Issue
4open
Volume 2, 2019
Disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer”
Article Number 8
Number of page(s) 22
Section Life Sciences - Medicine
DOI https://doi.org/10.1051/fopen/2018006
Published online 25 April 2019
  1. Pott P (1755), Chirurgical observations, vol. 3, L Hawes, W Clark, and R Collins, London, pp. 177–183. [Google Scholar]
  2. Horner WE (1829), A treatise on pathological anatomy, Carey, Lea & Carey, Philadelphia. [Google Scholar]
  3. Dutrochet MH (1824), Recherches anatomiques et physiologiques sur la structure intime animaux et des végétaux, et sur leur motilité, Bailliere, Paris. [Google Scholar]
  4. Addison W (1843), Experimental and practical researches on the structure and function of blood corpuscles; on inflammation; and on the origin and nature of tubercles in the lungs. Tr Provinc Med Surg Ass 11, 233–306. [Google Scholar]
  5. Waller A (1846), Microscopic examination of some of the principal tissues of the animal frame, as observed in the tongue of the living forg, toad, London, Edinburgh and Dublin. Philos Mag 29, 271–287. [Google Scholar]
  6. Brown WN (1857), Case in which inflammation and ulceration of the sound skin was caused by the application of a strong arsenical solution. Edinb Med J 3, 148–149. [PubMed] [Google Scholar]
  7. Virchow R (1863), Über bewegliche tierische Zellen. Arch Path Anat Physiol 28, 237–240. [CrossRef] [Google Scholar]
  8. Cohnheim JF (1867), Über Entzündung und Eiterung. Virchows Arch 40, 1–79. [Google Scholar]
  9. Cohnheim JF (1889), Inflammation, in: Lectures on General Pathology, The New Sydenham Society, London, p. 242. [Google Scholar]
  10. Malkin HM (1984), Julius Cohnheim (1839–1884): his life and contributions to pathology. Ann Clin Lab Sci 14, 335–342. [PubMed] [Google Scholar]
  11. Bryant T (1868), Remarks on some cases of inflammation of the breast simulating cancer. Br Med J 2, 608–609. [CrossRef] [PubMed] [Google Scholar]
  12. Eve FS (1881), On the relation of epithelioma to irritation and chronic inflammation. Br Med J 1, 504–506. [CrossRef] [PubMed] [Google Scholar]
  13. Arnold J (1873), Über Diapedesis, eine experimentelle Studie. Virchows Arch 58, 203–254. [Google Scholar]
  14. Arnold J (1887), Über Theilungsvorgänge an den Wanderzellen, ihre progressiven und regressiven Metamorphosen. Arch Mikroskop Anat 30, 205–310. [CrossRef] [Google Scholar]
  15. Arnold J (1888), Über die Entstehung der Entzündung und die Wirkung der entzündungserregenden Schädlichkeiten. Fortschr Med 4, 460. [Google Scholar]
  16. Metchnikoff E (1883), Untersuchungen über die intracellulare Verdauung bei wirbellosen Tieren. Arb Zool Inst Univ Wien 5, 141–168. [Google Scholar]
  17. Metschnikoff E (1884), Üeber eine Sprosspilzkrankheit der Daphnien. Beitrag zur Lehre über den Kampf der Phagocyten gegen Krankheitserreger. Virchows Arch 96, 177–195. [Google Scholar]
  18. Brücher BLDM, Jamall IS (2014), Epistemology of the origin of cancer: a new paradigm. BMC Cancer 14, 1–15. [CrossRef] [PubMed] [Google Scholar]
  19. Brücher BLDM, Jamall IS (2014), Cell-cell communication in tumor microenvironment, carcinogenesis and anticancer treatment. Cell Physiol Biochem 34, 213–243. [CrossRef] [PubMed] [Google Scholar]
  20. Van Tongeren M, Jimenez AS, Hutchings SJ, MacCalman L, Rushton L, Cherrie JW (2012), Occupational cancer in Britain: exposure assessment methodology. Br J Cancer 107, S18–S26. [CrossRef] [PubMed] [Google Scholar]
  21. Beir V (1990), Health effects of exposure to low levels of ionizing radiation: National Research Council (US) Committee on the Biological Effects of Ionizing Radiation (BEIR V), National Academies Press (US), Washington DC. ISBN-10: 0-309-03995-9. [Google Scholar]
  22. Curtis HJ (1965), Formal discussion of somatic mutations and carcinogenesis. Cancer Res 25, 1305–1308. [Google Scholar]
  23. Brücher BLDM, Jamall IS (2016), Somatic mutation theory − why it's wrong for most cancers. Cell Physiol Biochem 38, 1663–1680. [CrossRef] [PubMed] [Google Scholar]
  24. Rehrauer H, Wu L, Blum W, Pecze L, Henzi T, Serre-Beinier V, Aquino C, Vrugt B, de Perrot M, Schwaller B, Felley-Bosco E (2018), How asbestos drives the tissue towards tumors: YAP activation, macrophage and mesothelial precursor recruitment, RNA editing, and somatic mutations. Oncogene 37, 2645–2659. [Google Scholar]
  25. Boll M, Weber LW, Becker E, Stampfl A (2001), Mechanism of carbon tetrachloride-induced hepatotoxicity: hepatocellular damage by reactive carbon tetrachloride metabolites. Z Naturforsch C 56, 649–659. [CrossRef] [PubMed] [Google Scholar]
  26. Irshad M, Gupta P, Irshad K (2017), Molecular basis of hepatocellular carcinoma induced by hepatitis C virus infection. World J Hepatol 9, 1305–1314. [Google Scholar]
  27. Maden C, Beckmann AM, Thomas DB, McKnight B, Sherman KJ, Ashley RL, Corey L, Daling JR (1992), Human papillomaviruses, herpes simplex viruses, and the risk of oral cancer in men. Am J Epidemiol 135, 1093–1102. [Google Scholar]
  28. Cobos C, Figueroa JA, Mirandola L, Colombo M, Summers G, Figueroa A, Aulakh A, Konala V, Verma R, Riaz J, Wade R, Saadeh C, Rahman RL, Pandey A, Radhi S, Nguyen DD, Jenkins M, Chiriva-Internati M, Cobos E (2014), The role of human papilloma virus (HPV) infection in non-anogenital cancer and the promise of immunotherapy: a review. Int Rev Immunol 33, 383–401. [CrossRef] [PubMed] [Google Scholar]
  29. Correia AV, Coêlho MR, de Oliveira Mendes Cahú GG, de Almeida Silva JL, da Mota Vasconcelos Brasil C, de Castro JF (2015), Seroprevalence of HSV-1/2 and correlation with aggravation of oral mucositis in patients with squamous cell carcinoma of the head and neck region submitted to antineoplastic treatment. Support Care Cancer 23, 2105–2111. [CrossRef] [PubMed] [Google Scholar]
  30. Sano D, Oridate N (2016), The molecular mechanism of human papillomavirus-induced carcinogenesis in head and neck squamous cell carcinoma. Int J Clin Oncol 21, 819–826. [CrossRef] [PubMed] [Google Scholar]
  31. Villeneuve PJ, Mao Y (1994), Lifetime probability of developing lung cancer, by smoking status, Canada. Can J Public Health 85, 385–388. [Google Scholar]
  32. Yamagiwa K, Ichikawa K (1915), Experimentelle Studie über die Pathogenese der Epithelialgeschwülste [Experimental study of the pathogenesis of epithelial tumours. Mitt Med Fak Tokyo 15, 295–344. [Google Scholar]
