor, p27(KIP1), and proliferating cell nuclear antigen expression in hepatocellular carcinoma: Their clinical significance. Clin Cancer Res 10, 10, 3509–3517. https://doi.org/10.1158/1078-0432.CCR-03-0662. [CrossRef] [PubMed] [Google Scholar]
- Beck TN, Smith CH, Flieder DB, Galloway TJ, Ridge JA, Golemis EA, Mehra R (2017), Head and neck squamous cell carcinoma: Ambiguous human papillomavirus status, elevated p16, and deleted retinoblastoma 1. Head Neck 39, 3, E34–E39. https://doi.org/10.1002/hed.24604. [CrossRef] [PubMed] [Google Scholar]
- Claudio PP, Zamparelli A, Garcia FU, Claudio L, Ammirati G, Farina A, Bovicelli A, Russo G, Giordano GG, McGinnis DE, Giordano A, Cardi G (2002), Expression of cell-cycle-regulated proteins pRb2/p130, p107, p27(kip1), p53, mdm-2, and Ki-67 (MIB-1) in prostatic gland adenocarcinoma. Clin Cancer Res 8, 6, 1808–1815. [PubMed] [Google Scholar]
- Munger K, Jones DL (2015), Human papillomavirus carcinogenesis: An identity crisis in the retinoblastoma tumor suppressor pathway. J Virol 89, 9, 4708–4711. https://doi.org/10.1128/JVI.03486-14. [Google Scholar]
- Roman A, Munger K (2013), The papillomavirus E7 proteins. Virology 445, 1–2, 138–168. https://doi.org/10.1016/j.virol.2013.04.013. [CrossRef] [PubMed] [Google Scholar]
- Caldeira S, de Villiers EM, Tommasino M (2000), Human papillomavirus E7 proteins stimulate proliferation independently of their ability to associate with retinoblastoma protein. Oncogene 19, 6, 821–826. https://doi.org/10.1038/sj.onc.1203375. [Google Scholar]
- Butz K, Geisen C, Ullmann A, Spitkovsky D, Hoppe-Seyler F (1996), Cellular responses of HPV-positive cancer cells to genotoxic anti-cancer agents: repression of E6/E7-oncogene expression and induction of apoptosis. Int J Cancer 68, 4, 506–513. [CrossRef] [PubMed] [Google Scholar]
- Kerr JF, Wyllie AH, Currie AR (1972), Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26, 4, 239–257. PMCID: PMC2008650. [CrossRef] [PubMed] [Google Scholar]
- Majno G, Joris I (1995), Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146, 1, 3–15. PMCID: PMC1870771. [PubMed] [Google Scholar]
- Saraste A, Pulkki K (2000), Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 45, 3, 528–537. PMID: 10728374. [CrossRef] [PubMed] [Google Scholar]
- Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA, Piacentini M, Nagata S, Melino G, Nomenclature Committee on Cell Death (2005), Classification of cell death: Recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 12, Suppl 2, 1463–1467. https://doi.org/10.1038/sj.cdd.4401724. [CrossRef] [PubMed] [Google Scholar]
- Kerr JF, Winterford CM, Harmon BV (1994), Apoptosis. Its significance in cancer and cancer therapy. Cancer 73, 8, 2013–2026. Erratum in: Cancer 73, 12, 3108. [CrossRef] [PubMed] [Google Scholar]
- Wong RS (2011), Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res 30, 87. https://doi.org/10.1186/1756-9966-30-87. [CrossRef] [PubMed] [Google Scholar]
- Hengartner M (1998), Apoptosis. Death by crowd control. Science 281, 5381, 1298–1299. PMID: 9735047. [Google Scholar]
- Bröker LE, Kruyt FA, Giaccone G (2005), Cell death independent of caspases: A review. Clin Cancer Res 11, 9, 3155–3162. https://doi.org/10.1158/1078-0432.CCR-04-2223. [CrossRef] [PubMed] [Google Scholar]
- Kutscher LM, Shaham S (2017), Non-apoptotic cell death in animal development. Cell Death Differ 24, 8, 1326–1336. https://doi.org/10.1038/cdd.2017.20. [CrossRef] [PubMed] [Google Scholar]
- Reed JC (1997), Bcl-2 family proteins: Regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol 34, 4 Suppl 5, 9–19. PMID: 9408956. [Google Scholar]
- Schneider P, Tschopp J (2000), Apoptosis induced by death receptors. Pharm Acta Helv 74, 2–3, 281–286. PMID: 10812970. [CrossRef] [PubMed] [Google Scholar]
- Lerch MM, Gorelick FS (2013), Models of acute and chronic pancreatitis. Gastroenterology 144, 6, 1180–1193. https://doi.org/10.1053/j.gastro.2012.12.043. [CrossRef] [PubMed] [Google Scholar]
- Pinho AV, Chantrill L, Rooman I (2014), Chronic pancreatitis: A path to pancreatic cancer. Cancer Lett 345, 2, 203–209. https://doi.org/10.1016/j.canlet.2013.08.015. [Google Scholar]
- Taylor MA, Amin JD, Kirschmann DA, Schiemann WP (2011), Lysyl oxidase contributes to mechanotransduction-mediated regulation of transforming growth factor-β signaling in breast cancer cells. Neoplasia 13, 5, 406–418. [Google Scholar]
- Moon HJ, Finney J, Xu L, Moore D, Welch DR, Mure M (2013), MCF-7 cells expressing nuclear associated lysyl oxidase-like 2 (LOXL2) exhibit an epithelial-to-mesenchymal transition (EMT) phenotype and are highly invasive in vitro. J Biol Chem 288, 42, 30000–30008. https://doi.org/10.1074/jbc.C113.502310. [CrossRef] [PubMed] [Google Scholar]
- Park JS, Lee JH, Lee YS, Kim JK, Dong SM, Yoon DS (2016), Emerging role of LOXL2 in the promotion of pancreas cancer metastasis. Oncotarget 7, 27, 42539–42552. https://doi.org/10.18632/oncotarget.9918. [PubMed] [Google Scholar]
- Ying L, Marino J, Hussain SP, Khan MA, You S, Hofseth AB, Trivers GE, Dixon DA, Harris CC, Hofseth LJ (2005), Chronic inflammation promotes retinoblastoma protein hyperphosphorylation and E2F1 activation. Cancer Res 65, 20, 9132–9136. https://doi.org/10.1158/0008-5472.CAN-05-1358. [Google Scholar]
- Moreno-Navarrete JM, Petrov P, Serrano M, Ortega F, García-Ruiz E, Oliver P, Ribot J, Ricart W, Palou A, Bonet ML, Fernández-Real JM (2013), Decreased RB1 mRNA, protein, and activity reflect obesity-induced altered adipogenic capacity in human adipose tissue. Diabetes 62, 6, 1923–1931. https://doi.org/10.2337/db12-0977. [CrossRef] [PubMed] [Google Scholar]
- Tommasino M, Crawford L (1995), Human papillomavirus E6 and E7: Proteins which deregulate the cell cycle. Bioessays 17, 6, 509–518. https://doi.org/10.1002/bies.950170607. [CrossRef] [PubMed] [Google Scholar]
- McCormick TM, Canedo NH, Furtado YL, Silveira FA, de Lima RJ, Rosman AD, Almeida Filho GL, Carvalho Mda G (2015), Association between human papillomavirus and Epstein – Barr virus DNA and gene promoter methylation of RB1 and CDH1 in the cervical lesions: A transversal study. Diagn Pathol 10, 59. https://doi.org/10.1186/s13000-015-0283-3. [CrossRef] [PubMed] [Google Scholar]
- Cárdenas-Mondragón MG, Carreón-Talavera R, Camorlinga-Ponce M, Gomez-Delgado A, Torres J, Fuentes-Pananá EM (2013), Epstein Barr virus and Helicobacter pylori co-infection are positively associated with severe gastritis in pediatric patients. PLoS One 8, 4, e62850. https://doi.org/10.1371/journal.pone.0062850. [Google Scholar]
- Cárdenas-Mondragón MG, Torres J, Flores-Luna L, Camorlinga-Ponce M, Carreón-Talavera R, Gomez-Delgado A, Kasamatsu E, Fuentes-Pananá EM (2015), Case–control study of Epstein-Barr virus and Helicobacter pylori serology in Latin American patients with gastric disease. Br J Cancer 112, 12, 1866–7183. https://doi.org/10.1038/bjc.2015.175. [CrossRef] [PubMed] [Google Scholar]
- Koinuma D, Shinozaki M, Nagano Y, Ikushima H, Horiguchi K, Goto K, Chano T, Saitoh M, Imamura T, Miyazono K, Miyazawa K (2011), RB1CC1 protein positively regulates transforming growth factor-beta signaling through the modulation of Arkadia E3 ubiquitin ligase activity. J Biol Chem 286, 37, 32502–32512. https://doi.org/10.1074/jbc.M111.227561. [CrossRef] [PubMed] [Google Scholar]
- Chano T, Saeki Y, Serra M, Matsumoto K, Okabe H (2002), Preferential expression of RB1-inducible coiled-coil 1 in terminal differentiated musculoskeletal cells. Am J Pathol 161, 2, 359–364. [CrossRef] [PubMed] [Google Scholar]
- Ikebuchi K, Chano T, Ochi Y, Tameno H, Shimada T, Hisa Y, Okabe H (2009), RB1CC1 activates the promoter and expression of RB1 in human cancer. Int J Cancer 125, 4, 861–867. https://doi.org/10.1002/ijc.24466. [CrossRef] [PubMed] [Google Scholar]
- Chano T, Ikegawa S, Kontani K, Okabe H, Baldini N, Saeki Y (2002), Identification of RB1CC1, a novel human gene that can induce RB1 in various human cells. Oncogene 21, 8, 1295–1298. https://doi.org/10.1038/sj.onc.1205171. [Google Scholar]
- Li L, Wang G, Hu JS, Zhang GQ, Chen HZ, Yuan Y, Li YL, Lv XJ, Tian FY, Pan SH, Bai XW, Sun B (2018), RB1CC1-enhanced autophagy facilitates PSCs activation and pancreatic fibrogenesis in chronic pancreatitis. Cell Death Dis 9, 10, 952. https://doi.org/10.1038/s41419-018-0980-4. [Google Scholar]
- Guo M, Mu Y, Yu D, Li J, Chen F, Wei B, Bi S, Yu J, Liang F (2018), Comparison of the expression of TGF-β1, E-cadherin, N-cadherin, TP53, RB1CC1 and HIF-1α in oral squamous cell carcinoma and lymph node metastases of humans and mice. Oncol Lett 15, 2, 1639–1645. doi:https://doi.org/10.3892/ol.2017.7456. [PubMed] [Google Scholar]
- Lo PK, Zhang Y, Yao Y, Wolfson B, Yu J, Han SY, Duru N, Zhou Q (2017), Tumor-associated myoepithelial cells promote the invasive progression of ductal carcinoma in situ through activation of TGFβ signaling. J Biol Chem 292, 27, 11466–11484. https://doi.org/10.1074/jbc.M117.775080. [CrossRef] [PubMed] [Google Scholar]
- Brücher BLDM, Jamall IS (2019), Precancerous niche (PCN), a product of fibrosis with remodeling by incessant chronic inflammation. 4open 2, 11, 1–21. https://doi.org/10.1051/fopen/2018009 [CrossRef] [EDP Sciences] [Google Scholar]
- Zhang Q, Dong P, Liu X, Sakuragi N, Guo SW (2017), Enhancer of Zeste homolog 2 (EZH2) induces epithelial-mesenchymal transition in endometriosis. Sci Rep 7, 1, 6804. https://doi.org/10.1038/s41598-017-06920-7. [CrossRef] [PubMed] [Google Scholar]
- Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC (2004), Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 6, 931–940. [CrossRef] [PubMed] [Google Scholar]
- Moreno-Bueno G, Salvador F, Martín A, Floristán A, Cuevas EP, Santos V, Montes A, Morales S, Castilla MA, Rojo-Sebastián A, Martínez A, Hardisson D, Csiszar K, Portillo F, Peinado H, Palacios J, Cano A (2011), Lysyl oxidase-like 2 (LOXL2), a new regulator of cell polarity required for metastatic dissemination of basal-like breast carcinomas. EMBO Mol Med 3, 9, 528–544. https://doi.org/10.1002/emmm.201100156. [Google Scholar]
- Salvador F, Martin A, López-Menéndez C, Moreno-Bueno G, Santos V, Vázquez-Naharro A, Santamaria PG, Morales S, Dubus PR, Muinelo-Romay L, López-López R, Tung JC, Weaver VM, Portillo F, Cano A (2017), Lysyl oxidase-like protein LOXL2 promotes lung metastasis of breast cancer. Cancer Res 77, 21, 5846–5859. https://doi.org/10.1158/0008-5472.CAN-16-3152. [Google Scholar]
- Payne SL, Hendrix MJ, Kirschmann DA (2006), Lysyl oxidase regulates actin filament formation through the p130(Cas)/Crk/DOCK180 signaling complex. J Cell Biochem 98, 4, 827–837. https://doi.org/10.1002/jcb.20792. [CrossRef] [PubMed] [Google Scholar]
- Peng L, Ran YL, Hu H, Yu L, Liu Q, Zhou Z, Sun YM, Sun LC, Pan J, Sun LX, Zhao P, Yang ZH (2009), Secreted LOXL2 is a novel therapeutic target that promotes gastric cancer metastasis via the Src/FAK pathway. Carcinogenesis 30, 10, 1660–1669. https://doi.org/10.1093/carcin/bgp178. [CrossRef] [PubMed] [Google Scholar]
