Mathematical Models
Open Access
Issue
4open
Volume 2, 2019
Mathematical Models
Article Number 15
Number of page(s) 10
Section Mathematics - Applied Mathematics
DOI https://doi.org/10.1051/fopen/2019008
Published online 16 May 2019
  1. WTO (World Trade Organization), World Trade Statistical Review 2017. https://www.wto.org/english/res_e/statis_e/wts2017_e/wts2017_e.pdf (Accessed on 10 April 2019). [Google Scholar]
  2. Office of Agricultural Economics, Major Agricultural Commodities Overview and Outlook 2018 (สถานการณ์สินค้าเกษตรที่สำคัญและแนวโน้มปี 2561) http://oldweb.oae.go.th/download/document_tendency/agri_situation2561.pdf (Accessed on 10 April 2019) (in Thai). [Google Scholar]
  3. Office of Agricultural Economics, Agricultural statistics of Thailand 2016 (สถิติการเกษตรของประเทศไทยปี 2559). http://oldweb.oae.go.th/download/download_journal/2560/yearbook59.pdf. (Accessed on 10 April 2019) (in Thai). [Google Scholar]
  4. The Pollution Control Department of Thailand, Current situation and management of air and noise pollutions in Thailand 2016 (สถานการณ์และการจัดการปัญหามลพิษทางอากาศและเสียงของประเทศไทย ปี 2559). http://www.oic.go.th/FILEWEB/CABINFOCENTER3/DRAWER056/GENERAL/DATA0001/00001018.PDF (Accessed on 10 April 2019) (in Thai). [Google Scholar]
  5. Regional Environment Office 1 (Chiang Mai), Smog situation report 2017, (รายงานสถานการณ์หมอกควัน ปี 2560). http://www.reo01.mnre.go.th/th/information/list/254 (Accessed on 10 April 2019). (in Thai). [Google Scholar]
  6. Greenpeace Thailand, PM2.5 pollutions in Thailand’s urban areas: January–June 2017 (มลพิษฝุ่นละอองขนาดเล็กไม่เกิน 2.5 ไมครอน (PM2.5) ของเมืองในประเทศไทย ช่วงเดือนมกราคม-มิถุนายน พ.ศ.2560), https://www.greenpeace.or.th/s/right-to-clean-air/PM2.5-in-Thailand_Jan-Jun2017.pdf. (Accessed on 10 April 2019) (in Thai). [Google Scholar]
  7. Regional Environment Office 1 (Chiang Mai), Announcement: Air Situation Exceeds Standard Values, (ประกาศสถานการณ์อากาศเกินค่ามาตรฐาน). http://www.reo01.mnre.go.th/th/news/detail/12426/ (Accessed on 9 April 2019) (in Thai). [Google Scholar]
  8. Sasujit K, Sanpinit W, Wongrin N, Dussadee N (2015), A study of the process of densification of corn cob and corn husk briquettes by cold extrusion technique using starch with lime mixed as binder. Thaksin Univ J 18, 1, 1–14. (in Thai). [Google Scholar]
  9. Ghani NAMAA, Vogiatzis C, Szmerekovsky J (2018), Biomass feedstock supply chain network design with biomass conversion incentives. Energy Policy 116, 39–49. https://doi.org/10.1016/j.enpol.2018.01.042. [Google Scholar]
  10. Dantzig GB, Ramser JH (1959), The truck dispatching problem. Manag Sci 6, 1, 80–91. https:doi.org/10.1287/mnsc.6.1.80. [Google Scholar]
  11. Eksioglu B, Vural AV, Reisman A (2009), The vehicle routing problem: A taxonomic review. Comput Ind Eng 57, 4, 1472–1483. https://doi.org/10.1016/j.cie.2009.05.009. [Google Scholar]
  12. Solomon MM (1984), Algorithms for the vehicle routing and scheduling with time window constraints. Oper Res 35, 2, 254–265. https://doi.org/10.1287/opre.35.2.254. [Google Scholar]
  13. Sexton TR, Bodin LD (1985), Optimizing single vehicle many-to-many operations with desired delivery times: II. Routing Transp Sci 19, 4, 411–435. https://doi.org/10.1287/trsc.19.4.411. [CrossRef] [Google Scholar]
  14. Savelsbergh MWP, Sol M (1995), The general pickup and delivery problem. Transp Sci 29, 1, 17–29. https://doi.org/10.1287/trsc.29.1.17. [Google Scholar]