  33. Brücher BLDM, Stein HJ, Bartels H, Feussner H, Siewert JR (2001), Achalasia and esophageal cancer: incidence, prevalence and prognosis. World J Surg 25, 745–749. [CrossRef] [PubMed] [Google Scholar]
  34. Zeng Y (2017), Endothelial glycocalyx as a critical signalling platform integrating the extracellular haemodynamic forces and chemical signaling. J Cell Mol Med 21, 1457–1462. [CrossRef] [PubMed] [Google Scholar]
  35. Potter DR, Jiang J, Damiano ER (2009), The recovery time course of the endothelial cell glycocalyx in vivo and its implications in vitro. Circ Res 104, 1318–1325. [Google Scholar]
  36. McDonald KK, Cooper S, Danielzak L, Leask RL (2016), Glycocalyx degradation induces a proinflammatory phenotype and increased leukocyte adhesion in cultured endothelial cells under flow. PLoS One 11, e0167576. [CrossRef] [Google Scholar]
  37. Qazi H, Palomino R, Shi ZD, Munn LL, Tarbell JM (2013), Cancer cell glycocalyx mediates mechanotransduction and flow-regulated invasion. Integr Biol (Camb) 5, 1334–1343. [Google Scholar]
  38. Wagner BJ, Löb S, Lindau D, Hörzer H, Gückel B, Klein G, Glatzle J, Rammensee HG, Brücher BLDM, Königsrainer A (2011), Simvastatin reduces tumor cell adhesion, to human peritoneal mesothelial cells by a decreased expression of VCAM-1 and β1 integrin. Int J Oncol 39, 1593–1600. [Google Scholar]
  39. Porfire A, Tomuta I, Muntean D, Luca L, Licarete E, Alupei MC, Achim M, Vlase L, Banciu M (2015), Optimizing long-circulating liposomes for delivery of simvastatin to C26 colon carcinoma cells. J Liposome Res 25, 261–269. [Google Scholar]
  40. Zeng YE, Yao XH, Yan ZP, Liu JX, Liu XH (2016), Potential signaling pathway involved in sphingosine-1-phosphate-induced epithelial-mesenchymal transition in cancer. Oncol Lett 12, 379–382. [CrossRef] [PubMed] [Google Scholar]
  41. Zeng Y, Liu XH, Tarbell J, Fu B (2015), Sphingosine 1-phosphate induced synthesis of glycocalyx on endothelial cells. Exp Cell Res 339, 90–95. [CrossRef] [PubMed] [Google Scholar]
  42. Levi-Schaffer F, Austen KF, Gravallese PM, Stevens RL (1986), Coculture of interleukin 3-dependent mouse mast cells with fibroblasts results in a phenotypic change of the mast cells. Proc Natl Acad Sci USA 83, 6485–6488. [CrossRef] [Google Scholar]
  43. Schwalm S, Pfeilschifter J, Huwiler A (2013), Sphingosine-1-phosphate: a Janus-faced mediator of fibrotic diseases. Biochim Biophys Acta 1831, 239–250. [CrossRef] [PubMed] [Google Scholar]
  44. Oskeritzian CA (2015), Mast cell plasticity and sphingosine-1-phosphate in immunity, inflammation and cancer. Mol Immunol 63, 104–112. [CrossRef] [Google Scholar]
  45. Spiegel S, Milstien S (2007), Functions of the multifaceted family of sphingosine kinases and some close relatives. J Biol Chem 282, 2125–2129. [CrossRef] [Google Scholar]
  46. Vadas M, Xia P, McCaughan G, Gamble J (2008), The role of sphingosine kinase 1 in cancer: oncogene or non-oncogene addiction? Biochim Biophys Acta 1781, 442–447. [CrossRef] [PubMed] [Google Scholar]
  47. Zhu YJ, You H, Tan JX, Li F, Qiu Z, Li HZ, Huang HY, Zheng K, Ren GS (2017), Overexpression of sphingosine kinase 1 is predictive of poor prognosis in human breast cancer. Oncol Lett 14, 63–72. [CrossRef] [PubMed] [Google Scholar]
  48. Maceyka M, Payne SG, Milstien S, Spiegel S (2002), Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta 1585, 193–201. [CrossRef] [PubMed] [Google Scholar]
  49. Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, Spiegel S (1996), Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381, 800–803. [CrossRef] [PubMed] [Google Scholar]
  50. Milstien S, Spiegel S (2006), Targeting sphingosine-1-phosphate: a novel avenue for cancer therapeutics. Cancer Cell 9, 148–150. [CrossRef] [PubMed] [Google Scholar]
  51. Lee HM, Lo KW, Wei W, Tsao SW, Chung GTY, Ibrahim MH, Dawson CW, Murray PG, Paterson IC, Yap LF (2017), Oncogenic S1P signalling in EBV-associated nasopharyngeal carcinoma activates AKT and promotes cell migration through S1P receptor 3. J Pathol 242, 62–72. [CrossRef] [Google Scholar]
  52. Riddell RH, Goldman H, Ransohoff DF, Appelman HD, Fenoglio CM, Haggitt RC, Ahren C, Correa P, Hamilton SR, Morson BC, Sommers SC, Yardley JH (1983), Dysplasia in inflammatory bowel disease: standardized classification with provisional clinical applications. Hum Pathol 14, 931–968. [CrossRef] [PubMed] [Google Scholar]
  53. Wollny T, Wątek M, Durnaś B, Niemirowicz K, Piktel E, Żendzian-Piotrowska M, Góźdź S, Bucki R (2017), Sphingosine-1-phosphate metabolism and its role in the development of inflammatory bowel disease. Int J Mol Sci 18, pii: E741. [CrossRef] [Google Scholar]
  54. McLean CJ, Marles-Wright J, Custodio R, Lowther J, Kennedy AJ, Pollock J, Clarke DJ, Brown AR, Campopiano DJ (2017), Characterization of homologous sphingosine-1-phosphate lyase isoforms in the bacterial pathogen Burkholderia pseudomallei . J Lipid Res 58, 137–150. [CrossRef] [PubMed] [Google Scholar]
  55. Deng Z, Mu J, Tseng M, Wattenberg B, Zhuang X, Egilmez NK, Wang Q, Zhang L, Norris J, Guo H, Yan J, Haribabu B, Miller D, Zhang HG (2015), Enterobacteria-secreted particles induce production of exosome-like S1P-containing particles by intestinal epithelium to drive Th17-mediated tumorigenesis. Nat Commun 6, 6956 (corrigendum: Nat Commun 2016, 7, 11348). [CrossRef] [PubMed] [Google Scholar]
  56. Hendley AM, Wang YJ, Polireddy K, Alsina J, Ahmed I, Lafaro KJ, Zhang H, Roy N, Savidge SG, Cao Y, Hebrok M, Maitra A, Reynolds AB, Goggins M, Younes M, Iacobuzio-Donahue CA, Leach SD, Bailey JM (2016), p120 catenin suppresses basal epithelial cell extrusion in invasive pancreatic neoplasia. Cancer Res 76, 3351–2263. [CrossRef] [Google Scholar]
  57. Studer E, Zhou X, Zhao R, Wang Y, Takabe K, Nagahashi M, Pandak WM, Dent P, Spiegel S, Shi R, Xu W, Liu X, Bohdan P, Zhang L, Zhou H, Hylemon PB (2012), Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 55, 267–276. [CrossRef] [PubMed] [Google Scholar]
  58. Zhou H, Hylemon PB (2014), Bile acids are nutrient signaling hormones. Steroids 86, 62–68. [CrossRef] [PubMed] [Google Scholar]
  59. Liu R, Li X, Qiang X, Luo L, Hylemon PB, Jiang Z, Zhang L, Zhou H (2015), Taurocholate induces cyclooxygenase-2 expression via the sphingosine 1-phosphate receptor 2 in a human cholangiocarcinoma cell line. J Biol Chem 290, 30988–31002. [CrossRef] [PubMed] [Google Scholar]