- Ahn SG, Dong SM, Oshima A, Kim WH, Lee HM, Lee SA, Kwon SH, Lee JH, Lee JM, Jeong J, Lee HD, Green JE (2013), LOXL2 expression is associated with invasiveness and negatively influences survival in breast cancer patients. Breast Cancer Res Treat 141, 1, 89–99. https://doi.org/10.1007/s10549-013-2662-3. [CrossRef] [PubMed] [Google Scholar]
- Wiel C, Augert A, Vincent DF, Gitenay D, Vindrieux D, Le Calvé B, Arfi V, Lallet-Daher H, Reynaud C, Treilleux I, Bartholin L, Lelievre E, Bernard D (2013), Lysyl oxidase activity regulates oncogenic stress response and tumorigenesis. Cell Death Dis 4, e855. https://doi.org/10.1038/cddis.2013.382. [Google Scholar]
- Nguyen LT, Song YW, Cho SK (2016), Baicalein inhibits epithelial to mesenchymal transition via downregulation of Cyr61 and LOXL-2 in MDA-MB231 breast cancer cells. Mol Cells 39, 12, 909–914. https://doi.org/10.14348/molcells.2016.0243. [CrossRef] [PubMed] [Google Scholar]
- Laczko R, Szauter KM, Jansen MK, Hollosi P, Muranyi M, Molnar J, Fong KS, Hinek A, Csiszar K (2007), Active lysyl oxidase (LOX) correlates with focal adhesion kinase (FAK)/paxillin activation and migration in invasive astrocytes. Neuropathol Appl Neurobiol 33, 6, 631–643. https://doi.org/10.1111/j.1365-2990.2007.00858.x. [CrossRef] [PubMed] [Google Scholar]
- Ungewiss C, Rizvi ZH, Roybal JD, Peng DH, Gold KA, Shin DH, Creighton CJ, Gibbons DL (2016), The microRNA-200/Zeb1 axis regulates ECM-dependent β1-integrin/FAK signaling, cancer cell invasion and metastasis through CRKL. Sci Rep 6, 18652. https://doi.org/10.1038/srep18652. [CrossRef] [PubMed] [Google Scholar]
- Oakes PW, Bidone TC, Beckham Y, Skeeters AV, Ramirez-San Juan GR, Winter SP, Voth GA, Gardel ML (2018), Lamellipodium is a myosin-independent mechanosensor. Proc Natl Acad Sci USA 115, 11, 2646–2651. https://doi.org/10.1073/pnas.1715869115. [CrossRef] [Google Scholar]
- Krause M, Gautreau A (2014), Steering cell migration: Lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol 15, 9, 577–590. https://doi.org/10.1038/nrm3861. [CrossRef] [PubMed] [Google Scholar]
- Hall A (1998), Rho GTPases and the actin cytoskeleton. Science 279, 5350, 509–514. PMID: 9438836. [Google Scholar]
- Bae YH, Mui KL, Hsu BY, Liu SL, Cretu A, Razinia Z, Xu T, Puré E, Assoian RK (2014), A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling. Sci Signal 7, 330, ra57. https://doi.org/10.1126/scisignal.2004838 [Google Scholar]
- Xiao X, Fischbach S, Zhang T, Chen C, Sheng Q, Zimmerman R, Patnaik S, Fusco J, Ming Y, Guo P, Shiota C, Prasadan K, Gangopadhyay N, Husain SZ, Dong H, Gittes GK (2017), SMAD3/Stat3 signaling mediates β-cell epithelial-mesenchymal transition in chronic pancreatitis-related diabetes. Diabetes 66, 10, 2646–2658. https://doi.org/10.2337/db17-0537. [CrossRef] [PubMed] [Google Scholar]
- Cuevas EP, Eraso P, Mazón MJ, Santos V, Moreno-Bueno G, Cano A, Portillo F (2017), LOXL2 drives epithelial-mesenchymal transition via activation of IRE1-XBP1 signalling pathway. Sci Rep 7, 44988. https://doi.org/10.1038/srep44988. [CrossRef] [PubMed] [Google Scholar]
- Brücher BLDM, Becker KF, Sarbia M (2006), Expression of proteins involved in epithelial-mesenchymal transition in spindle cell (pseudosarcomatous) carcinoma of the esophagus. J Clin Gastroenterol 40, S164–S165. September 2006. http://journals.lww.com/jcge/Citation/2006/09001/Expression_of_proteins_involved_in.5.aspx. [Google Scholar]
- Hoek KS, Schlegel NC, Brafford P, Sucker A, Ugurel S, Kumar R, Weber BL, Nathanson KL, Phillips DJ, Herlyn M, Schadendorf D, Dummer R (2006), Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res 19, 4, 290–302. https://doi.org/10.1111/j.1600-0749.2006.00322.x. [CrossRef] [PubMed] [Google Scholar]
- Li R, Dong T, Hu C, Lu J, Dai J, Liu P (2017), Salinomycin repressed the epithelial-mesenchymal transition of epithelial ovarian cancer cells via downregulating Wnt/β-catenin pathway. Onco Targets Ther 10, 1317–1325. https://doi.org/10.2147/OTT.S126463. [Google Scholar]
- Chen LJ, Ye H, Zhang Q, Li FZ, Song LJ, Yang J, Mu Q, Rao SS, Cai PC, Xiang F, Zhang JC, Su Y, Xin JB, Ma WL (2015), Bleomycin induced epithelial-mesenchymal transition (EMT) in pleural mesothelial cells. Toxicol Appl Pharmacol 283, 2, 75–82. https://doi.org/10.1016/j.taap.2015.01.004. [Google Scholar]
- Zou XZ, Gong ZC, Liu T, He F, Zhu TT, Li D, Zhang WF, Jiang JL, Hu CP (2017), Involvement of epithelial-mesenchymal transition afforded by activation of LOX-1/TGF-β1/KLF6 signaling pathway in diabetic pulmonary fibrosis. Pulm Pharmacol Ther 44, 70–77. https://doi.org/10.1016/j.pupt.2017.03.012. [CrossRef] [PubMed] [Google Scholar]
- Xu Q, Isaji T, Lu Y, Gu W, Kondo M, Fukuda T, Du Y, Gu J (2012), Roles of N-acetylglucosaminyltransferase III in epithelial-to-mesenchymal transition induced by transforming growth factor β1 (TGF-β1) in epithelial cell lines. J Biol Chem 287, 20, 16563–16574. https://doi.org/10.1074/jbc.M111.262154. [CrossRef] [PubMed] [Google Scholar]
- Khan GJ, Gao Y, Gu M, Wang L, Khan S, Naeem F, Yousef BA, Roy D, Semukunzi H, Yuan S, Sun L (2018), TGF-β1 causes EMT by regulating N-acetyl glucosaminyl transferases via downregulation of non muscle myosin II-A through JNK/P38/PI3K pathway in lung cancer. Curr Cancer Drug Targets 18, 2, 209–219. https://doi.org/10.2174/1568009617666170807120304. [PubMed] [Google Scholar]
- Barker TH, Dysart MM, Brown AC, Douglas AM, Fiore VF, Russell AG, Health Review Committee HEI (2014), Synergistic effects of particulate matter and substrate stiffness on epithelial-to-mesenchymal transition. Res Rep Health Eff Inst 182, 3–41. https://www.healtheffects.org/system/files/Barker-182.pdf. [Google Scholar]
- Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH, Majeski HE, Chen AC, Sah RL, Taylor SS, Engler AJ, Yang J (2015), Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat Cell Biol 17, 5, 678–688. https://doi.org/10.1038/ncb3157. [CrossRef] [PubMed] [Google Scholar]
- Lee KW, Yeo SY, Sung CO, Kim SH (2015), Twist1 is a key regulator of cancer-associated fibroblasts. Cancer Res 75, 1, 73–85. https://doi.org/10.1158/0008-5472.CAN-14-0350. [Google Scholar]
- Yeo SY, Ha SY, Lee KW, Cui Y, Yang ZT, Xuan YH, Kim SH (2017), Twist1 is highly expressed in cancer-associated fibroblasts of esophageal squamous cell carcinoma with a prognostic significance. Oncotarget 8, 39, 65265–65280. https://doi.org/10.18632/oncotarget.17941. [PubMed] [Google Scholar]
- Yeo SY, Lee KW, Shin D, An S, Cho KH, Kim SH (2018), A positive feedback loop bi-stably activates fibroblasts. Nat Commun 9, 1, 3016. https://doi.org/10.1038/s41467-018-05274-6. [Google Scholar]
- Moreira DM, Howard LE, Sourbeer KN, Amarasekara HS, Chow LC, Cockrell DC, Pratson CL, Hanyok BT, Aronson WJ, Kane CJ, Terris MK, Amling CL, Cooperberg MR, Freedland SJ (2017), Predicting time from metastasis to overall survival in castration-resistant prostate cancer: Results from SEARCH. Clin Genitourin Cancer 15, 1, 60–66.e2. https://doi.org/10.1016/j.clgc.2016.08.018. [CrossRef] [PubMed] [Google Scholar]
- National Cancer Institute (2017), SEER cancer stat facts: Prostate cancer, http://seer.cancer.gov/statfacts/html/prost.html. Accessed September 25, 2018. [Google Scholar]
- Chiu SJ, Chao JI, Lee YJ, Hsu TS (2008), Regulation of gamma-H2AX and securin contribute to apoptosis by oxaliplatin via a p38 mitogen-activated protein kinase dependent pathway in human colorectal cancer cells. Toxicol Lett 179, 63–70. https://doi.org/10.1016/j.toxlet.2008.04.004. [CrossRef] [PubMed] [Google Scholar]
- Huang S, Liu Q, Liao Q, Wu Q, Sun B, Yang Z, Hu X, Tan M, Li L (2018), Interleukin-6/signal transducer and activator of transcription 3 promotes prostate cancer resistance to androgen deprivation therapy via regulating pituitary tumor transforming gene 1 expression. Cancer Sci 109, 3, 678–687. https://doi.org/10.1111/cas.13493. [CrossRef] [PubMed] [Google Scholar]
- Ghayad SE, Vendrell JA, Bieche I, Spyratos F, Dumontet C, Treilleux I, Lidereau R, Cohen PA (2009), Identification of TACC1, NOV, and PTTG1 as new candidate genes associated with endocrine therapy resistance in breast cancer. J Mol Endocrinol 42, 2, 87–103. https://doi.org/10.1677/JME-08-0076. [PubMed] [Google Scholar]
- Chen WS, Yu YC, Lee YJ, Chen JH, Hsu HY, Chiu SJ (2010), Depletion of securin induces senescence after irradiation and enhances radiosensitivity in human cancer cells regardless of functional p53 expression. Int J Radiat Oncol Biol Phys 77, 566–574. https://doi.org/10.1016/j.ijrobp.2009.12.013. [CrossRef] [PubMed] [Google Scholar]
- Yu YC, Yang PM, Chuah QY, Huang YH, Peng CW, Lee YJ, Chiu SJ (2013), Radiation-induced senescence in securin-deficient cancer cells promotes cell invasion involving the IL-6/STAT3 and PDGF-BB/PDGFR pathways. Sci Rep 3, 1675. https://doi.org/10.1038/srep01675. [CrossRef] [PubMed] [Google Scholar]
- Huang YH, Yang PM, Chuah QY, Lee YJ, Hsieh YF, Peng CW, Chiu SJ (2014), Autophagy promotes radiation-induced senescence but inhibits bystander effects in human breast cancer cells. Autophagy 10, 7, 1212–1228. https://doi.org/10.4161/auto.28772. [CrossRef] [PubMed] [Google Scholar]
- Wieschaus E, Nüsslein-Volhard C, Jürgens G (1984), Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster III. Zygotic loci on the X-chromosome and fourth chromosome. Wilhelm Rouxs Arch Dev Biol 193, 5, 296–387. https://doi.org/10.1007/BF00848158. [CrossRef] [Google Scholar]
- Ozawa M, Baribault H, Kemler R (1989), The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J 8, 6, 1711–1717. [CrossRef] [PubMed] [Google Scholar]
- Valenta T, Hausmann G, Basler K (2012), The many faces and functions of β-catenin. EMBO J 31, 12, 2714–2736. https://doi.org/10.1038/emboj.2012.150. [CrossRef] [PubMed] [Google Scholar]
- van Ooyen A, Nusse R (1984), Structure and nucleotide sequence of the putative mammary oncogene int-1; proviral insertions leave the protein-encoding domain intact. Cell 39, 1, 233–240. https://doi.org/10.1016/0092-8674(84)90209-5. [CrossRef] [PubMed] [Google Scholar]
- Valkenburg KC, Graveel CR, Zylstra-Diegel CR, Zhong Z, Williams BO (2011), Wnt/beta-catenin signaling in normal and cancer stem cells. Cancers (Basel) 3, 2, 2050–2079. https://doi.org/10.3390/cancers3022050. [CrossRef] [PubMed] [Google Scholar]
- Khramtsov AI, Khramtsova GF, Tretiakova M, Huo D, Olopade OI, Goss KH (2010), Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol 176, 6, 2911–2920. https://doi.org/10.2353/ajpath.2010.091125. [CrossRef] [PubMed] [Google Scholar]
- Tao J, Calvisi DF, Ranganathan S, Cigliano A, Zhou L, Singh S, Jiang L, Fan B, Terracciano L, Armeanu-Ebinger S, Ribback S, Dombrowski F, Evert M, Chen X, Monga SPS (2014), Activation of beta-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. Gastroenterology 147, 3, 690–701. https://doi.org/10.1053/j.gastro.2014.05.004. [CrossRef] [PubMed] [Google Scholar]
- Kobayashi M, Honma T, Matsuda Y, Suzuki Y, Narisawa R, Ajioka Y, Asakura H (2000), Nuclear translocation of betacatenin in colorectal cancer. Br J Cancer 82, 10, 1689–1693. https://doi.org/10.1054/bjoc.1999.1112. [CrossRef] [PubMed] [Google Scholar]