  15. Parragh SN, Doerner KF, Hartl RF (2008), A survey on pickup and delivery problems Part I: Transportation between customers and depot. J Betriebswirtsch 58, 1, 21–51. https://doi.org/10.1007/s11301-008-0033-7. [CrossRef] [Google Scholar]
  16. Parragh SN, Doerner KF, Hartl RF (2008), A survey on pickup and delivery problems Part II: Transportation between pickup and delivery locations. J Betriebswirtsch 58, 1, 81–117. https://doi.org/10.1007/s11301-008-0036-4. [CrossRef] [Google Scholar]
  17. Koç Ç, Laporte G (2018), Vehicle routing with backhauls: Review and research perspectives. Comput Oper Res 91, 79–91. https://doi.org/10.1016/j.cor.2017.11.003. [Google Scholar]
  18. Toth P, Vigo D (1997), An exact algorithm for the vehicle routing problem with backhauls. Transp Sci 31, 4, 372–385. https://doi.org/10.1287/trsc.31.4.372. [CrossRef] [Google Scholar]
  19. Salhi S, Nagy G (1999), A cluster insertion heuristic for single and multiple depot vehicle routing problems with backhauling. J Oper Res Soc 50, 10, 1034–1042. https://doi.org/10.1057/palgrave.jors.2600808. [Google Scholar]
  20. Tavakkoli-Moghaddam R, Saremi AR, Ziaee MS (2006), A memetic algorithm for a vehicle routing problem with backhauls. Appl Math Comput 181, 1049–1060. https://doi.org/10.1016/j.amc.2006.01.059. [Google Scholar]
  21. Nagy G, Wassan NA, Speranza MG, Archetti C (2015), The vehicle routing problem with divisible deliveries and pickups. Transp Sci 49, 2, 271–294. https://doi.org/10.1287/trsc.2013.0501. [CrossRef] [Google Scholar]
  22. Baldacci R, Mingozzi A (2009), A unified exact method for solving different classes of vehicle routing problems. Math Program 120, 347–380. https://doi.org/10.1007/s10107-008-0218-9. [Google Scholar]
  23. Contardo C, Martinelli R (2014), A new exact algorithm for the multi-depot vehicle routing problem under capacity and route length constraints. Discrete Optim 12, 129–146. https://doi.org/10.1016/j.disopt.2014.03.001. [CrossRef] [Google Scholar]
  24. Lim A, Wang F (2005), Multi-depot vehicle routing problem: A one-stage approach. IEEE Trans Autom Sci Eng 2, 4, 397–402. https://doi.org/10.1109/TASE.2005.853472. [Google Scholar]
  25. Crevier B, Cordeau J-F, Laporte G (2007), The multi-depot vehicle routing problem with inter-depot routes. Eur J Oper Res 176, 756–773. https://doi.org/10.1016/j.ejor.2005.08.015. [Google Scholar]
  26. Kuo Y, Wang C-C (2012), A variable neighborhood search for the multi-depot vehicle routing problem with loading cost. Expert Syst Appl 39, 6949–6954. https://doi.org/10.1016/j.eswa.2012.01.024. [Google Scholar]
  27. Allahyari S, Salari M, Vigo D (2015), A hybrid metaheuristic algorithm for the multi-depot covering tour vehicle routing problem. Eur J Oper Res 242, 756–768. https://doi.org/10.1016/j.ejor.2014.10.048. [Google Scholar]
  28. Oliveira FB, Enayatifar R, Sadaei HJ, Guimaraes FG, Potvin J (2016), A cooperative coevolutionary algorithm for the Multi-Depot Vehicle Routing Problem. Expert Syst Appl 43, 117–130. https://doi.org/10.1016/j.eswa.2015.08.030. [Google Scholar]
  29. Wang X, Golden B, Wasil E, Zhang R (2016), The min–max split delivery multi-depot vehicle routing problem with minimum service time requirement. Comput Oper Res 71, 110–126. https://doi.org/10.1016/j.cor.2016.01.008. [Google Scholar]