  60. French K, Zhuang Y, Maines LW, Gao P, Wang W, Beljanski V, Upson JJ, Green CL, Keller SN, Smith CD (2010), Pharmacology and antitumor activity of ABC294640, a selective inhibitor of sphingosine kinase-2. J Pharmacol Exp Ther 333, 129–139. [CrossRef] [Google Scholar]
  61. Qin Z, Dai L, Trillo-Tinoco J, Senkal C, Wang W, Reske T, Bonstaff K, Del Valle L, Rodriguez P, Flemington E, Voelkel-Johnson C, Smith CD, Ogretmen B, Parsons C (2014), Targeting sphingosine kinase induces apoptosis and tumor regression for KSHV-associated primary effusion lymphoma. Mol Cancer Ther 13, 154–164. [CrossRef] [Google Scholar]
  62. Cumston CG (1926), The history of herpes from the earliest times to the nineteenth century. Ann Med Hist 8, 284–291. [Google Scholar]
  63. Papyrus E (1937), Greatest Egyptian medical document, 1552 BC, translated by Ebbell B, Levin & Munksgaard, Copenhagen. [Google Scholar]
  64. Wildy P (1973), Herpes: history and classification, in: AS Kaplan (Ed.), The Herpes Viruses Academic Press, New York, pp. 1–25. [Google Scholar]
  65. Roizman B, Whitley R (2001), The nine ages of herpes simplex virus. Herpes 8, 23–27. [PubMed] [Google Scholar]
  66. Littré E (1839–1861), Oeuvres complètes d'Hippocrate: traduction nouvelle avec le texte grec en regard, collationné sur les manuscrits et toutes les éditions; accompagnée d'une introduction, de commentaires médicaux, de variantes et de notes philologiques; suivie d'une table générale des matières. Exemplaire numérisé, vols. 1–10, BIU Santé, Paris, Baillière. [Google Scholar]
  67. Tsoucalas G, Karamanou M, Sgantzos M, Deligeoroglou E, Androutsos G (2015), Uterine cancer in the writings of ancient Greek physicians. J BUON 20, 1382–1385. [PubMed] [Google Scholar]
  68. Galien C (1994), Oeuvres médicales choisies: des facultés naturelles, des lieux affectés, de la méthode thérapeutique à Glaucon, in: A Pichot (Ed.), translated by Daremberg C, Gallimard pp. 323–327. ISBN 2070736857. [Google Scholar]
  69. Astruc J (1736), De Morbis Venereis Libri Sex, G Cavelier, Paris. [Google Scholar]
  70. Vidal E (1873), Inoculabilité des pustules d'ecthyma. Ann Dermatol Syphiligr II, 350–358. [Google Scholar]
  71. Steiner (1875), Zur Inokulation der Varicellen. Wiener Medizinische Wochenschrift 16, 305–308. [Google Scholar]
  72. Unna PG (1883), On herpes progenitalis, especially in women. J Cutan Veneral Dis 1, 321–334. [Google Scholar]
  73. Kelsch A, Kiener PL (1876), Contribution â l'histoire de l'adénome du foie. Arch Physiol S II 3, 622. [Google Scholar]
  74. Hanot V, Gilbert A (1888), Etudes sur les maladies du foie, Asselin and Houzeau, Paris. [Google Scholar]
  75. Virchow R (1855), Handbuch der speziellen Pathologie und Therapie, F. Enke, Erlangen und Stuttgart. [Google Scholar]
  76. Yamagiwa K (1911), Zur Kenntnis des primären parenchymatösen Leberkarzinoms, Virchow Arch Path Anat 206, 437–467. [CrossRef] [Google Scholar]
  77. Goldzieher M, von Bokay Z (1911), Der primäre Leberkrebs. Virchow Arch Path Anat 203, 75–131. [CrossRef] [Google Scholar]
  78. Sabourin C (1881), Contribution à l'étude des lesions du parenchyme hépatique dans la cirrhose. Essai sur l'adenome du foie, Thèse Paris. [Google Scholar]
  79. Holley HL, Pierson G (1948), Primary carcinoma of the liver. Am J Med 5, 561–569. [CrossRef] [Google Scholar]
  80. Sheldon WH, James DF (1948), Cirrhosis following infectious hepatitis: a report of five cases, in two of which there was superimposed primary liver cell carcinoma. Arch Intern Med (Chic) 81, 666–689. [CrossRef] [Google Scholar]
  81. Prince AM, Leblanc L, Krohn K, Masseyeff R, Alpert ME (1970), S.H. antigen and chronic liver disease. Lancet 2, 717–718. [CrossRef] [Google Scholar]
  82. Sherlock S, Fox RA, Niazi SP, Scheuer PJ (1970), Chronic liver disease and primary liver-cell cancer with hepatitis associated (Australia) antigen in serum. Lancet 1, 1243–1247. [CrossRef] [PubMed] [Google Scholar]
  83. Szmunes W (1978), Hepatocellular carcinoma and the hepatitis B virus: evidence for a causal association. Prog Med Virol 24, 40–69. [PubMed] [Google Scholar]
  84. Katsurada F (1900), Beitrag zur Kenntnis des Distomum spatulatum. Heif Pathol Anal 28, 479–505. [Google Scholar]
  85. Hou PC (1955), The pathology of Clorrorchis sinensis infestation of the liver. J Pathol Bact 70, 53–64. [CrossRef] [Google Scholar]
  86. Nakashima T, Sakamoto K, Okuda K (1977), A minute hepatocellular carcinoma found in a liver with clonorchis sinensis infection: report of two cases. Cancer 39, 1306–1311. [CrossRef] [PubMed] [Google Scholar]
  87. Burkitt D (1958), A sarcoma involving the jaws in African children. Br J Surg 46, 218–223. [CrossRef] [PubMed] [Google Scholar]
  88. Epstein MA, Achong BG, Barr YM (1964), Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1, 702–703. [CrossRef] [PubMed] [Google Scholar]
  89. Finkel MP, Biskis BO, Farrell C (1968), Osteosarcomas appearing in Syrian hamsters after treatment with extracts of human osteosarcomas. Proc Natl Acad Sci USA 60, 1223–1230. [CrossRef] [Google Scholar]
  90. Pritchard DJ, Reilly CA, Finkel MP (1971), Evidence for a human osteosarcomavirus. Nat New Biol 234, 126–127. [CrossRef] [PubMed] [Google Scholar]
  91. Balabanova H, Kotler M, Becker Y (1975), Transformation of cultured human embryonic fibroblasts by oncornavirus-like particles released from a human carcinoma cell line. Proc Natl Acad Sci USA 72, 2794–2798. [CrossRef] [Google Scholar]
  92. Cook B, O'Sullivan F, Leung J, Morse P, Graham B, Chapman AL (1978), Transformation of human embryo cells with the use of cell-free extracts of a human rhabdomyosarcoma cell line (HUS-2). J Natl Cancer Inst 60, 979–984. [CrossRef] [PubMed] [Google Scholar]
  93. Epstein AL, Kaplan HS (1974), Biology of the human malignant lymphomas. I. Establishment in continuous cell culture and heterotransplantation of diffuse histiocytic lymphomas. Cancer 34, 1851–1972. [CrossRef] [PubMed] [Google Scholar]
  94. Kaplan HS, Goodenow RS, Epstein AL, Gartner S, Decleve A, Rosenthal PN (1977), Isolation of a type of C RNA virus from an established human histiocytic lymphoma cell line. Proc Natl Acad Sci USA 74, 2564–2568. [CrossRef] [Google Scholar]
  95. Kaplan HS (1978), Studies of an RNA virus isolated from a human histiocytic lymphoma cell line, Cold Spring Harbor Conf. Cell Proliferation 5, 695–706. In: Differentiation of normal and neoplastic hematopoietic cells [Cold Spring Harbor, N. Y.]: Cold Spring Harbor Laboratory, 1978. NLM Unique ID: 101114935. [Google Scholar]