- Damsky WE, Curley DP, Santhanakrishnan M, Rosenbaum LE, Platt JT, Gould Rothberg BE, Taketo MM, Dankort D, Rimm DL, McMahon M, Bosenberg M (2011), β-catenin signaling controls metastasis in Braf-activated PTEN-deficient melanomas. Cancer Cell 20, 6, 741–754. https://doi.org/10.1016/j.ccr.2011.10.030. [CrossRef] [PubMed] [Google Scholar]
- Gekas C, D’Altri T, Aligue R, Gonzalez J, Espinosa L, Bigas A (2016), β-catenin is required for T-cell leukemia initiation and MYC transcription downstream of Notch1. Leukemia 30, 10, 2002–2010. https://doi.org/10.1038/leu.2016.106. [CrossRef] [PubMed] [Google Scholar]
- Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001), Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 6818, 363–366. https://doi.org/10.1038/35053110. [CrossRef] [PubMed] [Google Scholar]
- To SKY, Mak ASC, Eva Fung YM, Che CM, Li SS, Deng W, Ru B, Zhang J, Wong AST (2017), β-catenin downregulates Dicer to promote ovarian cancer metastasis. Oncogene 36, 43, 5927–5938. https://doi.org/10.1038/onc.2017.185. [Google Scholar]
- Hirota M, Watanabe K, Hamada S, Sun Y, Strizzi L, Mancino M, Nagaoka T, Gonzales M, Seno M, Bianco C, Salomon DS (2008), Smad2 functions as a co-activator of canonical Wnt/beta-catenin signaling pathway independent of Smad4 through histone acetyltransferase activity of p300. Cell Signal 20, 9, 1632–1641. https://doi.org/10.1016/j.cellsig.2008.05.003. [CrossRef] [PubMed] [Google Scholar]
- Gracz AD, Magness ST (2011), Sry-box (Sox) transcription factors in gastrointestinal physiology and disease. Am J Physiol Gastrointest Liver Physiol 300, 4, G503–G515. https://doi.org/10.1152/ajpgi.00489.2010. [CrossRef] [PubMed] [Google Scholar]
- Bowles J, Schepers G, Koopman P (2000), Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 227, 2, 239–255. https://doi.org/10.1006/dbio.2000.9883. [CrossRef] [PubMed] [Google Scholar]
- Tiwari N, Tiwari VK, Waldmeier L, Balwierz PJ, Arnold P, Pachkov M, Meyer-Schaller N, Schübeler D, van Nimwegen E, Christofori G (2013), Sox4 is a master regulator of epithelial-mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell 23, 6, 768–783. https://doi.org/10.1016/j.ccr.2013.04.020. [CrossRef] [PubMed] [Google Scholar]
- Lin CM, Fang CL, Hseu YC, Chen CL, Wang JW, Hsu SL, Tu MD, Hung ST, Tai C, Uen YH, Lin KY (2013), Clinical and prognostic implications of transcription factor SOX4 in Patients with Colon Cancer. PLoS One 8, 6, e67128. https://doi.org/10.1371/journal.pone.0067128. [Google Scholar]
- Fang CL, Hseu YC, Lin YF, Hung ST, Tai C, Uen YH, Lin KY (2012), Clinical and prognostic association of transcription factor SOX4 in gastric cancer. PLoS One 7, 12, e52804. https://doi.org/10.1371/journal.pone.0052804. [Google Scholar]
- Wang D, Hao T, Pan Y, Qian X, Zhou D (2015), Increased expression of SOX4 is a biomarker for malignant status and poor prognosis in patients with non-small cell lung cancer. Mol Cell Biochem 402, 1–2, 75–82. https://doi.org/10.1007/s11010-014-2315-9. [CrossRef] [PubMed] [Google Scholar]
- Bao ZQ, Zhang CC, Xiao YZ, Zhou JS, Tao YS, Chai DM (2016), Over-expression of Sox4 and β-catenin is associated with a less favorable prognosis of osteosarcoma. J Huazhong Univ Sci Technol Med Sci 36, 2, 193–199. https://doi.org/10.1007/s11596-016-1565-z. [CrossRef] [Google Scholar]
- Wu D, Pan H, Zhou Y, Zhang Z, Qu P, Zhou J, Wang W (2015), Upregulation of microRNA-204 inhibits cell proliferation, migration and invasion in human renal cell carcinoma cells by downregulating SOX4. Mol Med Rep 12, 5, 7059–7064. https://doi.org/10.3892/mmr.2015.4259. [CrossRef] [PubMed] [Google Scholar]
- Lou J, Zhang K, Chen J, Gao Y, Wang R, Chen LB (2015), Prognostic significance of SOX-1 expression in human hepatocellular cancer. Int J Clin Exp Pathol 8, 5, 5411–5418. [PubMed] [Google Scholar]
- Brücher BLDM, Li Y, Schnabel P, Daumer M, Wallace TJ, Kube R, Zilberstein B, Steele S, Voskuil JL, Jamall IS (2016), Genomics, microRNA, epigenetics, and proteomics for future diagnosis, treatment and monitoring response in upper GI cancers. Clin Transl Med 5, 1, 1–16. https://doi.org/10.1186/s40169-016-0093-6. [CrossRef] [PubMed] [Google Scholar]
- Matsushima K, Isomoto H, Inoue N, Nakayama T, Hayashi T, Nakayama M, Nakao K, Hirayama T, Kohno S (2011), MicroRNA signatures in Helicobacter pylori-infected gastric mucosa. Int J Cancer 128, 2, 361–370. https://doi.org/10.1002/ijc.25348. [CrossRef] [PubMed] [Google Scholar]
- Zhou X, Li L, Su J, Zhang G (2014), Decreased miR-204 in H. pylori-associated gastric cancer promotes cancer cell proliferation and invasion by targeting SOX4. PLoS One 9, 7, e101457. https://doi.org/10.1371/journal.pone.0101457. [Google Scholar]
- Jiang L, Zhao Z, Zheng L, Xue L, Zhan Q, Song Y (2017), Downregulation of miR-503 promotes ESCC cell proliferation, migration, and invasion by targeting cyclin D1. Genom Proteom Bioinform 15, 3, 208–217. https://doi.org/10.1016/j.gpb.2017.04.003. [CrossRef] [Google Scholar]
- Brücher BLDM, Keller G, Werner M, Müller U, Lassmann S, Cabras AC, Fend F, Busch R, Stein H, Allescher HD, Molls M, Siewert JR, Höfler H, Specht K (2009), Using Q-RT-PCR to measure Cyclin D1, TS, TP, DPD, and Her-2/neu as predictors for response, survival, and recurrence in patients with esophageal squamous cell carcinoma following radiochemotherapy. Int J Colorectal Dis 24, 1, 69–77. https://doi.org/10.1007/s00384-008-0562-5. [CrossRef] [PubMed] [Google Scholar]
- Wang T, Zhang L, Shi C, Sun H, Wang J, Li R, Zou Z, Ran X, Su Y (2012), TGF-β-induced miR-21 negatively regulates the antiproliferative activity but has no effect on EMT of TGF-β in HaCaT cells. Int J Biochem Cell Biol 44, 2, 366–376. https://doi.org/10.1016/j.biocel.2011.11.012. [CrossRef] [PubMed] [Google Scholar]
- Xie L, Wu M, Lin H, Liu C, Yang H, Zhan J, Sun S (2014), An increased ratio of serum miR-21 to miR-181a levels is associated with the early pathogenic process of chronic obstructive pulmonary disease in asymptomatic heavy smokers. Mol Biosyst 10, 5, 1072–1081. https://doi.org/10.1039/c3mb70564a. [Google Scholar]
- Fu RQ, Hu DP, Hu YB, Hong L, Sun QF, Ding JG (2017), miR-21 promotes α-SMA and collagen I expression in hepatic stellate cells via the Smad7 signaling pathway. Mol Med Rep 16, 4, 4327–4333. https://doi.org/10.3892/mmr.2017.7054. [CrossRef] [PubMed] [Google Scholar]
- Bitomsky N, Bohm M, Klempnauer KH (2004), Transformation suppressor protein Pdcd4 interferes with JNK-mediated phosphorylation of c-Jun and recruitment of the coactivator p300 by c-Jun. Oncogene 23, 45, 7484–7493. https://doi.org/10.1038/sj.onc.1208064. [Google Scholar]
- Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H (2008), MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 15, 2128–2136. https://doi.org/10.1038/sj.onc.1210856. [Google Scholar]
- Krichevsky AM, Gabriely G (2009), miR-21: A small multi-faceted RNA. J Cell Mol Med 13, 1, 39–53. https://doi.org/10.1111/j.1582-4934.2008.00556.x. [PubMed] [Google Scholar]
- Luo M, Tan X, Mu L, Luo Y, Li R, Deng X, Chen N, Ren M, Li Y, Wang L, Wu J, Wan Q (2017), MiRNA-21 mediates the antiangiogenic activity of metformin through targeting PTEN and SMAD7 expression and PI3K/AKT pathway. Sci Rep 7, 43427. https://doi.org/10.1038/srep43427. [CrossRef] [PubMed] [Google Scholar]
- Yamanaka Y, Tagawa H, Takahashi N, Watanabe A, Guo YM, Iwamoto K, Yamashita J, Saitoh H, Kameoka Y, Shimizu N, Ichinohasama R, Sawada K (2009), Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killercell lymphoma/leukemia. Blood 114, 15, 3265–3275. https://doi.org/10.1182/blood-2009-06-222794. [Google Scholar]
- Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, van Rooij E, Olson EN (2010), Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 18, 3, 282–293. https://doi.org/10.1016/j.ccr.2010.08.013. [CrossRef] [PubMed] [Google Scholar]
- Cilek EE, Ozturk H, Gur Dedeoglu B (2017), Construction of miRNA-miRNA networks revealing the complexity of miRNA-mediated mechanisms in trastuzumab treated breast cancer cell lines. PLoS One 12, 10, e0185558. https://doi.org/10.1371/journal.pone.0185558. [Google Scholar]
- Eckner R, Ludlow JW, Lill NL, Oldread E, Arany Z, Modjtahedi N, DeCaprio JA, Livingston DM, Morgan JA (1996), Association of p300 and CBP with simian virus 40 large T antigen. Mol Cell Biol 16, 7, 3454–3464. https://doi.org/10.1128/MCB.16.7.3454. [CrossRef] [PubMed] [Google Scholar]
- Xiao XS, Cai MY, Chen JW, Guan XY, Kung HF, Zeng YX, Xie D (2011), High expression of p300 in human breast cancer correlates with tumor recurrence and predicts adverse prognosis. Chin J Cancer Res 23, 3, 201–207. https://doi.org/10.1007/s11670-011-0201-5. [Google Scholar]
- Smith JL, Freebern WJ, Collins I, De Siervi A, Montano I, Haggerty CM, McNutt MC, Butscher WG, Dzekunova I, Petersen DW, Kawasaki E, Merchant JL, Gardner K (2004), Kinetic profiles of p300 occupancy in vivo predict common features of promoter structure and coactivator recruitment. Proc Natl Acad Sci USA 101, 32, 11554–11559. https://doi.org/10.1073/pnas.0402156101. [CrossRef] [Google Scholar]
- Kanamaru Y, Nakao A, Tanaka Y (2003), Involvement of p300 in TGF-beta/Smad-pathway-mediated alpha2(I) collagen expression in mouse mesangial cells. Nephron Exp Nephrol 95, 1, e36–e42. https://doi.org/10.1159/000073022. [PubMed] [Google Scholar]
- Kassimatis TI, Giannopoulou I, Koumoundourou D, Theodorakopoulou E, Varakis I, Nakopoulou L (2006), Immunohistochemical evaluation of phosphorylated SMAD2/SMAD3 and the co-activator P300 in human glomerulonephritis: Correlation with renal injury. J Cell Mol Med 10, 4, 908–921. https://doi.org/10.2755/jcmm010.004.05. [CrossRef] [PubMed] [Google Scholar]
- Kurebayashi J, Otsuki T, Kunisue H, Tanaka K, Yamamoto S, Sonoo H (2000), Expression levels of estrogen receptor-alpha, estrogen receptor-beta, coactivators, and corepressors in breast cancer. Clin Cancer Res 6, 2, 512–518. [PubMed] [Google Scholar]
- Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG (2007), Roles of CREB-binding protein (CBP)/p300 in respiratory epithelium tumorigenesis. Cell Res 17, 4, 324–332. https://doi.org/10.1038/cr.2007.10. [CrossRef] [PubMed] [Google Scholar]
- Ishihama K, Yamakawa M, Semba S, Takeda H, Kawata S, Kimura S, Kimura W (2007), Expression of HDAC1 and CBP/p300 in human colorectal carcinomas. J Clin Pathol 60, 11, 1205–1210. https://doi.org/10.1136/jcp.2005.029165. [CrossRef] [PubMed] [Google Scholar]
- Debes JD, Sebo TJ, Lohse CM, Murphy LM, Haugen DA, Tindall DJ (2003), p300 in prostate cancer proliferation and progression. Cancer Res 63, 22, 7638–7640. [Google Scholar]
- Borrow J, Stanton VP Jr, Andresen JM, Becher R, Behm FG, Chaganti RS, Civin CI, Disteche C, Dubé I, Frischauf AM, Horsman D, Mitelman F, Volinia S, Watmore AE, Housman DE (1996), The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 14, 1, 33–41. https://doi.org/10.1038/ng0996-33. [Google Scholar]