  96. Kaplan HS Goodenow RS, Gartner S, Bieber MM (1979), Biology and virology of the human malignant lymphomas. Cancer 43, 1–24. [CrossRef] [PubMed] [Google Scholar]
  97. Henle W, Henle G (1980), Epidemiologic aspects of Epstein-Barr-Virus (EBV)-associated diseases. Ann N Y Acad Sci 354, 326–331. [CrossRef] [PubMed] [Google Scholar]
  98. De The G (1979), The epidemiology of Burkitt's lymphoma: evidence for a causal association with Epstein–Barr virus. Epidemiol Rev 1, 32–54. [CrossRef] [PubMed] [Google Scholar]
  99. Henle W, Diehl V, Kohn G, zur Hausen H, Henle G (1967), Herpes-type virus and chromosome marker in normal leukocytes after growth irradiated Burkitt cells. Science 157, 1064–1065. [Google Scholar]
  100. Slavins HE, Gavett E (1946), Primary herpetic vulvo-vaginitis. Proc Soc Exp Med 63, 343–345. [CrossRef] [Google Scholar]
  101. Frost JK (1961), Cytology of benign conditions. Clin Obstet Gynecol 4, 1075–1096. [CrossRef] [Google Scholar]
  102. Kotcher E, Gray LA, James QC, Frick CA, Bottorff DW (1962), Cervical cell inclusion bodies and viral infection of the cervix. Ann N Y Acad Sci 97, 571–580. [CrossRef] [PubMed] [Google Scholar]
  103. Varga A, Browell B (1960), Viral inclusion bodies in vaginal smears. Obstet Gynec 16, 441–444. [Google Scholar]
  104. Naib ZM, Nahmias AJ, Josey WE (1966), Cytology and histopathology of cervical herpes simplex infection. Cancer 19, 1026–1031. [CrossRef] [PubMed] [Google Scholar]
  105. Rawls WE, Tompkins WA, Figueroa ME, Melnick JL (1968), Herpesvirus type 2: association with carcinoma of the cervix. Science 161, 1255–1256. [CrossRef] [Google Scholar]
  106. Rawls WE, Tompkins WA, Melnick JL (1969), The association of herpesvirus type 2 and carcinoma of the uterine cervix. Am J Epidemiol 89, 547–554. [CrossRef] [Google Scholar]
  107. Nahmias AJ, Naib ZM, Josey WE, Murphy FA, Luce CF (1970), Sarcomas after inoculation of newborn hamsters with Herpes virus hominis type 2 strains. Proc Soc Exp Biol Med 134, 1065–1069. [CrossRef] [PubMed] [Google Scholar]
  108. Royston I, Aurelian L, Davis HJ (1970), Genital herpes virus findings in relation to cervical neoplasia. J Reprod Med 4, 9–13. [Google Scholar]
  109. Adam E, Levy AH, Rawls WE, Melnick JL (1971), Seroepidemiologic studies of herpesvirus type 2 and carcinoma of the cervix. I. Case-control matching. J Natl Cancer Inst 47, 941–951. [Google Scholar]
  110. Frenkel N, Roizman B, Cassai E, Nahmias A (1972), A DNA fragment of herpes simplex 2 and its transcription in human cervical cancer tissue. Proc Natl Acad Sci USA 69, 3784–3789. [CrossRef] [Google Scholar]
  111. Rawls WE, Adam E, Melnick JL (1973), An analysis of seroepidemiological studies of herpesvirus type 2 and carcinoma of the cervix. Cancer Res 33, 1477–1482. [Google Scholar]
  112. Thomas DB, Rawls WE (1978), Relationship of herpes simplex virus type-2 antibodies and squamous dysplasia to cervical carcinoma in situ. Cancer 42, 2716–2725. [CrossRef] [PubMed] [Google Scholar]
  113. Roizman B, Carmichael LE, Deinhardt F, de-The G, Nahmias AJ, Plowright W, Rapp F, Sheldrick P, Takahashi M, Wolf K (1981), Herpesviridae − definition, provisional nomenclature, and taxonomy. The Herpesvirus Study Group, the International Committee on Taxonomy of Viruses. Intervirology 16, 201–217. [CrossRef] [Google Scholar]
  114. Kaposi M (1872), Idiopathisches multiples Pigmentsarkom der Haut. Arch Dermatol Syph 4, 265–273. [CrossRef] [Google Scholar]
  115. Karamanou M, Antoniou C, Stratigos AJ, Saridaki Z, Androutsos G (2013), The eminent dermatologist Moriz Kaposi (1837-1902) and the first description of idiopathic multiple pigmented sarcoma of the skin. J BUON 18, 1101–1105. [PubMed] [Google Scholar]
  116. Friedman-Kien AE (1981), Disseminated Kaposi's sarcoma syndrome in young homosexual men. J Am Acad Dermatol 5, 468–471. [CrossRef] [PubMed] [Google Scholar]
  117. Chang JT, Shebl FM, Pfeiffer RM, Biryahwaho B, Graubard BI, Mbulaiteye SM (2013), A population-based study of Kaposi sarcoma-associated herpesvirus seropositivity in Uganda using principal components analysis. Infect Agent Cancer 8, 9378–9383. [CrossRef] [Google Scholar]
  118. Pisani P, Parkin DM, Muñoz N, Ferlay J (1997), Cancer and infection: estimates of the attributable fraction in 1990. Cancer Epidemiol Biomarkers Prev 6, 387–400. [Google Scholar]
  119. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Muñoz N (1999), Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189, 12–19. [CrossRef] [Google Scholar]
  120. Jin YT, Tsai ST, Li C, Chang KC, Yan JJ, Chao WY, Eng HL, Chou TY, Wu TC, Su IJ (1997), Prevalence of human papillomavirus in middle ear carcinoma associated with chronic otitis media. Am J Pathol 150, 1327–1333. [PubMed] [Google Scholar]
  121. Senba M, Mori N, Wada A, Fujita S, Yasunami M, Irie S, Hayashi T, Igawa T, Kanetake H, Takahara O, Toriyama K (2010), Human papillomavirus genotypes in penile cancers from Japanese patients and HPV-induced NF-κB activation. Oncol Lett 1, 267–272. [CrossRef] [PubMed] [Google Scholar]
  122. Boccardo E, Lepique AP, Villa LL (2010), The role of inflammation in HPV carcinogenesis. Carcinogenesis 31, 1905–1912. [CrossRef] [PubMed] [Google Scholar]
  123. Rettig EM, Wentz A, Posner MR, Gross ND, Haddad RI, Gillison ML, Fakhry C, Quon H, Sikora AG, Stott WJ, Lorch JH, Gourin CG, Guo Y, Xiao W, Miles BA, Richmon JD, Andersen PE, Misiukiewicz KJ, Chung CH, Gerber JE, Rajan SD, D'Souza G (2015), Prognostic implication of persistent human papillomavirus type 16 DNA detection in oral rinses for human papillomavirus-related oropharyngeal carcinoma. JAMA Oncol 1, 907–915. [CrossRef] [PubMed] [Google Scholar]
  124. Sgaramella N, Coates PJ, Strindlund K, Loljung L, Colella G, Laurell G, Rossiello R, Muzio LL, Loizou C, Tartaro G, Olofsson K, Danielsson K, Fåhraeus R, Nylander K (2015), Expression of p16 in squamous cell carcinoma of the mobile tongue is independent of HPV infection despite presence of the HPV-receptor syndecan-1. Br J Cancer 113, 321–326. [CrossRef] [PubMed] [Google Scholar]
  125. Mehryar MM, Li SY, Liu HW, Li F, Zhang F, Zhou YB, Zeng Y, Li (2015), Prevalence of human papillomavirus in esophageal carcinoma in Tangshan, China. World J Gastroenterol 21, 2905–2911. [CrossRef] [PubMed] [Google Scholar]
  126. Moreas H, Tsiambas E, Lazaris AC, Nonni A, Karameris A, Metaxas GE, Armatas HE, Patsouris E (2014), Impact of HPV detection in colorectal adenocarcinoma: HPV protein and chromogenic in situ hybridization analysis based on tissue microarrays. J BUON 19, 91–96. [PubMed] [Google Scholar]
  127. Li YX, Zhang L, Simayi D, Zhang N, Tao L, Yang L, Zhao J, Chen YZ, Li F, Zhang WJ (2015), Human papillomavirus infection correlates with inflammatory Stat3 signaling activity and IL-17 level in patients with colorectal cancer. PLoS One 10, e0118391. [CrossRef] [PubMed] [Google Scholar]
  128. Xiong WM, He F, Xiao RD, Yu TT, Zhang X, Liu ZQ, Xu QP, Cai L (2016), Association between human papillomavirus infection and lung cancer. Zhonghua Liu Xing Bing Xue Za Zhi 37, 1658–1661. [PubMed] [Google Scholar]
  129. Lin FC, Huang JY, Tsai SC, Nfor ON, Chou MC, Wu MF, Lee CT, Jan CF, Liaw YP (2016), The association between human papillomavirus infection and female lung cancer: a population-based cohort study. Medicine (Baltimore) 95, e 3856. [CrossRef] [Google Scholar]
  130. Ilahi NE, Anwar S, Noreen M, Hashmi SN, Murad S (2016), Detection of human papillomavirus-16 DNA in archived clinical samples of breast and lung cancer patients from North Pakistan. J Cancer Res Clin Oncol 142, 2497–2502. [CrossRef] [PubMed] [Google Scholar]
  131. Li J, Ding J, Zhai K (2015), Detection of human papillomavirus DNA in patients with breast tumor in China. PLoS One 10, e0136050. [CrossRef] [PubMed] [Google Scholar]
  132. Levy E, Carman MD, Fernandez-Madrid IJ, Power MD, Lieberburg I, van Duinen SG, Bots GT, Luyendijk W, Frangione B (1990), Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248, 1124–1126. [Google Scholar]
  133. Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Roques P, Hardy J, Mullan M (1991), Early-onset Alzheimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353, 844–846. [CrossRef] [PubMed] [Google Scholar]
  134. Hendriks L, van Duijn CM, Cras P, Cruts M, Van Hul W, van Harskamp F, Warren A, McInnis MG, Antonarakis SE, Martin JJ, et al. (1992), Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the beta-amyloid precursor protein gene. Nat Genet 1, 218–221. [CrossRef] [Google Scholar]
  135. Mullan M, Crawford F (1993), Genetic and molecular advances in Alzheimer's disease. Trends Neurosci 16, 398–403. [CrossRef] [PubMed] [Google Scholar]
  136. Cacace R, Sleegers K, Van Broeckhoven C (2016), Molecular genetics of early-onset Alzheimer's disease revisited. Alzheimers Dement 12, 733–748. [CrossRef] [PubMed] [Google Scholar]
  137. Itzhaki RF, Lathe R (2018), Herpes viruses and senile dementia: first population evidence for a causal link. J Alzheimers Dis 64, 363–366. [CrossRef] [PubMed] [Google Scholar]
  138. Marshall BJ (1985), The pathogenesis of non-ulcer dyspepsia. Med J Aust 143, 319. [Google Scholar]
  139. Brücher BLDM, Jamall IS (2019), Precancerous niche (PCN), a product of fibrosis with remodeling by incessant chronic inflammation. 4open 2, 11, 1–21, https://doi.org/10.1051/fopen/2018009 [CrossRef] [EDP Sciences] [Google Scholar]
  140. Yamasaki K, Suematsu H, Takahashi T (1998), Comparison of gastric lesions in dogs and cats with and without gastric spiral organisms. J Am Vet Med Assoc 212, 529–533. [PubMed] [Google Scholar]
  141. Kubota-Aizawa S, Ohno K, Fukushima K, Kanemoto H, Nakashima K, Uchida K, Chambers JK, Goto-Koshino Y, Watanabe T, Sekizaki T, Mimuro H, Tsujimoto H (2017), Epidemiological study of gastric Helicobacter spp. in dogs with gastrointestinal disease in Japan and diversity of Helicobacter heilmannii sensu stricto. Vet J 225, 56–62. [CrossRef] [PubMed] [Google Scholar]
  142. Zamani M, Vahedi A, Maghdouri Z, Shokri-Shirvani J (2017), Role of food in environmental transmission of Helicobacter pylori. Caspian J Intern Med 8, 146–152. [PubMed] [Google Scholar]
  143. Tegtmeyer N, Wessler S, Necchi V, Rohde M, Harrer A, Rau TT, Asche CI, Boehm M, Loessner H, Figueiredo C, Naumann M, Palmisano R, Solcia E, Ricci V, Backert S (2017), Helicobacter pylori employs a unique basolateral type IV secretion mechanism for CagA delivery. Cell Host Microbe 22, 552–560. [CrossRef] [PubMed] [Google Scholar]
  144. Chandran Darbari V, Waksman G (2015), Structural biology of bacterial type IV secretion systems. Annu Rev Biochem 84, 603–629. [CrossRef] [PubMed] [Google Scholar]
  145. Li N, Tang B, Jia YP, Zhu P, Zhuang Y, Fang Y, Li Q, Wang K, Zhang WJ, Guo G, Wang TJ, Feng YJ, Qiao B, Mao XH, Zou QM (2017), Helicobacter pylori CagA protein negatively regulates autophagy and promotes inflammatory response via c-Met-PI3K/Akt-mTOR signaling pathway. Front Cell Infect Microbiol 7, 417. [CrossRef] [PubMed] [Google Scholar]
  146. Goedert JJ, Hua X, Bielecka A, Okayasu I, Milne GL, Jones GS, Fujiwara M, Sinha R, Wan Y, Xu X, Ravel J, Shi J, Palm NW, Feigelson HS (2018), Postmenopausal breast cancer and oestrogen associations with the IgA-coated and IgA-noncoated faecal microbiota. Br J Cancer 118, 471–479. [CrossRef] [PubMed] [Google Scholar]
  147. Thompson KJ, Ingle JN, Tang X, Chia N, Jeraldo PR, Walther-Antonio MR, Kandimalla KK, Johnson S, Yao JZ, Harrington SC, Suman VJ, Wang L, Weinshilboum RL, Boughey JC, Kocher JP, Nelson H, Goetz MP, Kalari KR (2017), A comprehensive analysis of breast cancer microbiota and host gene expression. PLoS One 12, e0188873. [CrossRef] [PubMed] [Google Scholar]
  148. Janda JM, Abbott SL (2007), 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45, 2761–2764. [CrossRef] [Google Scholar]
  149. Hayes RB, Ahn J, Fan X, Peters BA, Ma Y, Yang L, Agalliu I, Burk RD, Ganly I, Purdue MP, Freedman ND, Gapstur SM, Pei Z (2018), Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol 4, 358–365. [CrossRef] [PubMed] [Google Scholar]
  150. Kumarasamy V, Kuppusamy UR, Jayalakshmi P, Samudi C, Ragavan ND, Kumar S (2017), Exacerbation of colon carcinogenesis by Blastocystis sp. PLoS One 12, e0183097. [CrossRef] [PubMed] [Google Scholar]
  151. Banerjee D, Madhusoodanan UK, Nayak S, Jacob J (2003), Urinary hydrogen peroxide: a probable marker of oxidative stress in malignancy. Clin Chim Acta 334, 205–209. [CrossRef] [Google Scholar]
  152. Xuan C, Shamonki JM, Chung A, Dinome ML, Chung M, Sieling PA, Lee DJ (2014), Microbial dysbiosis is associated with human breast cancer. PLoS One 9, e83744. [CrossRef] [PubMed] [Google Scholar]