- Huh JW, Kim HC, Kim SH, Park YA, Cho YB, Yun SH, Lee WY, Chun HK (2013), Prognostic impact of p300 expression in patients with colorectal cancer. J Surg Oncol 108, 6, 374–377. https://doi.org/10.1002/jso.23405. [Google Scholar]
- Bordonaro M, Lazarova DL (2015), CREB-binding protein, p300, butyrate, and Wnt signaling in colorectal cancer. World J Gastroenterol 21, 27, 8238–8248. https://doi.org/10.3748/wjg.v21.i27.8238. [CrossRef] [PubMed] [Google Scholar]
- Black AR, Black JD, Azizkhan-Clifford J (2001), Sp1 and krüppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 188, 2, 143–160. https://doi.org/10.1002/jcp.1111. [Google Scholar]
- Beishline K, Azizkhan-Clifford J (2015), Sp1 and the ‘hallmarks of cancer’. FEBS J 282, 2, 224–258. https://doi.org/10.1111/febs.13148. [CrossRef] [PubMed] [Google Scholar]
- Kadonaga JT, Carner KR, Masiarz FR, Tjian R (1987), Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51, 6, 1079–1090. https://doi.org/10.1016/0092-8674(87)90594-0. [CrossRef] [PubMed] [Google Scholar]
- Kriwacki RW, Schultz SC, Steitz TA, Caradonna JP (1992), Sequence-specific recognition of DNA by zinc-finger peptides derived from the transcription factor Sp1. Proc Natl Acad Sci USA 89, 20, 9759–9763. [CrossRef] [Google Scholar]
- Ito T, Azumano M, Uwatoko C, Itoh K, Kuwahara J (2009), Role of zinc finger structure in nuclear localization of transcription factor Sp1. Biochem Biophys Res Commun 380, 1, 28–32. https://doi.org/10.1016/j.bbrc.2008.12.165. [Google Scholar]
- Williams AO, Isaacs RJ, Stowell KM (2007), Sp1 and Sp3 bound at proximal and distal promoter regions. BMC Mol Biol 8, 36. https://doi.org/10.1186/1471-2199-8-36. [Google Scholar]
- Guan H, Cai J, Zhang N, Wu J, Yuan J, Li J, Li M (2012), Sp1 is upregulated in human glioma, promotes MMP-2-mediated cell invasion and predicts poor clinical outcome. Int J Cancer 130, 3, 593–601. https://doi.org/10.1002/ijc.26049. [CrossRef] [PubMed] [Google Scholar]
- Chiefari E, Brunetti A, Arturi F, Bidart JM, Russo D, Schlumberger M, Filetti S (2002), Increased expression of AP2 and Sp1 transcription factors in human thyroid tumors: A role in NIS expression regulation? BMC Cancer 2, 35. [CrossRef] [PubMed] [Google Scholar]
- Wang XB, Peng WQ, Yi ZJ, Zhu SL, Gan QH (2007), Expression and prognostic value of transcriptional factor sp1 in breast cancer. Ai Zheng 26, 9, 996–1000. [PubMed] [Google Scholar]
- Hsu TI, Wang MC, Chen SY, Yeh YM, Su WC, Chang WC, Hung JJ (2012), Sp1 expression regulates lung tumor progression. Oncogene 31, 35, 3973–3988. https://doi.org/10.1038/onc.2011.568. [Google Scholar]
- Wang L, Wei D, Huang S, Peng Z, Le X, Wu TT, Yao J, Ajani J, Xie K (2003), Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res 9, 17, 6371–6380. [PubMed] [Google Scholar]
- Jiang NY, Woda BA, Banner BF, Whalen GF, Dresser KA, Lu D (2008), Sp1, a new biomarker that identifies a subset of aggressive pancreatic ductal adenocarcinoma. Cancer Epidemiol Biomarkers Prev 17, 7, 1648–1652. https://doi.org/10.1158/1055-9965.EPI-07-2791. [Google Scholar]
- Black AR, Jensen D, Lin SY, Azizkhan JC (1999), Growth/cell cycle regulation of Sp1 phosphorylation. J Biol Chem 274, 3, 1207–1215. https://doi.org/10.1074/jbc.274.3.1207. [CrossRef] [PubMed] [Google Scholar]
- Murthy S, Ryan AJ, Carter AB (2012), SP-1 regulation of MMP-9 expression requires Ser586 in the PEST domain. Biochem J 445, 2, 229–236. https://doi.org/10.1042/BJ20120053. [CrossRef] [PubMed] [Google Scholar]
- Presser LD, McRae S, Waris G (2013), Activation of TGF-β1 promoter by hepatitis C virus-induced AP-1 and Sp1: role of TGF-β1 in hepatic stellate cell activation and invasion. PLoS One 8, 2, e56367. https://doi.org/10.1371/journal.pone.0056367. [Google Scholar]
- Li R, Xiao J, Qing X, Xing J, Xia Y, Qi J, Liu X, Zhang S, Sheng X, Zhang X, Ji X (2015), Sp1 mediates a therapeutic role of MiR-7a/b in angiotensin II-Induced cardiac fibrosis via mechanism involving the TGF-β and MAPKs pathways in cardiac fibroblasts. PLoS One 10, 4, e0125513. https://doi.org/10.1371/journal.pone.0125513. [Google Scholar]
- Liu Y, Liao R, Qiang Z, Zhang C (2017), Pro-inflammatory cytokine-driven PI3K/Akt/Sp1 signalling and H2S production facilitates the pathogenesis of severe acute pancreatitis. Biosci Rep 37, 2, 1–11. https://doi.org/10.1042/BSR20160483. [Google Scholar]
- Yu J, Wei M, Boyd Z, Lehmann EB, Trotta R, Mao H, Liu S, Becknell B, Jaung MS, Jarjoura D (2007), Transcriptional control of human T-BET expression: The role of Sp1. Eur J Immunol 37, 9, 2549–2561. https://doi.org/10.1002/eji.200737088. [CrossRef] [PubMed] [Google Scholar]
- Pan MR, Hung WC (2002), Nonsteroidal anti-inflammatory drugs inhibit matrix metalloproteinase-2 via suppression of the ERK/Sp1-mediated transcription. J Biol Chem 277, 36, 32775–32780. https://doi.org/10.1074/jbc.M202334200. [CrossRef] [PubMed] [Google Scholar]
- Li J, Du S, Sheng X, Liu J, Cen B, Huang F, He Y (2016), MicroRNA-29b inhibits endometrial fibrosis by regulating the Sp1-TGF-β1/Smad-CTGF axis in a rat model. Reprod Sci 23, 3, 386–394. https://doi.org/10.1177/1933719115602768. [CrossRef] [Google Scholar]
- Yang KL, Chang WT, Hong MY, Hung KC, Chuang CC (2017), Prevention of TGF-β-induced early liver fibrosis by a maleic acid derivative anti-oxidant through suppression of ROS, inflammation and hepatic stellate cells activation. PLoS One 12, 4, e0174008. https://doi.org/10.1371/journal.pone.0174008. [Google Scholar]
- Jiang L, Zhou Y, Xiong M, Fang L, Wen P, Cao H, Yang J, Dai C, He W (2013), Sp1 mediates microRNA-29c-regulated type I collagen production in renal tubular epithelial cells. Exp Cell Res 319, 14, 2254–2265. https://doi.org/10.1016/j.yexcr.2013.06.007. [CrossRef] [PubMed] [Google Scholar]
- Spurney CF, Sali A, Guerron AD, Iantorno M, Yu Q, Gordish-Dressman H, Rayavarapu S, van der Meulen J, Hoffman EP, Nagaraju K (2017), Losartan decreases cardiac muscle fibrosis and improves cardiac function in dystrophin-deficient mdx mice. J Cardiovasc Pharmacol Ther 16, 1, 87–95. https://doi.org/10.1177/1074248410381757. [Google Scholar]
- Drews HJ, Yenkoyan K, Lourhmati A, Buadze M, Kabisch D, Verleysdonk S, Petschak S, Beer-Hammer S, Davtyan T, Frey WH 2nd, Gleiter CH, Schwab M, Danielyan L (2019), Intranasal losartan decreases perivascular beta amyloid, inflammation, and the decline of neurogenesis in hypertensive rats. Neurotherapeutics, 1–16. https://doi.org/10.1007/s13311-019-00723-6. [Google Scholar]
- Zhao Y, Cao J, Melamed A, Worley M, Gockley A, Jones D, Nia HT, Zhang Y, Stylianopoulos T, Kumar AS, Mpekris F, Datta M, Sun Y, Wu L, Gao X, Yeku O, Del Carmen MG, Spriggs DR, Jain RK, Xu L (2019), Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma. Proc Natl Acad Sci USA 116, 6, 2210–2219. https://doi.org/10.1073/pnas.1818357116. [CrossRef] [Google Scholar]
- Nishimura N, Kaji K, Kitade M, Aihara Y, Sato S, Seki K, Sawada Y, Takaya H, Okura Y, Kawaratani H, Moriya K, Namisaki T, Mitoro A, Yoshiji H (2018), Acyclic retinoid and angiotensin-II receptor blocker exert a combined protective effect against diethylnitrosamine-induced hepatocarcinogenesis in diabetic OLETF rats. BMC Cancer 18, 1, 1164. https://doi.org/10.1186/s12885-018-5099-6. [CrossRef] [PubMed] [Google Scholar]
- Coulson R, Liew SH, Connelly AA, Yee NS, Deb S, Kumar B, Vargas AC, O’Toole SA, Parslow AC, Poh A, Putoczki T, Morrow RJ, Alorro M, Lazarus KA, Yeap EFW, Walton KL, Harrison CA, Hannan NJ, George AJ, Clyne CD, Ernst M, Allen AM, Chand AL (2017), The angiotensin receptor blocker. Losartan, inhibits mammary tumor development and progression to invasive carcinoma, Oncotarget 8, 12, 18640–18656. https://doi.org/10.18632/oncotarget.15553. [Google Scholar]
- Chua CC, Hamdy RC, Chua BH (1997), Regulation of thrombospondin-1 production by angiotensin II in rat heart endothelial cells. Biochim Biophys Acta 1357, 2, 209–214. PMID: 9223624. [CrossRef] [PubMed] [Google Scholar]
- Chauhan VP, Martin JD, Liu H, Lacorre DA, Jain SR, Kozin SV, Stylianopoulos T, Mousa AS, Han X, Adstamongkonkul P, Popović Z, Huang P, Bawendi MG, Boucher Y, Jain RK (2013), Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun 4, 2516. https://doi.org/10.1038/ncomms3516. [Google Scholar]
- Diop-Frimpong B, Chauhan VP, Krane S, Boucher Y, Jain RK (2011), Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci USA 108, 7, 2909–2914. https://doi.org/10.1073/pnas.1018892108. [CrossRef] [Google Scholar]
- Wang X, Chen X, Huang W, Zhang P, Guo Y, Körner H, Wu H, Wei W (2018), Losartan suppresses the inflammatory response in collagen-induced arthritis by inhibiting the MAPK and NF-κB pathways in B and T cells. Inflammopharmacology, 1–16. https://doi.org/10.1007/s10787-018-0545-2. [PubMed] [Google Scholar]
- Saikawa S, Kaji K, Nishimura N, Seki K, Sato S, Nakanishi K, Kitagawa K, Kawaratani H, Kitade M, Moriya K, Namisaki T, Mitoro A, Yoshiji H (2018), Angiotensin receptor blockade attenuates cholangiocarcinoma cell growth by inhibiting the oncogenic activity of yes-associated protein. Cancer Lett 434, 120–129. https://doi.org/10.1016/j.canlet.2018.07.021. [Google Scholar]
- Matsushima-Otsuka S, Fujiwara-Tani R, Sasaki T, Ohmori H, Nakashima C, Kishi S, Nishiguchi Y, Fujii K, Luo Y, Kuniyasu H (2018), Significance of intranuclear angiotensin-II type 2 receptor in oral squamous cell carcinoma. Oncotarget 9, 93, 36561–36574. https://doi.org/10.18632/oncotarget.26337. [PubMed] [Google Scholar]
- Shen H, Gao Q, Ye Q, Yang S, Wu Y, Huang Q, Wang X, Sun Z (2018), Peritumoral implantation of hydrogel-containing nanoparticles and losartan for enhanced nanoparticle penetration and antitumor effect. Int J Nanomedicine 13, 7409–7426. https://doi.org/10.2147/IJN.S178585. [Google Scholar]
- Murphy JE, et al. (2018), Potentially curative combination of TGF-b1 inhibitor losartan and FOLFIRINOX (FFX) for locally advanced pancreatic cancer (LAPC): R0 resection rates and preliminary survival data from a prospective phase II study. J Clin Oncol 36, 15_Suppl, 4116–4116. [Google Scholar]
- Busby J, McMenamin Ú, Spence A, Johnston BT, Hughes C, Cardwell CR (2018), Angiotensin receptor blocker use and gastro-oesophageal cancer survival: A population-based cohort study. Aliment Pharmacol Ther 47, 2, 279–288. https://doi.org/10.1111/apt.14388. [Google Scholar]
- Jia Z, Gao Y, Wang L, Li Q, Zhang J, Le X, Wei D, Yao JC, Chang DZ, Huang S, Xie K (2010), Combined treatment of pancreatic cancer with mithramycin A and tolfenamic acid promotes Sp1 degradation and synergistic antitumor activity. Cancer Res 70, 3, 1111–1119. https://doi.org/10.1158/0008-5472.CAN-09-3282. [Google Scholar]
- Gao Y, Jia Z, Kong X, Li Q, Chang DZ, Wei D, Le X, Suyun H, Huang S, Wang L, Xie K (2011), Combining betulinic acid and mithramycin A effectively suppresses pancreatic cancer by inhibiting proliferation, invasion and angiogenesis. Cancer Res 71, 15, 5182–5193. https://doi.org/10.1158/0008-5472.CAN-10-2016. [Google Scholar]
- Li JM, Datto MB, Shen X, Hu PP, Yu Y, Wang XF (1998), Sp1, but not Sp3, functions to mediate promoter activation by TGF-beta through canonical Sp1 binding sites. Nucleic Acids Res 26, 10, 2449–2456. [CrossRef] [PubMed] [Google Scholar]