  153. Yazdi HR, Movafagh A, Fallah F, Alizadeh Shargh S, Mansouri N, Heidary Pour A, Hashemi M (2016), Evaluation of Methylobacterium radiotolerance and Sphyngomonas yanoikoaie in sentinel lymph nodes of breast cancer cases. Asian Pac J Cancer Prev 17, 279–285. [CrossRef] [PubMed] [Google Scholar]
  154. Velicer CM, Heckbert SR, Lampe JW, Potter JD, Robertson CA, Taplin SH (2004), Antibiotic use in relation to the risk of breast cancer. JAMA 291, 827–835. [CrossRef] [PubMed] [Google Scholar]
  155. Wang H, Altemus J, Niazi F, Green H, Calhoun BC, Sturgis C, Grobmyer SR, Eng C (2017), Breast tissue, oral and urinary microbiomes in breast cancer. Oncotarget 8, 88122–88138. [PubMed] [Google Scholar]
  156. Kutschera U (2007), Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis. Plant Signal Behav 2, 74–78. [CrossRef] [PubMed] [Google Scholar]
  157. Lai CC, Cheng A, Liu WL, Tan CK, Huang YT, Chung KP, Lee MR, Hsueh PR (2011), Infections caused by unusual Methylobacterium species. J Clin Microbiol 49, 3329–3331. [CrossRef] [Google Scholar]
  158. Ishii Y, Sakai S, Honma Y (2003), Cytokinin-induced differentiation of human myeloid leukemia HL-60 cells is associated with the formation of nucleotides, but not with incorporation into DNA or RNA. Biochim Biophys Acta 1643, 11–24. [CrossRef] [PubMed] [Google Scholar]
  159. Pollock CB, Koltai H, Kapulnik Y, Prandi C, Yarden RI (2012), Strigolactones: a novel class of phytohormones that inhibit the growth and survival of breast cancer cells and breast cancer stem-like enriched mammosphere cells. Breast Cancer Res Treat 134, 1041–1055. [CrossRef] [PubMed] [Google Scholar]
  160. Purcell RV, Pearson J, Aitchison A, Dixon L, Frizelle FA, Keenan JI (2017), Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS One 12, e0171602. [CrossRef] [PubMed] [Google Scholar]
  161. Dejea CM, Wick EC, Hechenbleikner EM, White JR, Mark Welch JL, Rossetti BJ, Peterson SN, Snesrud EC, Borisy GG, Lazarev M, Stein E, Vadivelu J, Roslani AC, Malik AA, Wanyiri JW, Goh KL, Thevambiga I, Fu K, Wan F, Llosa N, Housseau F, Romans K, Wu X, McAllister FM, Wu S, Vogelstein B, Kinzler KW, Pardoll DM, Sears CL (2014), Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci USA 111, 18321–18326. [CrossRef] [Google Scholar]
  162. Burns MB, Lynch J, Starr TK, Knights D, Blekhman R (2015), Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Med 7, 1–12. [CrossRef] [PubMed] [Google Scholar]
  163. Wu LC, Sun PL, Chang YT (2013), Extensive deep dermatophytosis caused by Trichophyton rubrum in a patient with liver cirrhosis and chronic renal failure. Mycopathologia 176, 457–462. [CrossRef] [PubMed] [Google Scholar]
  164. Poonawalla T, Chen W, Duvic M (2006), Mycosis fungoides with tinea pseudoimbricata owing to Trichophyton rubrum infection. J Cutan Med Surg 10, 52–56. [CrossRef] [PubMed] [Google Scholar]
  165. Zhang B, Izadjoo M, Horkayne-Szakaly I, Morrison A, Wear DJ (2011), Medulloblastoma and Brucellosis: molecular evidence of Brucella sp in association with central nervous system cancer. J Cancer 2, 136–141. [CrossRef] [PubMed] [Google Scholar]
  166. Ye X, Wang R, Bhattacharya R, Boulbes DR, Fan F, Xia L, Adoni H, Ajami NJ, Wong MC, Smith DP, Petrosino JF, Venable S, Qiao W, Baladandayuthapani V, Maru D, Ellis LM (2017), Fusobacterium nucleatum subspecies animalis influences proinflammatory cytokine expression and monocyte activation in human colorectal tumors. Cancer Prev Res (Phila) 10, 398–409. [CrossRef] [PubMed] [Google Scholar]
  167. Swidnicka-Siergiejko AK, Gomez-Chou SB, Cruz-Monserrate Z, Deng D, Liu Y, Huang H, Ji B, Azizian N, Daniluk J, Lu W, Wang H, Maitra A, Logsdon CD (2017), Chronic inflammation initiates multiple forms of K-Ras-independent mouse pancreatic cancer in the absence of TP53. Oncogene 36, 3149–3158. [CrossRef] [Google Scholar]
  168. Thamavit W, Bhamarapravati N, Sahaphong S, Vajrasthira S, Angsubhakorn S (1978), Effects of dimethylnitrosamine on induction of cholangiocarcinoma in Opisthorchis viverrini-infected Syrian golden hamsters. Cancer Res 38, 4634–4639. [Google Scholar]
  169. Sonakul D, Koompirochana C, Chinda K, Stitnimakarn T (1978), Hepatic carcinoma with opisthorchiasis. Southeast Asian J Trop Med Public Health 9, 215–219. [PubMed] [Google Scholar]
  170. Young ND, Nagarajan N, Lin SJ, Korhonen PK, Jex AR, Hall RS, Safavi-Hemam, H, Kaewkong W, Bertrand D, Gao S, Seet Q, Wongkham S, Teh BT, Wongkham C, Intapan PM, Maleewong W, Yang X, Hu M, Wang Z, Hofmann A, Sternberg PW, Tan P, Wang J, Gasser RB (2014), The Opisthorchis viverrini genome provides insights into life in the bile duct. Nat Commun 5, 4378. [CrossRef] [PubMed] [Google Scholar]
  171. Sripa B, Pairojkul C (2008), Cholangiocarcinoma: lessons from Thailand. Curr Opin Gastroenterol 24, 349–356. [CrossRef] [PubMed] [Google Scholar]
  172. Vonghachack Y, Odermatt P, Taisayyavong K, Phounsavath S, Akkhavong K, Sayasone S (2017), Transmission of Opisthorchis viverrini, Schistosoma mekongi and soil-transmitted helminthes on the Mekong Islands, Southern Lao PDR. Infect Dis Poverty 6, 131. [CrossRef] [PubMed] [Google Scholar]
  173. Dechakhamphu S, Pinlaor S, Sitthithaworn P, Nair J, Bartsch H, Yongvanit P (2010), Lipid peroxidation and etheno DNA adducts in white blood cells of liver fluke-infected patients: protection by plasma alpha-tocopherol and praziquantel. Cancer Epidemiol Biomarkers Prev 19, 310–318. [CrossRef] [Google Scholar]
  174. Gouveia MJ, Pakharukova MY, Laha T, Sripa B, Maksimova GA, Rinaldi G, Brindley PJ, Mordvinov VA, Amaro T, Santos LL, Costa JMCD, Vale N (2017), Infection with Opisthorchis felineus induces intraepithelial neoplasia of the biliary tract in a rodent model. Carcinogenesis 38, 929–937. [CrossRef] [PubMed] [Google Scholar]
  175. Wongsena W, Charoensuk L, Dangtakot R, Pinlaor P, Intuyod K, Pinlaor S (2017), Melatonin suppresses eosinophils and Th17 cells in hamsters treated with a combination of human liver fluke infection and a chemical carcinogen. Pharmacol Rep 70, 98–105. [CrossRef] [Google Scholar]
  176. Tartour E, Fossiez F, Joyeux I, Galinha A, Gey A, Claret E, Sastre-Garau X, Couturier J, Mosseri V, Vives V, Banchereau J, Fridman WH, Wijdenes J, Lebecque S, Sautès-Fridman C (1999), Interleukin 17, a T-cell-derived cytokine, promotes tumorigenicity of human cervical tumors in nude mice. Cancer Res 59, 3698–3704. [Google Scholar]