- Hu J, Shan Z, Hu K, Ren F, Zhang W, Han M, Li Y, Feng K, Lei L, Feng Y (2016), miRNA-223 inhibits epithelial-mesenchymal transition in gastric carcinoma cells via Sp1. Int J Oncol 49, 1, 325–335. https://doi.org/10.3892/ijo.2016.3533. [CrossRef] [Google Scholar]
- Hsieh MJ, Chen JC, Yang WE, Chien SY, Chen MK, Lo YS, Hsi YT, Chuang YC, Lin CC, Yang SF (2017), Dehydroandrographolide inhibits oral cancer cell migration and invasion through NF-κB-, AP-1-, and SP-1-modulated matrix metalloproteinase-2 inhibition. Biochem Pharmacol 130, 10–20. https://doi.org/10.1016/j.bcp.2017.01.011. [CrossRef] [PubMed] [Google Scholar]
- Eferl R, Hasselblatt P, Rath M, Popper H, Zenz R, Komnenovic V, Idarraga MH, Kenner L, Wagner EF (2008), Development of pulmonary fibrosis through a pathway involving the transcription factor Fra-2/AP-1. Proc Natl Acad Sci USA 105, 30, 10525–10530. https://doi.org/10.1073/pnas.0801414105. [CrossRef] [Google Scholar]
- Angel P, Szabowski A, Schorpp-Kistner M (2001), Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 20, 19, 2413–2423. https://doi.org/10.1038/sj.onc.1204380. [Google Scholar]
- Kim JM, Jung HY, Lee JY, Youn J, Lee CH, Kim KH (2005), Mitogen-activated protein kinase and activator protein-1 dependent signals are essential for Bacteroides fragilis enterotoxin-induced enteritis. Eur J Immunol 35, 9, 2648–2657. https://doi.org/10.1002/eji.200526321. [CrossRef] [PubMed] [Google Scholar]
- Jayakar SK, Loudig O, Brandwein-Gensler M, Kim RS, Ow TJ, Ustun B, Harris TM, Prystowsky MB, Childs G, Segall JE, Belbin TJ (2017), Apolipoprotein E promotes invasion in oral squamous cell carcinoma. Am J Pathol 187, 10, 2259–2272. https://doi.org/10.1016/j.ajpath.2017.06.016. [CrossRef] [PubMed] [Google Scholar]
- Prusty BK, Das BC (2005), Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin. Int J Cancer 113, 6, 951–960. https://doi.org/10.1002/ijc.20668. [CrossRef] [PubMed] [Google Scholar]
- Tyagi A, Vishnoi K, Kaur H, Srivastava Y, Roy BG, Das BC, Bharti AC (2017), Cervical cancer stem cells manifest radioresistance: Association with upregulated AP-1 activity. Sci Rep 7, 1, 4781. https://doi.org/10.1038/s41598-017-05162-x. [CrossRef] [PubMed] [Google Scholar]
- Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A (2006), IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med 12, 1, 99–106. https://doi.org/10.1038/nm1332. [CrossRef] [PubMed] [Google Scholar]
- Park CH, Kim DH, Park MH, Kim MK, Kim ND, Kim CM, Tanaka T, Yokozawa T, Chung HY, Moon HR (2014), Chinese prescription Kangen-karyu and Salviae miltiorrhizae Radix improve age-related oxidative stress and inflammatory response through the PI3K/Akt or MAPK pathways. Am J Chin Med 42, 4, 987–1005. https://doi.org/10.1142/S0192415X14500621. [Google Scholar]
- Kim JM, Noh EM, Song HK, Lee M, Lee SH, Park SH, Ahn CK, Lee GS, Byun EB, Jang BS, Kwon KB, Lee YR (2017), Salvia miltiorrhiza extract inhibits TPA-induced MMP-9 expression and invasion through the MAPK/AP-1 signaling pathway in human breast cancer MCF-7 cells. Oncol Lett 14, 3, 3594–3600. https://doi.org/10.3892/ol.2017.6638. [CrossRef] [PubMed] [Google Scholar]
- Kajanne R, Miettinen P, Mehlem A, Leivonen SK, Birrer M, Foschi M, Kähäri VM, Leppä S (2007), EGF-R regulates MMP function in fibroblasts through MAPK and AP-1 pathways. J Cell Physiol 212, 2, 489–497. https://doi.org/10.1002/jcp.21041. [Google Scholar]
- Lin CW, Hou WC, Shen SC, Juan SH, Ko CH, Wang LM, Chen YC (2008), Quercetin inhibition of tumor invasion via suppressing PKC delta/ERK/AP-1-dependent matrix metalloproteinase-9 activation in breast carcinoma cells. Carcinogenesis 29, 9, 1807–1815. https://doi.org/10.1093/carcin/bgn162. [CrossRef] [PubMed] [Google Scholar]
- Ghatak S, Markwald RR, Hascall VC, Dowling W, Lottes RG, Baatz JE, Beeson G, Beeson CC, Perrella MA, Thannickal VJ, Misra S (2017), Transforming growth factor β1 (TGFβ1) regulates CD44V6 expression and activity through extracellular signal-regulated kinase (ERK)-induced EGR1 in pulmonary fibrogenic fibroblasts. J Biol Chem 292, 25, 10465–10489. https://doi.org/10.1074/jbc.M116.752451. [CrossRef] [PubMed] [Google Scholar]
- Guinea-Viniegra J, Jiménez M, Schonthaler HB, Navarro R, Delgado Y, Concha-Garzón MJ, Tschachler E, Obad S, Daudén E, Wagner EF (2014), Targeting miR-21 to treat psoriasis. Sci Transl Med 6, 225, 225. https://doi.org/10.1126/scitranslmed.3008089. [Google Scholar]
- Talotta F, Cimmino A, Matarazzo MR, Casalino L, De Vita G, D’Esposito M, Di Lauro R, Verde P (2009), An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene 28, 1, 73–84. https://doi.org/10.1038/onc.2008.370. [Google Scholar]
- Misawa A, Katayama R, Koike S, Tomida A, Watanabe T, Fujita N (2010), AP-1-dependent miR-21 expression contributes to chemoresistance in cancer stem cell-like SP cells. Oncol Res 19, 1, 23–33. [CrossRef] [PubMed] [Google Scholar]
- Suh J, Jeon YJ, Kim HM, Kang JS, Kaminski NE, Yang KH (2002), Aryl hydrocarbon receptor-dependent inhibition of AP-1 activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin in activated B cells. Toxicol Appl Pharmacol 181, 2, 116–123. https://doi.org/10.1006/taap.2002.9403. [Google Scholar]
- Øvrevik J, Låg M, Lecureur V, Gilot D, Lagadic-Gossmann D, Refsnes M, Schwarze PE, Skuland T, Becher R, Holme JA (2014), AhR and Arnt differentially regulate NF-κB signaling and chemokine responses in human bronchial epithelial cells. Cell Commun Signal 12, 48, 1–7. https://doi.org/10.1186/s12964-014-0048-8. [CrossRef] [PubMed] [Google Scholar]
- Poland A, Glover E (1973), 2,3,7,8-Tetrachlorodibenzo-p-dioxin: a potent inducer of -aminolevulinic acid synthetase. Science 179, 4072, 476–477. PMID: 4705342. [Google Scholar]
- Poland A, Glover E (1973), Chlorinated dibenzo-p-dioxins: potent inducers of delta-aminolevulinic acid synthetase and aryl hydrocarbon hydroxylase. II. A study of the structure-activity relationship. Mol Pharmacol 9, 6, 736–747. PMID: 4762634. [PubMed] [Google Scholar]
- Poland A, Glover E, Kende AS (1976), Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem 251, 16, 4936–4946. PMID: 956169. [PubMed] [Google Scholar]
- Okey AB, Bondy GP, Mason ME, Kahl GF, Eisen HJ, Guenthner TM, Nebert DW (1979), Regulatory gene product of the Ah locus. Characterization of the cytosolic inducer-receptor complex and evidence for its nuclear translocation. J Biol Chem 254, 22, 11636–11648. PMID: 500663. [PubMed] [Google Scholar]
- Okey AB, Bondy GP, Mason ME, Nebert DW, Forster-Gibson CJ, Muncan J, Dufresne MJ (1980), Temperature-dependent cytosol-to-nucleus translocation of the Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in continuous cell culture lines. J Biol Chem 255, 23, 11415–11422. PMID: 6254968. [PubMed] [Google Scholar]
- Hoffman EC, Reyes H, Chu FF, Sander F, Conley LH, Brooks BA, Hankinson O (1991), Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 252, 5008, 954–958. PMID: 1852076. [Google Scholar]
- Trombino AF, Near RI, Matulka RA, Yang S, Hafer LJ, Toselli PA, Kim DW, Rogers AE, Sonenshein GE, Sherr DH (2000), Expression of the aryl hydrocarbon receptor/transcription factor (AhR) and AhR-regulated CYP1 gene transcripts in a rat model of mammary tumorigenesis. Breast Cancer Res Treat 63, 2, 117–131. PMID: 11097088. [CrossRef] [PubMed] [Google Scholar]
- Schlezinger JJ, Liu D, Farago M, Seldin DC, Belguise K, Sonenshein GE, Sherr DH (2006), A role for the aryl hydrocarbon receptor in mammary gland tumorigenesis. Biol Chem 387, 9, 1175–1187. https://doi.org/10.1515/BC.2006.145. [PubMed] [Google Scholar]
- Fenton SE, Reed C, Newbold RR (2012), Perinatal environmental exposures affect mammary development, function, and cancer risk in adulthood. Annu Rev Pharmacol Toxicol 52, 455–479. https://doi.org/10.1146/annurev-pharmtox-010611-134659. [Google Scholar]
- Vacher S, Castagnet P, Chemlali W, Lallemand F, Meseure D, Pocard M, Bieche I, Perrot-Applanat M (2018), High AHR expression in breast tumors correlates with expression of genes from several signaling pathways namely inflammation and endogenous tryptophan metabolism. PLoS One 13, 1, e0190619. https://doi.org/10.1371/journal.pone.0190619. [Google Scholar]
- Yang X, Liu D, Murray TJ, Mitchell GC, Hesterman EV, Karchner SI, Merson RR, Hahn ME, Sherr DH (2005), The aryl hydrocarbon receptor constitutively represses c-myc transcription in human mammary tumor cells. Oncogene 24, 53, 7869–7881. https://doi.org/10.1038/sj.onc.1208938. [Google Scholar]
- Modjtahedi N, Lavialle C, Poupon MF, Landin RM, Cassingena R, Monier R, Brison O (1985), Increased level of amplification of the c-myc oncogene in tumors induced in nude mice by a human breast carcinoma cell line. Cancer Res 45, 9, 4372–4379. PMID: 4028021. [Google Scholar]
- Whittaker JL, Walker RA, Varley JM (1986), Differential expression of cellular oncogenes in benign and malignant human breast tissue. Int J Cancer 38, 5, 651–655. PMID: 3770994. [CrossRef] [PubMed] [Google Scholar]
- Pavelic ZP, Steele P, Presler HD (1991), Evaluation of c-myc proto-oncogene in primary human breast carcinomas. Anticancer Res 11, 4, 1421–1427. PMID: 1660688. [PubMed] [Google Scholar]
- Berns EM, Klijn JG, van Putten WL, van Staveren IL, Portengen H, Foekens JA (1992), c-myc amplification is a better prognostic factor than HER2/neu amplification in primary breast cancer. Cancer Res 52, 5, 1107–1113. PMID: 1737370. [Google Scholar]
- Borg A, Baldetorp B, Ferno M, Olsson H, Sigurdsson H (1992), c-myc amplification is an independent prognostic factor in postmenopausal breast cancer. Int J Cancer 51, 5, 687–691. PMID: 1612775. [CrossRef] [PubMed] [Google Scholar]
- Marcu KB, Harris LJ, Stanton LW, Erikson J, Watt R, Croce CM (1983), Transcriptionally active c-myc oncogene is contained within NIARD, a DNA sequence associated with chromosome translocations in B-cell neoplasia. Proc Natl Acad Sci USA 80, 2, 519–523. PMCID: PMC393410. [CrossRef] [Google Scholar]
- Mushinski JF, Bauer SR, Potter M, Reddy EP (1983), Increased expression of myc-related oncogene mRNA characterizes most BALB/c plasmacytomas induced by pristane or Abelson murine leukemia virus. Proc Natl Acad Sci USA 80, 4, 1073–1077. PMCID: PMC393530. [CrossRef] [Google Scholar]
- Roy-Burman P, Devi BG, Parker JW (1983), Differential expression of c-erbB, c-myc and c-myb oncogene loci in human lymphomas and leukemias. Int J Cancer 32, 2, 185–191. PMID: 6603429. [CrossRef] [PubMed] [Google Scholar]
- Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD (1983), Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306, 5939, 194–196. PMID: 6646201. [CrossRef] [PubMed] [Google Scholar]
- Griffin CA, Baylin SB (1985), Expression of the c-myb oncogene in human small cell lung carcinoma. Cancer Res 45, 1, 272–275. [Google Scholar]
- Kohl NE, Gee CE, Alt FW (1984), Activated expression of the N-myc gene in human neuroblastomas and related tumors. Science 226, 4680, 1335–1337. PMID: 6505694. [Google Scholar]