  177. Kato T, Furumoto H, Ogura T, Onishi Y, Irahara M, Yamano S, Kamada M, Aono T (2001), Expression of IL-17 mRNA in ovarian cancer. Biochem Biophys Res Commun 282, 735–738. [CrossRef] [Google Scholar]
  178. Benchetrit F, Ciree A, Vives V, Warnier G, Gey A, Sautès-Fridman C, Fossiez F, Haicheur N, Fridman WH, Tartour E (2002), Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism. Blood 99, 2114–2121. [CrossRef] [Google Scholar]
  179. Wägsäter D, Löfgren S, Hugander A, Dimberg J (2006), Expression of interleukin-17 in human colorectal cancer. Anticancer Res 26, 4213–4216. [PubMed] [Google Scholar]
  180. Changchun K, Pengchao H, Ke S, Ying W, Lei W (2017), Interleukin-17 augments tumor necrosis factor α-mediated increase of hypoxia-inducible factor-1α and inhibits vasodilator-stimulated phosphoprotein expression to reduce the adhesion of breast cancer cells. Oncol Lett 13, 3253–3260. [CrossRef] [PubMed] [Google Scholar]
  181. Ma M, Huang W, Kong D (2018), IL-17 inhibits the accumulation of myeloid-derived suppressor cells in breast cancer via activating STAT3. Int Immunopharmacol 59, 148–156. [CrossRef] [PubMed] [Google Scholar]
  182. Steiner GE, Newman ME, Paikl D, Stix U, Memaran-Dagda N, Lee C, Marberger MJ (2003), Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate. Prostate 56, 171–182. [CrossRef] [Google Scholar]
  183. Numasaki M, Watanabe M, Suzuki T, Takahashi H, Nakamura A, McAllister F, Hishinuma T, Goto J, Lotze MT, Kolls JK, Sasaki H (2005), IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol 175, 6177–6189. [CrossRef] [PubMed] [Google Scholar]
  184. Li G, Zhang Y, Qian Y, Zhang H, Guo S, Sunagawa M, Hisamitsu T, Liu Y (2013), Interleukin-17A promotes rheumatoid arthritis synoviocytes migration and invasion under hypoxia by increasing MMP2 and MMP9 expression through NF-κB/HIF-1α pathway. Mol Immunol 53, 227–236. [CrossRef] [Google Scholar]
  185. Obradović H, Krstić J, Kukolj T, Trivanović D, Đorđević IO, Mojsilović S, Jauković A, Jovčić G, Bugarski D, Santibañez JF (2016), Doxycycline inhibits IL-17-stimulated MMP-9 expression by downregulating ERK1/2 activation: implications in myogenic differentiation. Mediators Inflamm 2016, 2939658. [PubMed] [Google Scholar]
  186. Park MJ, Moon SJ, Lee EJ, Jung KA, Kim EK, Kim DS, Lee JH, Kwok SK, Min JK, Park SH, Cho ML (2018), IL-1-IL-17 signaling axis contributes to fibrosis and inflammation in two different murine models of systemic sclerosis. Front Immunol 9, 1611. [CrossRef] [Google Scholar]
  187. Chang SL, Hsiao YW, Tsai YN, Lin SF, Liu SH, Lin YJ, Lo LW, Chung FP, Chao TF, Hu YF, Tuan TC, Liao JN, Hsieh YC, Wu TJ, Higa S, Chen SA (2018), Interleukin-17 enhances cardiac ventricular remodeling via activating MAPK pathway in ischemic heart failure. J Mol Cell Cardiol 122, 69–79. [CrossRef] [PubMed] [Google Scholar]
  188. Zhang Y, Zhang YY, Li TT, Wang J, Jiang Y, Zhao Y, Jin XX, Xue GL, Yang Y, Zhang XF, Sun YY, Zhang ZR, Gao X, Du ZM, Lu YJ, Yang BF, Pan ZW (2018), Ablation of interleukin-17 alleviated cardiac interstitial fibrosis and improved cardiac function via inhibiting long non-coding RNA-AK081284 in diabetic mice. J Mol Cell Cardiol 115, 64–72. [CrossRef] [PubMed] [Google Scholar]
  189. Mehrotra P, Collett JA, Gunst SJ, Basile DP (2018), Th17 cells contribute to pulmonary fibrosis and inflammation during chronic kidney disease progression after acute ischemia. Am J Physiol Regul Integr Comp Physiol 314, R265– R273. [CrossRef] [PubMed] [Google Scholar]
  190. Sun B, Wang H, Zhang L, Yang X, Zhang M, Zhu X, Ji X, Wang H (2018), Role of interleukin 17 in TGF-β signaling-mediated renal interstitial fibrosis. Cytokine 106, 80–88. [CrossRef] [Google Scholar]
  191. Mohamed R, Jayakumar C, Chen F, Fulton D, Stepp D, Gansevoort RT, Ramesh G (2016), Low-Dose IL-17 therapy prevents and reverses diabetic nephropathy, metabolic syndrome, and associated organ fibrosis. J Am Soc Nephrol 27, 745–765. [CrossRef] [Google Scholar]
  192. Kinyanjui MW, Shan J, Nakada EM, Qureshi ST, Fixman ED (2013), Dose-dependent effects of IL-17 on IL-13-induced airway inflammatory responses and airway hyperresponsiveness. J Immunol 190, 3859–3868. [CrossRef] [PubMed] [Google Scholar]
  193. Krueger JG, Fretzin S, Suárez-Fariñas M, Haslett PA, Phipps KM, Cameron GS, McColm J, Katcherian A, Cueto I, White T, Banerjee S, Hoffman RW (2012), IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis. J Allergy Clin Immunol 130, 145–154. [CrossRef] [PubMed] [Google Scholar]
  194. Chen E, Cen Y, Lu D, Luo W, Jiang H (2018), IL-22 inactivates hepatic stellate cells via downregulation of the TGF-β1/notch signaling pathway. Mol Med Rep 17, 5449–5453. [PubMed] [Google Scholar]
  195. Ye J, Liu L, Ji Q, Huang Y, Shi Y, Shi L, Liu J, Wang M, Xu Y, Jiang H, Wang Z, Lin Y, Wan J (2017), Anti-interleukin-22-neutralizing antibody attenuates angiotensin II-induced cardiac hypertrophy in mice. Mediators Inflamm 2017, 5635929. [PubMed] [Google Scholar]
  196. Rattik S, Hultman K, Rauch U, Söderberg I, Sundius L, Ljungcrantz I, Hultgårdh-Nilsson A, Wigren M, Björkbacka H, Fredrikson GN, Nilsson J (2015), IL-22 affects smooth muscle cell phenotype and plaque formation in apolipoprotein E knockout mice. Atherosclerosis 242, 506–514. [CrossRef] [PubMed] [Google Scholar]
  197. Molina MF, Abdelnabi MN, Fabre T, Shoukry NH (2018), Type 3 cytokines in liver fibrosis and liver cancer. Cytokine, pii: S1043-4666(18)30326-0. [Google Scholar]
  198. Li H, Li G, Liu L, Guo Z, Ma X, Cao N, Lin H, Han G, Duan Y, Du G (2015), Tumor interstitial fluid promotes malignant phenotypes of lung cancer independently of angiogenesis. Cancer Prev Res (Phila) 8, 1120–1129. [CrossRef] [PubMed] [Google Scholar]
  199. Xia J, Wang H, Li S, Wu Q, Sun L, Huang H, Zeng M (2017), Ion channels or aquaporins as novel molecular targets in gastric cancer. Mol Cancer 16, 54. [CrossRef] [Google Scholar]
  200. Görgülü K, Diakopoulos KN, Ai J, Schoeps B, Kabacaoglu D, Karpathaki AF, Ciecielski KJ, Kaya-Aksoy E, Ruess DA, Berninger A, Kowalska M, Stevanovic M, Wörmann SM, Wartmann T, Zhao Y, Halangk W, Voronina S, Tepikin A, Schlitter AM, Steiger K, Artati A, Adamski J, Aichler M, Walch A, Jastroch M, Hartleben G, Mantzoros CS, Weichert W, Schmid RM, Herzig S, Krüger A, Sainz B Jr, Lesina M, Algül H (2018), Levels of the autophagy related 5 protein affect progression and metastasis of pancreatic tumors in mice. Gastroenterology, pii: S0016-5085(18)35087-X. [Google Scholar]