- Makino R, Hayashi K, Sato S, Sugimura T (1984), Expressions of the c-Ha-ras and c-myc genes in rat liver tumors. Biochem Biophys Res Commun 119, 3, 1092–1102. PMID: 6712668. [Google Scholar]
- Yaswen P, Goyette M, Shank PR, Fausto N (1985), Expression of c-Ki-ras, c-Ha-ras, and c-myc in specific cell types during hepatocarcinogenesis. Mol Cell Biol 5, 4, 780–786. PMID: 2581126. [CrossRef] [PubMed] [Google Scholar]
- Sikora K, Evan G, Stewart J, Watson JV (1985), Detection of the c-myc oncogene product in testicular cancer. Br J Cancer 52, 2, 171–176. [CrossRef] [PubMed] [Google Scholar]
- Stewart J, Evan G, Watson J, Sikora K (1986), Detection of the c-myc oncogene product in colonic polyps and carcinomas. Br J Cancer 53, 1, 1–6. PMID: 3511934. [CrossRef] [PubMed] [Google Scholar]
- Sikora K, Chan S, Evan G, Gabra H, Markham N, Stewart J, Watson J (1987), c-myc oncogene expression in colorectal cancer. Cancer 59, 7, 1289–1295. [CrossRef] [PubMed] [Google Scholar]
- Sovak MA, Bellas RE, Kim DW, Zanieski GJ, Rogers AE, Traish AM, Sonenshein GE (1997), Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. J Clin Invest 100, 12, 2952–2960. [CrossRef] [PubMed] [Google Scholar]
- Tian Y, Ke S, Denison MS, Rabson AB, Gallo MA (1999), Ah receptor and NF-kappaB interactions, a potential mechanism for dioxin toxicity. J Biol Chem 274, 1, 510–515. PMID: 9867872. [CrossRef] [PubMed] [Google Scholar]
- Kim DW, Gazourian L, Quadri SA, Romieu-Mourez R, Sherr DH, Sonenshein GE (2000), The RelA NF-kappaB subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells. Oncogene 19, 48, 5498–5506. https://doi.org/10.1038/sj.onc.1203945. [Google Scholar]
- Stobbe-Maicherski N, Wolff S, Wolff C, Abel J, Sydlik U, Frauenstein K, Haarmann-Stemmann T (2013), The interleukin-6-type cytokine oncostatin M induces aryl hydrocarbon receptor expression in a STAT3-dependent manner in human HepG2 hepatoma cells. FEBS J 280, 24, 6681–6690. https://doi.org/10.1111/febs.12571. [CrossRef] [PubMed] [Google Scholar]
- DiNatale BC, Schroeder JC, Francey LJ, Kusnadi A, Perdew GH (2010), Mechanistic insights into the events that lead to synergistic induction of interleukin 6 transcription upon activation of the aryl hydrocarbon receptor and inflammatory signaling. J Biol Chem 285, 32, 24388–24397. https://doi.org/10.1074/jbc.M110.118570. [CrossRef] [PubMed] [Google Scholar]
- Nguyen CH, Brenner S, Huttary N, Atanasov AG, Dirsch VM, Chatuphonprasert W, Holzner S, Stadler S, Riha J, Krieger S, de Martin R, Bago-Horvath Z, Krupitza G, Jäger W (2016), AHR/CYP1A1 interplay triggers lymphatic barrier breaching in breast cancer spheroids by inducing 12(S)-HETE synthesis. Hum Mol Genet 25, 22, 5006–5016. https://doi.org/10.1093/hmg/ddw329. [PubMed] [Google Scholar]
- Metidji A, Omenetti S, Crotta S, Li Y, Nye E, Ross E, Li V, Maradana MR, Schiering C, Stockinger B (2018), The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immunity 49, 2, 353–362.e5. https://doi.org/10.1016/j.immuni.2018.07.010. [CrossRef] [PubMed] [Google Scholar]
- Kawajiri K, Fujii-Kuriyama Y (2017), The aryl hydrocarbon receptor: A multifunctional chemical sensor for host defense and homeostatic maintenance. Exp Anim 66, 2, 75–89. https://doi.org/10.1538/expanim.16-0092. [CrossRef] [PubMed] [Google Scholar]
- Vogel CF, Sciullo E, Matsumura F (2004), Activation of inflammatory mediators and potential role of ah-receptor ligands in foam cell formation. Cardiovasc Toxicol 4, 4, 363–373. PMID: 15531779. [Google Scholar]
- Pierre S, Chevallier A, Teixeira-Clerc F, Ambolet-Camoit A, Bui LC, Bats AS, Fournet JC, Fernandez-Salguero P, Aggerbeck M, Lotersztajn S, Barouki R, Coumoul X (2014), Aryl hydrocarbon receptor-dependent induction of liver fibrosis by dioxin. Toxicol Sci 137, 1, 114–124. https://doi.org/10.1093/toxsci/kft236. [CrossRef] [PubMed] [Google Scholar]
- Harrill JA, Layko D, Nyska A, Hukkanen RR, Manno RA, Grassetti A, Lawson M, Martin G, Budinsky RA, Rowlands JC, Thomas RS (2016), Aryl hydrocarbon receptor knockout rats are insensitive to the pathological effects of repeated oral exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Appl Toxicol 36, 6, 802–814. https://doi.org/10.1002/jat.3211. [Google Scholar]
- Harrill JA, Parks BB, Wauthier E, Rowlands JC, Reid LM, Thomas RS (2015), Lineage-dependent effects of aryl hydrocarbon receptor agonists contribute to liver tumorigenesis. Hepatology 61, 2, 548–560. https://doi.org/10.1002/hep.27547. [Google Scholar]
- Gao Z, Bu Y, Liu X, Wang X, Zhang G, Wang E, Ding S, Liu Y, Shi R, Li Q, Fu J, Yu Z (2016), TCDD promoted EMT of hFPECs via AhR, which involved the activation of EGFR/ERK signaling. Toxicol Appl Pharmacol 298, 48–55. https://doi.org/10.1016/j.taap.2016.03.005. [Google Scholar]
- Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, Jugold M, Guillemin GJ, Miller CL, Lutz C, Radlwimmer B, Lehmann I, von Deimling A, Wick W, Platten M (2011), An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478, 7368, 197–203. https://doi.org/10.1038/nature10491. [CrossRef] [PubMed] [Google Scholar]
- Gramatzki D, Pantazis G, Schittenhelm J, Tabatabai G, Köhle C, Wick W, Schwarz M, Weller M, Tritschler I (2009), Aryl hydrocarbon receptor inhibition downregulates the TGF-beta/Smad pathway in human glioblastoma cells. Oncogene 28, 28, 2593–2605. https://doi.org/10.1038/onc.2009. [Google Scholar]
- Löb S, Königsrainer A, Zieker D, Brücher BL, Rammensee HG, Opelz G, Terness P (2009), IDO1 and IDO2 are expressed in human tumors: Levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol Immunother 58, 1, 153–157. https://doi.org/10.1007/s00262-008-0513-6. [CrossRef] [PubMed] [Google Scholar]
- Alahdal M, Xing Y, Tang T, Liang J (2018), 1-methyl-D-tryptophan reduces tumor CD133+ cells, Wnt/β-catenin and NF-κβp65 while enhances lymphocytes NF-κβ2, STAT3, and STAT4 pathways in murine pancreatic adenocarcinoma. Sci Rep 8, 1, 9869. https://doi.org/10.1038/s41598-018-28238-8. [CrossRef] [PubMed] [Google Scholar]
- Lewis HC, Chinnadurai R, Bosinger SE, Galipeau J (2017), The IDO inhibitor 1-methyl tryptophan activates the aryl hydrocarbon receptor response in mesenchymal stromal cells. Oncotarget 8, 54, 91914–91927. https://doi.org/10.18632/oncotarget.20166. [PubMed] [Google Scholar]
- Murphy KA, Villano CM, Dorn R, White LA (2004), Interaction between the aryl hydrocarbon receptor and retinoic acid pathways increases matrix metalloproteinase-1 expression in keratinocytes. J Biol Chem 279, 24, 25284–25293. [CrossRef] [PubMed] [Google Scholar]
- Haque M, Francis J, Sehgal I (2005), Aryl hydrocarbon exposure induces expression of MMP-9 in human prostate cancer cell lines. Cancer Lett 225, 1, 159–166. https://doi.org/10.1016/j.canlet.2004.11.043. [Google Scholar]
- Peng TL, Chen J, Mao W, Song X, Chen MH (2009), Aryl hydrocarbon receptor pathway activation enhances gastric cancer cell invasiveness likely through a c-Jun-dependent induction of matrix metalloproteinase-9. BMC Cell Biol 10, 27. https://doi.org/10.1186/1471-2121-10-27. [CrossRef] [PubMed] [Google Scholar]
- Villano CM, Murphy KA, Akintobi A, White LA (2006), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces matrix metalloproteinase (MMP) expression and invasion in A2058 melanoma cells. Toxicol Appl Pharmacol 210, 3, 212–224. [Google Scholar]
- Wei Y, Zhao L, He W, Yang J, Geng C, Chen Y, Liu T, Chen H, Li Y (2016), Benzo[a]pyrene promotes gastric cancer cell proliferation and metastasis likely through the Aryl hydrocarbon receptor and ERK-dependent induction of MMP9 and c-myc. Int J Oncol 49, 5, 2055–2063. https://doi.org/10.3892/ijo.2016.3674. [CrossRef] [Google Scholar]
- Yin XF, Chen J, Mao W, Wang YH, Chen MH (2013), Downregulation of aryl hydrocarbon receptor expression decreases gastric cancer cell growth and invasion. Oncol Rep 30, 1, 364–370. https://doi.org/10.3892/or.2013.2410. [CrossRef] [PubMed] [Google Scholar]
- Fujisawa-Sehara A, Yamane M, Fujii-Kuriyama Y (1988), A DNA-binding factor specific for xenobiotic responsive elements of P-450c gene exists as a cryptic form in cytoplasm: its possible translocation to nucleus. Proc Natl Acad Sci USA 85, 16, 5859–5863. PMCID: PMC281864. [CrossRef] [Google Scholar]
- Whitlock JP Jr (1999), Induction of cytochrome P4501A1. Annu Rev Pharmacol Toxicol 39, 103–125. https://doi.org/10.1146/annurev.pharmtox.39.1.103. [Google Scholar]
- Legraverend C, Hannah RR, Eisen HJ, Owens IS, Nebert DW, Hankinson O (1982), Regulatory gene product of the Ah locus. Characterization of receptor mutants among mouse hepatoma clones. J Biol Chem 257, 11, 6402–6407. [PubMed] [Google Scholar]
- Okey AB (2007), An aryl hydrocarbon receptor odyssey to the shores of toxicology: The Deichmann Lecture, International Congress of Toxicology-XI. Toxicol Sci 98, 1, 5–38. https://doi.org/10.1093/toxsci/kfm096. [CrossRef] [PubMed] [Google Scholar]
- Shimizu Y, Nakatsuru Y, Ichinose M, Takahashi Y, Kume H, Mimura J, Fujii-Kuriyama Y, Ishikawa T (2000), Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc Natl Acad Sci USA 97, 2, 779–782. PMCID: PMC15407. [CrossRef] [Google Scholar]
- Nebert DW, Dalton TP, Okey AB, Gonzalez FJ (2004), Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 279, 23, 23847–23850. https://doi.org/10.1074/jbc.R400004200. [CrossRef] [PubMed] [Google Scholar]
- Brücher BLDM, Jamall IS (2016), Somatic mutation theory – Why it’s wrong for most cancers. Cell Physiol Biochem 38, 5, 1663–1680. https://doi.org/10.1159/000443106. [CrossRef] [PubMed] [Google Scholar]
- Takeda T, Komiya Y, Koga T, Ishida T, Ishii Y, Kikuta Y, Nakaya M, Kurose H, Yokomizo T, Shimizu T, Uchi H, Furue M, Yamada H (2017), Dioxin-induced increase in leukotriene B4 biosynthesis through the aryl hydrocarbon receptor and its relevance to hepatotoxicity owing to neutrophil infiltration. J Biol Chem 292, 25, 10586–10599. https://doi.org/10.1074/jbc.M116.764332. [CrossRef] [PubMed] [Google Scholar]
- Su HH, Lin HT, Suen JL, Sheu CC, Yokoyama KK, Huang SK, Cheng CM (2016), Aryl hydrocarbon receptor-ligand axis mediates pulmonary fibroblast migration and differentiation through increased arachidonic acid metabolism. Toxicology 370, 116–126. https://doi.org/10.1016/j.tox.2016.09.019. [CrossRef] [PubMed] [Google Scholar]
- Chiappini F, Bastón JI, Vaccarezza A, Singla JJ, Pontillo C, Miret N, Farina M, Meresman G, Randi A (2016), Enhanced cyclooxygenase-2 expression levels and metalloproteinase 2 and 9 activation by Hexachlorobenzene in human endometrial stromal cells. Biochem Pharmacol 109, 91–104. https://doi.org/10.1016/j.bcp.2016.03.024. [CrossRef] [PubMed] [Google Scholar]
- de Tomaso Portaz AC, Caimi GR, Sánchez M, Chiappini F, Randi AS, Kleiman de Pisarev DL, Alvarez L (2015), Hexachlorobenzene induces cell proliferation, and aryl hydrocarbon receptor expression (AhR) in rat liver preneoplastic foci, and in the human hepatoma cell line HepG2. AhR is a mediator of ERK1/2 signaling, and cell cycle regulation in HCB-treated HepG2 cells. Toxicology 336, 36–47. https://doi.org/10.1016/j.tox.2015.07.013. [CrossRef] [PubMed] [Google Scholar]
- Díaz-Díaz CJ, Ronnekleiv-Kelly SM, Nukaya M, Geiger PG, Balbo S, Dator R, Megna BW, Carney PR, Bradfield CA, Kennedy GD (2016), The aryl hydrocarbon receptor is a repressor of inflammation-associated colorectal tumorigenesis in mouse. Ann Surg 264, 3, 429–436. https://doi.org/10.1097/SLA.0000000000001874. [CrossRef] [PubMed] [Google Scholar]
- Jönsson ME, Franks DG, Woodin BR, Jenny MJ, Garrick RA, Behrendt L, Hahn ME, Stegeman JJ (2009), The tryptophan photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) binds multiple AHRs and induces multiple CYP1 genes via AHR2 in zebrafish. Chem Biol Interact 181, 3, 447–454. https://doi.org/10.1016/j.cbi.2009.07.003. [CrossRef] [PubMed] [Google Scholar]
- Ji T, Xu C, Sun L, Yu M, Peng K, Qiu Y, Xiao W, Yang H (2015), Aryl hydrocarbon receptor activation down-regulates IL-7 and reduces inflammation in a mouse model of DSS-induced colitis. Dig Dis Sci 60, 7, 1958–1966. https://doi.org/10.1007/s10620-015-3632-x. [CrossRef] [PubMed] [Google Scholar]
- Chen JY, Li CF, Kuo CC, Tsai KK, Hou MF, Hung WC (2014), Cancer/stroma interplay via cyclooxygenase-2 and indoleamine 2,3-dioxygenase promotes breast cancer progression. Breast Cancer Res 16, 4, 410. https://doi.org/10.1186/s13058-014-0410-1. [CrossRef] [PubMed] [Google Scholar]
- Hanieh H, Mohafez O, Hairul-Islam VI, Alzahrani A, Bani Ismail M, Thirugnanasambantham K (2016), Novel aryl hydrocarbon receptor agonist suppresses migration and invasion of breast cancer cells. PLoS One 11, 12, e0167650. https://doi.org/10.1371/journal.pone.0167650. [Google Scholar]
- Alzahrani AM, Hanieh H, Ibrahim HM, Mohafez O, Shehata T, Bani Ismail M, Alfwuaires M (2017), Enhancing miR-132 expression by aryl hydrocarbon receptor attenuates tumorigenesis associated with chronic colitis. Int Immunopharmacol 52, 342–351. https://doi.org/10.1016/j.intimp.2017.09.015. [Google Scholar]
- Fueldner C, Kohlschmidt J, Riemschneider S, Schulze F, Zoldan K, Esser C, Hauschildt S, Lehmann J (2018), Benzo(a)pyrene attenuates the pattern-recognition-receptor induced proinflammatory phenotype of murine macrophages by inducing IL-10 expression in an aryl hydrocarbon receptor-dependent manner. Toxicology 409, 80–90. https://doi.org/10.1016/j.tox.2018.07.011. [CrossRef] [PubMed] [Google Scholar]
- Xue J, Zhao Q, Sharma V, Nguyen LP, Lee YN, Pham KL, Edderkaoui M, Pandol SJ, Park W, Habtezion A (2016), Aryl Hydrocarbon Receptor Ligands in Cigarette Smoke Induce Production of Interleukin-22 to Promote Pancreatic Fibrosis in Models of Chronic Pancreatitis. Gastroenterology 151, 6, 1206–1217. https://doi.org/10.1053/j.gastro.2016.09.064. [CrossRef] [PubMed] [Google Scholar]
- Fader KA, Nault R, Kirby MP, Markous G, Matthews J, Zacharewski TR (2017), Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERBα/β activation in aryl hydrocarbon receptor-elicited hepatotoxicity. Toxicol Appl Pharmacol 321, 1–17. https://doi.org/10.1016/j.taap.2017.02.006. [Google Scholar]
- Duan Z, Li Y, Li L (2018), Promoting epithelial-to-mesenchymal transition by D-kynurenine via activating aryl hydrocarbon receptor. Mol Cell Biochem 448, 1–2, 165–173. https://doi.org/10.1007/s11010-018-3323-y. [CrossRef] [PubMed] [Google Scholar]
- Song L, Guo L, Li Z (2017), Molecular mechanisms of 3,3′4,4′,5-pentachlorobiphenyl-induced epithelial-mesenchymal transition in human hepatocellular carcinoma cells. Toxicol Appl Pharmacol 322, 75–88. https://doi.org/10.1016/j.taap.2017.03.003. [Google Scholar]
- Litzenburger UM, Opitz CA, Sahm F, Rauschenbach KJ, Trump S, Winter M, Ott M, Ochs K, Lutz C, Liu X, Anastasov N, Lehmann I, Höfer T, von Deimling A, Wick W, Platten M (2014), Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR. Oncotarget 5, 4, 1038–1051. https://doi.org/10.18632/oncotarget.1637. [PubMed] [Google Scholar]
- Gao S, Li S, Duan X, Gu Z, Ma Z, Yuan X, Feng X, Wang H (2017), Inhibition of glycogen synthase kinase 3 beta (GSK3β) suppresses the progression of esophageal squamous cell carcinoma by modifying STAT3 activity. Mol Carcinog 56, 10, 2301–2316. https://doi.org/10.1002/mc.22685. [CrossRef] [PubMed] [Google Scholar]
- Li CH, Liu CW, Tsai CH, Peng YJ, Yang YH, Liao PL, Lee CC, Cheng YW, Kang JJ (2017), Cytoplasmic aryl hydrocarbon receptor regulates glycogen synthase kinase 3 beta, accelerates vimentin degradation, and suppresses epithelial-mesenchymal transition in non-small cell lung cancer cells. Arch Toxicol 91, 5, 2165–2178. https://doi.org/10.1007/s00204-016-1870-0. [CrossRef] [PubMed] [Google Scholar]
- Santiago-Josefat B, Mulero-Navarro S, Dallas SL, Fernandez-Salguero PM (2004), Overexpression of latent transforming growth factor-beta binding protein 1 (LTBP-1) in dioxin receptor-null mouse embryo fibroblasts. J Cell Sci 117, 849–859. [Google Scholar]
- Chang X, Fan Y, Karyala S, Schwemberger S, Tomlinson CR, Sartor MA, Puga A (2007), Ligand-independent regulation of transforming growth factor beta1 expression and cell cycle progression by the aryl hydrocarbon receptor. Mol Cell Biol 27, 17, 6127–6139. https://doi.org/10.1128/MCB.00323-07. [CrossRef] [PubMed] [Google Scholar]
- Belancio VP, Roy-Engel AM, Deininger PL (2010), All y’all need to know ‘bout retroelements in cancer. Semin Cancer Biol 20, 4, 200–210. https://doi.org/10.1016/j.semcancer.2010.06.001. [CrossRef] [PubMed] [Google Scholar]
- Beck CR, Garcia-Perez JL, Badge RM, Moran JV (2011), LINE-1 elements in structural variation and disease. Annu Rev Genom Hum Genet 12, 187–215. https://doi.org/10.1146/annurev-genom-082509-141802. [CrossRef] [Google Scholar]
- Rodić N, Burns KH (2013), Long interspersed element-1 (LINE-1): Passenger or driver in human neoplasms? PLoS Genet 9, 3, e1003402. https://doi.org/10.1371/journal.pgen.1003402. [CrossRef] [PubMed] [Google Scholar]
- Ostertag EM, Kazazian HH Jr (2001), Biology of mammalian L1 retrotransposons. Annu Rev Genet 35, 501–538. https://doi.org/10.1146/annurev.genet.35.102401.091032. [CrossRef] [PubMed] [Google Scholar]
- Schulz WA (2006), L1 retrotransposons in human cancers. J Biomed Biotechnol 2006, 1, 83672. https://doi.org/10.1155/JBB/2006/83672. [PubMed] [Google Scholar]
- Teneng I, Stribinskis V, Ramos KS (2007), Context-specific regulation of LINE-1. Genes Cells 12, 10, 1101–1110. https://doi.org/10.1111/j.1365-2443.2007.01117.x. [CrossRef] [PubMed] [Google Scholar]
- He ZM, Li J, Hwa YL, Brost B, Fang Q, Jiang SW (2014), Transition of LINE-1 DNA methylation status and altered expression in first and third trimester placentas. PLoS One 9, 5, e96994. https://doi.org/10.1371/journal.pone.0096994. [Google Scholar]
- Marques-Rocha JL, Milagro FI, Mansego ML, Mourão DM, Martínez JA, Bressan J (2016), LINE-1 methylation is positively associated with healthier lifestyle but inversely related to body fat mass in healthy young individuals. Epigenetics 11, 1, 49–60. https://doi.org/10.1080/15592294.2015.1135286. [CrossRef] [PubMed] [Google Scholar]
- Gogna P, O’Sullivan DE, King WD (2018), The effect of inflammation-related lifestyle exposures and interactions with gene variants on long interspersed nuclear element-1 DNA methylation. Epigenomics 10, 6, 785–796. https://doi.org/10.2217/epi-2017-0164. [CrossRef] [PubMed] [Google Scholar]
- Stribinskis V, Ramos KS (2006), Activation of human long interspersed nuclear element 1 retrotransposition by benzo(a)pyrene, an ubiquitous environmental carcinogen. Cancer Res 66, 5, 2616–2620. https://doi.org/10.1158/0008-5472.CAN-05-3478. [Google Scholar]
- Bojang P Jr, Roberts RA, Anderton MJ, Ramos KS (2013), Reprogramming of the HepG2 genome by long interspersed nuclear element-1. Mol Oncol 7, 4, 812–825. https://doi.org/10.1016/j.molonc.2013.04.003. [CrossRef] [PubMed] [Google Scholar]
- Baptista NB, Portinho D, Casarin RC, Vale HF, Casati MZ, De Souza AP, Andia DC (2014), DNA methylation levels of SOCS1 and LINE-1 in oral epithelial cells from aggressive periodontitis patients. Arch Oral Biol 59, 7, 670–678. https://doi.org/10.1016/j.archoralbio.2014.03.015. [CrossRef] [PubMed] [Google Scholar]
- Maugeri A, Barchitta M, Mazzone MG, Giuliano F, Basile G, Agodi A (2018), Resveratrol modulates SIRT1 and DNMT functions and restores LINE-1 methylation levels in ARPE-19 cells under oxidative stress and inflammation. Int J Mol Sci 19, 7. pii: E2118. https://doi.org/10.3390/ijms19072118. [Google Scholar]
- Andia DC, Planello AC, Portinho D, da Silva RA, Salmon CR, Sallum EA, Junior FH, de Souza AP (2015), DNA methylation analysis of SOCS1, SOCS3, and LINE-1 in microdissected gingival tissue. Clin Oral Invest 19, 9, 2337–2344. https://doi.org/10.1007/s00784-015-1460-1. [CrossRef] [Google Scholar]
- Reyes-Reyes EM, Ramos IN, Tavera-Garcia MA, Ramos KS (2016), The aryl hydrocarbon receptor agonist benzo(a)pyrene reactivates LINE-1 in HepG2 cells through canonical TGF-β1 signaling: Implications in hepatocellular carcinogenesis. Am J Cancer Res 6, 5, 1066–1077. PMCID: PMC4889720. [Google Scholar]
- Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT, Morell M, O’Shea KS, Moran JV, Gage FH (2009), L1 retrotransposition in human neural progenitor cells. Nature 460, 7259, 1127–1131. https://doi.org/10.1038/nature08248. [CrossRef] [PubMed] [Google Scholar]
- Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K, Gage FH (2010), L1 retrotransposition in neurons is modulated by MeCP2. Nature 468, 7322, 443–446. https://doi.org/10.1038/nature09544. [CrossRef] [PubMed] [Google Scholar]
- Faulkner GJ, Billon V (2018), L1 retrotransposition in the soma: A field jumping ahead. Mob DNA 9, 22. https://doi.org/10.1186/s13100-018-0128-1. [Google Scholar]
- Otsubo T, Okamura T, Hagiwara T, Ishizaka Y, Dohi T, Kawamura YI (2015), Retrotransposition of long interspersed nucleotide element-1 is associated with colitis but not tumors in a murine colitic cancer model. PLoS One 10, 2, e0116072. https://doi.org/10.1371/journal.pone.0116072. [Google Scholar]
- Miki Y, Nishisho I, Horii A, Miyoshi Y, Utsunomiya J, Kinzler KW, Vogelstein B, Nakamura Y (1992 Feb 1), Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res 52, 3, 643–645. [Google Scholar]
- Solyom S, Ewing AD, Rahrmann EP, Doucet T, Nelson HH, Burns MB, Harris RS, Sigmon DF, Casella A, Erlanger B, Wheelan S, Upton KR, Shukla R, Faulkner GJ, Largaespada DA, Kazazian HH Jr (2012), Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res 22, 12, 2328–2338. https://doi.org/10.1101/gr.145235.112. [CrossRef] [PubMed] [Google Scholar]
- Scott EC, Gardner EJ, Masood A, Chuang NT, Vertino PM, Devine SE (2016), A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res 26, 6, 745–755. https://doi.org/10.1101/gr.201814.115. [CrossRef] [PubMed] [Google Scholar]
- Asch HL, Eliacin E, Fanning TG, Connolly JL, Bratthauer G, Asch BB (1996), Comparative expression of the LINE-1 p40 protein in human breast carcinomas and normal breast tissues. Oncol Res 8, 6, 239–247. PMID: 8895199. [PubMed] [Google Scholar]
- Cruickshanks HA, Tufarelli C (2009), Isolation of cancer-specific chimeric transcripts induced by hypomethylation of the LINE-1 antisense promoter. Genomics 94, 6, 397–406. https://doi.org/10.1016/j.ygeno.2009.08.013. [CrossRef] [PubMed] [Google Scholar]
- Miglio U, Berrino E, Panero M, Ferrero G, Coscujuela Tarrero L, Miano V, Dell’Aglio C, Sarotto I, Annaratone L, Marchiò C, Comoglio PM, De Bortoli M, Pasini B, Venesio T, Sapino A (2018), The expression of LINE1-MET chimeric transcript identifies a subgroup of aggressive breast cancers. Int J Cancer 143, 1, 2838–2848. https://doi.org/10.1002/ijc.31831. [CrossRef] [PubMed] [Google Scholar]
- Shukla R, Upton KR, Muñoz-Lopez M, Gerhardt DJ, Fisher ME, Nguyen T, Brennan PM, Baillie JK, Collino A, Ghisletti S, Sinha S, Iannelli F, Radaelli E, Dos Santos A, Rapoud D, Guettier C, Samuel D, Natoli G, Carninci P, Ciccarelli FD, Garcia-Perez JL, Faivre J, Faulkner GJ (2013), Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 153, 1, 101–111. [CrossRef] [PubMed] [Google Scholar]
- Tchénio T, Casella JF, Heidmann T (2000), Members of the SRY family regulate the human LINE retrotransposons. Nucleic Acids Res 28, 2, 411–415. PMCID: PMC102531. [CrossRef] [PubMed] [Google Scholar]
- Song MS, Rossi JJ (2017), Molecular mechanisms of Dicer: Endonuclease and enzymatic activity. Biochem J 474, 10, 1603–1618. https://doi.org/10.1042/BCJ20160759. [CrossRef] [PubMed] [Google Scholar]
- Lau CC, Sun T, Ching AK, He M, Li JW, Wong AM, Co NN, Chan AW, Li PS, Lung RW, Tong JH, Lai PB, Chan HL, To KF, Chan TF, Wong N (2014), Viral-human chimeric transcript predisposes risk to liver cancer development and progression. Cancer Cell 25, 3, 335–349. https://doi.org/10.1016/j.ccr.2014.01.030. [CrossRef] [PubMed] [Google Scholar]
- Sciamanna I, Landriscina M, Pittoggi C, Quirino M, Mearelli C, Beraldi R, Mattei E, Serafino A, Cassano A, Sinibaldi-Vallebona P, Garaci E, Barone C, Spadafora C (2005), Inhibition of endogenous reverse transcriptase antagonizes human tumor growth. Oncogene 24, 24, 3923–3931. https://doi.org/10.1038/sj.onc.1208562. [Google Scholar]
- Patnala R, Lee SH, Dahlstrom JE, Ohms S, Chen L, Dheen ST, Rangasamy D (2014), Inhibition of LINE-1 retrotransposon-encoded reverse transcriptase modulates the expression of cell differentiation genes in breast cancer cells. Breast Cancer Res Treat 143, 2, 239–253. https://doi.org/10.1007/s10549-013-2812-7. [CrossRef] [PubMed] [Google Scholar]
- Rangasamy D, Lenka N, Ohms S, Dahlstrom JE, Blackburn AC, Board PG (2015), Activation of LINE-1 Retrotransposon Increases the Risk of Epithelial-Mesenchymal Transition and Metastasis in Epithelial Cancer. Curr Mol Med 15, 7, 588–597. PMCID: PMC5384359. [CrossRef] [PubMed] [Google Scholar]
- Tahara T, Shibata T, Okubo M, Kawamura T, Horiguchi N, Ishizuka T, Nakano N, Nagasaka M, Nakagawa Y, Ohmiya N (2016), Demonstration of potential link between Helicobacter pylori related promoter CpG island methylation and telomere shortening in human gastric mucosa. Oncotarget 7, 28, 43989–43996. https://doi.org/10.18632/oncotarget.9764. [PubMed] [Google Scholar]
- Tahara T, Tahara S, Horiguchi N, Kawamura T, Okubo M, Yamada H, Yoshida D, Ohmori T, Maeda K, Komura N, Ikuno H, Jodai Y, Kamano T, Nagasaka M, Nakagawa Y, Tsukamoto T, Urano M, Shibata T, Kuroda M, Ohmiya N (2018), Methylation status of IGF2 DMR and LINE1 in leukocyte DNA provides distinct clinicopathological features of gastric cancer patients. Clin Exp Med 18, 2, 215–220. https://doi.org/10.1007/s10238-017-0471-4. [CrossRef] [PubMed] [Google Scholar]
- Anastasiadis PZ, Moon SY, Thoreson MA, Mariner DJ, Crawford HC, Zheng Y, Reynolds AB (2000), Inhibition of RhoA by p120 catenin. Nat Cell Biol 2, 9, 637–644. https://doi.org/10.1038/35023588. [CrossRef] [PubMed] [Google Scholar]
- Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL, Moses HL (2001), Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12, 1, 27–36. https://doi.org/10.1091/mbc.12.1.27. [CrossRef] [PubMed] [Google Scholar]
- Fleming YM, Ferguson GJ, Spender LC, Larsson J, Karlsson S, Ozanne BW, Grosse R, Inman GJ (2009), TGF-beta-mediated activation of RhoA signalling is required for efficient (V12)HaRas and (V600E)BRAF transformation. Oncogene 28, 7, 983–993. https://doi.org/10.1038/onc.2008.449. [Google Scholar]
- Blaney Davidson EN, Remst DF, Vitters EL, van Beuningen HM, Blom AB, Goumans MJ, van den Berg WB, van der Kraan PM (2009), Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J Immunol 182, 12, 7937–7945. https://doi.org/10.4049/jimmunol.0803991. [CrossRef] [PubMed] [Google Scholar]
- Roelen BA, van Rooijen MA, Mummery CL (1997), Expression of ALK-1, a type 1 serine/threonine kinase receptor, coincides with sites of vasculogenesis and angiogenesis in early mouse development. Dev Dyn 209, 4, 418–430. https://doi.org/10.1002/(SICI)1097-0177(199708)209:4<418::AID-AJA9>3.0.CO;2-L. [CrossRef] [PubMed] [Google Scholar]
- de Vinuesa AG, Bocci M, Pietras K, Ten Dijke P (2016), Targeting tumour vasculature by inhibiting activin receptor-like kinase (ALK)1 function. Biochem Soc Trans 44, 4, 1142–1149. https://doi.org/10.1042/BST20160093. [CrossRef] [PubMed] [Google Scholar]
- Bellovin DI, Bates RC, Muzikansky A, Rimm DL, Mercurio AM (2005), Altered localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res 65, 23, 10938–10945. https://doi.org/10.1158/0008-5472.CAN-05-1947. [Google Scholar]
- Tenhagen M, Klarenbeek S, Braumuller TM, Hofmann I, van der Groep P, Ter Hoeve N, van der Wall E, Jonkers J, Derksen PW (2016), p120-catenin is critical for the development of invasive lobular carcinoma in mice. J Mammary Gland Biol Neoplasia 21, 3–4, 81–88. https://doi.org/10.1007/s10911-016-9358-3. [CrossRef] [PubMed] [Google Scholar]
- Noren NK, Liu BP, Burridge K, Kreft B (2000), p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J Cell Biol 150, 3, 567–580. https://doi.org/10.1083/jcb.150.3.567. [CrossRef] [PubMed] [Google Scholar]
- Yilmaz M, Christofori G (2010), Mechanisms of motility in metastasizing cells. Mol Cancer Res 8, 5, 629–642. https://doi.org/10.1158/1541-7786.MCR-10-0139. [CrossRef] [PubMed] [Google Scholar]
- Sarrió D, Pérez-Mies B, Hardisson D, Moreno-Bueno G, Suárez A, Cano A, Martín-Pérez J, Gamallo C, Palacios J (2004), Cytoplasmic localization of p120ctn and E-cadherin loss characterize lobular breast carcinoma from preinvasive to metastatic lesions. Oncogene 23, 19, 3272–3283. https://doi.org/10.1038/sj.onc.1207439. [Google Scholar]
- Carnahan RH, Rokas A, Gaucher EA, Reynolds AB (2010), The molecular evolution of the p120-catenin subfamily and its functional associations. PLoS One 5, 12, e15747. https://doi.org/10.1371/journal.pone.0015747. [Google Scholar]
- Ridley AJ, Hall A (1992), The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399. [CrossRef] [PubMed] [Google Scholar]
- Bordoni R, Fine R, Murray D, Richmond A (1990), Characterization of the role of melanoma growth stimulatory activity (MGSA) in the growth of normal melanocytes, nevocytes, and malignant melanocytes. J Cell Biochem 44, 4, 207–219. https://doi.org/10.1002/jcb.240440403. [CrossRef] [PubMed] [Google Scholar]
- Lázár-Molnár E, Hegyesi H, Tóth S, Falus A (2000), Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine 12, 6, 547–554. https://doi.org/10.1006/cyto.1999.0614. [Google Scholar]
- Yang G, Rosen DG, Zhang Z, Bast RC Jr, Mills GB, Colacino JA, Mercado-Uribe I, Liu J (2006), The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc Natl Acad Sci USA 103, 44, 16472–16477. https://doi.org/10.1073/pnas.0605752103. [CrossRef] [Google Scholar]
- Margolis B, Skolnik EY (1994), Activation of Ras by receptor tyrosine kinases. J Am Soc Nephrol 5, 6, 1288–1299. [Google Scholar]
- Grosheva I, Shtutman M, Elbaum M, Bershadsky AD (2001), p120 catenin affects cell motility via modulation of activity of Rho-family GTPases: A link between cell-cell contact formation and regulation of cell locomotion. J Cell Sci 114, Pt 4, 695–707. [Google Scholar]
- Soto E, Yanagisawa M, Marlow LA, Copland JA, Perez EA, Anastasiadis PZ (2008), p120 catenin induces opposing effects on tumor cell growth depending on E-cadherin expression. J Cell Biol 183, 4, 737–749. https://doi.org/10.1083/jcb.200805113. [CrossRef] [PubMed] [Google Scholar]
- Schackmann RC, Tenhagen M, van de Ven RA, Derksen PW (2013), p120-catenin in cancer – Mechanisms, models and opportunities for intervention. J Cell Sci 126, Pt 16, 3515–3525. https://doi.org/10.1242/jcs.134411. [Google Scholar]
- Jawhari AU, Noda M, Pignatelli M, Farthing M (1999), Up-regulated cytoplasmic expression, with reduced membranous distribution, of the src substrate p120(ctn) in gastric carcinoma. J Pathol 189, 2, 180–185. https://doi.org/10.1002/(SICI)1096-9896(199910)189:2<180::AID-PATH414>3.0.CO;2-2. [Google Scholar]
- Ogden SR, Wroblewski LE, Weydig C, Romero-Gallo J, O’Brien DP, Israel DA, Krishna US, Fingleton B, Reynolds AB, Wessler S, Peek RM Jr (2008), p120 and Kaiso regulate Helicobacter pylori-induced expression of matrix metalloproteinase-7. Mol Biol Cell 19, 10, 4110–4121. https://doi.org/10.1091/mbc.E08-03-0283. [CrossRef] [PubMed] [Google Scholar]
- Daniel JM, Reynolds AB (1999), The catenin p120(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol Cell Biol 19, 5, 3614–3623. https://doi.org/10.1128/MCB.19.5.3614. [CrossRef] [PubMed] [Google Scholar]
- Fox DT, Peifer M (2007), Cell adhesion: separation of p120’s powers? Curr Biol 17, 1, R24–R27. https://doi.org/10.1016/j.cub.2006.11.040. [CrossRef] [PubMed] [Google Scholar]
- Yanagisawa M, Anastasiadis PZ (2006), p120 catenin is essential for mesenchymal cadherin-mediated regulation of cell motility and invasiveness. J Cell Biol 174, 7, 1087–1096. https://doi.org/10.1083/jcb.200605022. [CrossRef] [PubMed] [Google Scholar]
- Carton I, Hermans D, Eggermont J (2003), Hypotonicity induces membrane protrusions and actin remodeling via activation of small GTPases Rac and Cdc42 in Rat-1 fibroblasts. Am J Physiol Cell Physiol 285, 4, C935–C944. https://doi.org/10.1152/ajpcell.00069.2003. [CrossRef] [PubMed] [Google Scholar]
- Moshfegh Y, Bravo-Cordero JJ, Miskolci V, Condeelis J, Hodgson L (2014), A Trio-Rac1-Pak1 signalling axis drives invadopodia disassembly. Nat Cell Biol 16, 6, 574–586. https://doi.org/10.1038/ncb2972. Erratum in: Nat Cell Biol 2015 Mar, 17, 350. https://doi.org/10.1038/ncb3123. [CrossRef] [PubMed] [Google Scholar]
- Gastonguay A, Berg T, Hauser AD, Schuld N, Lorimer E, Williams CL (2012), The role of Rac1 in the regulation of NF-κB activity, cell proliferation, and cell migration in non-small cell lung carcinoma. Cancer Biol Ther 13, 8, 647–656. https://doi.org/10.4161/cbt.20082. [CrossRef] [PubMed] [Google Scholar]
- Inumaru J, Nagano O, Takahashi E, Ishimoto T, Nakamura S, Suzuki Y, Niwa S, Umezawa K, Tanihara H, Saya H (2009), Molecular mechanisms regulating dissociation of cell-cell junction of epithelial cells by oxidative stress. Genes Cells 14, 6, 703–716. https://doi.org/10.1111/j.1365-2443.2009.01303.x. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.