  201. Preston GM, Carroll TP, Guggino WB, Agre P (1992), Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256, 385–387. [CrossRef] [PubMed] [Google Scholar]
  202. Rojek A, Füchtbauer EM, Kwon TH, Frøkiaer J, Nielsen S (2006), Severe urinary concentrating defect in renal collecting duct-selective AQP2 conditional-knockout mice. Proc Natl Acad Sci USA 103, 6037–6042. [CrossRef] [Google Scholar]
  203. Rojek AM, Skowronski MT, Füchtbauer EM, Füchtbauer AC, Fenton RA, Agre P, Frøkiaer J, Nielsen S (2007), Defective glycerol metabolism in aquaporin 9 (AQP9) knockout mice. Proc Natl Acad Sci USA 104, 3609–3614. [CrossRef] [Google Scholar]
  204. Méndez-Giménez L, Rodríguez A, Balaguer I, Frühbeck G (2014), Role of aquaglyceroporins and caveolins in energy and metabolic homeostasis. Mol Cell Endocrinol 397, 78–92. [CrossRef] [PubMed] [Google Scholar]
  205. Madeira A, Moura TF, Soveral G (2015), Aquaglyceroporins: implications in adipose biology and obesity. Cell Mol Life Sci 72, 759–771. [CrossRef] [PubMed] [Google Scholar]
  206. Verkman AS (2005), More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118, 3225–3232. [CrossRef] [Google Scholar]
  207. Cerdà J, Finn RN (2010), Piscine aquaporins: an overview of recent advances. J Exp Zool A Ecol Genet Physiol 313, 623–650. [CrossRef] [PubMed] [Google Scholar]
  208. Saadoun S, Papadopoulos MC, Davies DC, Bell BA, Krishna S (2002), Increased aquaporin 1 water channel expression in human brain tumours. Br J Cancer 87, 621–623. [CrossRef] [PubMed] [Google Scholar]
  209. Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005), Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434, 786–792. [CrossRef] [PubMed] [Google Scholar]
  210. Jung HJ, Park JY, Jeon HS, Kwon TH (2011), Aquaporin-5: a marker protein for proliferation and migration of human breast cancer cells. PLoS One 6, e28492. [CrossRef] [PubMed] [Google Scholar]
  211. Chen J, Wang T, Zhou YC, Gao F, Zhang ZH, Xu H, Wang SL, Shen LZ (2014), Aquaporin 3 promotes epithelial-mesenchymal transition in gastric cancer. J Exp Clin Cancer Res 33, 38. [CrossRef] [PubMed] [Google Scholar]
  212. Lee SJ, Chae YS, Kim JG, Kim WW, Jung JH, Park HY, Jeong JY, Park JY, Jung HJ, Kwon TH (2014), AQP5 expression predicts survival in patients with early breast cancer. Ann Surg Oncol 21, 375–383. [CrossRef] [PubMed] [Google Scholar]
  213. Stroka KM, Jiang H, Chen SH, Tong Z, Wirtz D, Sun SX, Konstantopoulos K (2014), Water permeation drives tumor cell migration in confined microenvironments. Cell 157, 611–623. [CrossRef] [PubMed] [Google Scholar]
  214. Papadopoulos MC, Saadoun S (2015), Key roles of aquaporins in tumor biology. Biochim Biophys Acta 1848, 2576–2583. [CrossRef] [PubMed] [Google Scholar]
  215. Verkman AS, Hara-Chikuma M, Papadopoulos MC (2008), Aquaporins: new players in cancer biology. J Mol Med (Berl) 86, 523–529. [CrossRef] [PubMed] [Google Scholar]
  216. Papadopoulos MC, Saadoun S, Verkman AS (2008), Aquaporins and cell migration. Pflugers Arch 456, 693–700. [CrossRef] [PubMed] [Google Scholar]
  217. Mola MG, Nicchia GP, Svelto M, Spray DC, Frigeri A (2009), Automated cell-based assay for screening of aquaporin inhibitors. Anal Chem 81, 8219–8229. [CrossRef] [PubMed] [Google Scholar]
  218. Venglovecz V, Pallagi P, Kemény LV, Balázs A, Balla Z, Becskeházi E, Gál E, Tóth E, Zvara Á, Puskás LG, Borka K, Sendler M, Lerch MM, Mayerle J, Kühn JP, Rakonczay Z Jr, Hegyi P (2018), The importance of aquaporin 1 in pancreatitis and its relation to the CFTR Cl- channel. Front Physiol 9, 854. [CrossRef] [PubMed] [Google Scholar]
  219. Trujillo E, González T, Marín R, Martín-Vasallo P, Marples D, Mobasheri A (2004), Human articular chondrocytes, synoviocytes and synovial microvessels express aquaporin water channels: upregulation of AQP1 in rheumatoid arthritis. Histol Histopathol 19, 435–444. [PubMed] [Google Scholar]
  220. Hardin JA, Wallace LE, Wong JF, O'Loughlin EV, Urbanski SJ, Gall DG, MacNaughton WK, Beck PL (2004), Aquaporin expression is downregulated in a murine model of colitis and in patients with ulcerative colitis, Crohn's disease and infectious colitis. Cell Tissue Res 318, 313–323. [Google Scholar]
  221. Ricanek P, Lunde LK, Frye SA, Støen M, Nygård S, Morth JP, Rydning A, Vatn MH, Amiry-Moghaddam M, Tønjum T (2015), Reduced expression of aquaporins in human intestinal mucosa in early stage inflammatory bowel disease. Clin Exp Gastroenterol 8, 49–67. [CrossRef] [PubMed] [Google Scholar]
  222. Brücher BLDM, Jamall IS (2019), Eicosanoids in carcinogenesis. 4open 2, 9, 1–34, https://doi.org/10.1051/fopen/2018008 [CrossRef] [EDP Sciences] [Google Scholar]
  223. Shi Z, Ye W, Zhang J, Zhang F, Yu D, Yu H, Chen B, Zhou M, Sun H (2018), LipoxinA4 attenuates acute pancreatitis-associated acute lung injury by regulating AQP-5 and MMP-9 expression, anti-apoptosis and PKC/SSeCKS-mediated F-actin activation. Mol Immunol 103, 78–88. [CrossRef] [Google Scholar]
  224. Watanabe T, Fujii T, Oya T, Horikawa N, Tabuchi Y, Takahashi Y, Morii M, Takeguchi N, Tsukada K, Sakai H (2009), Involvement of aquaporin-5 in differentiation of human gastric cancer cells. J Physiol Sci 59, 113–122. [CrossRef] [PubMed] [Google Scholar]
  225. Gao L, Gao Y, Li X, Howell P, Kumar R, Su X, Vlassov AV, Piazza GA, Riker AI, Sun D, Xi Y (2012), Aquaporins mediate the chemoresistance of human melanoma cells to arsenite. Mol Oncol 6, 81–87. [CrossRef] [PubMed] [Google Scholar]
  226. Burghardt B, Elkaer ML, Kwon TH, Rácz GZ, Varga G, Steward MC, Nielsen S (2003), Distribution of aquaporin water channels AQP1 and AQP5 in the ductal system of the human pancreas. Gut 52, 1008–1016. [CrossRef] [PubMed] [Google Scholar]
  227. Kang SK, Chae YK, Woo J, Kim MS, Park JC, Lee J, Soria JC, Jang SJ, Sidransky D, Moon C (2008), Role of human aquaporin 5 in colorectal carcinogenesis. Am J Pathol 173, 518–525. [CrossRef] [PubMed] [Google Scholar]
  228. Direito I, Paulino J, Vigia E, Brito MA, Soveral G (2017), Differential expression of aquaporin-3 and aquaporin-5 in pancreatic ductal adenocarcinoma. J Surg Oncol 115, 980–996. [CrossRef] [Google Scholar]
  229. Klionsky DJ (2008), Autophagy revisited: a conversation with Christian de Duve. Autophagy 4, 740–743. [CrossRef] [PubMed] [Google Scholar]
  230. de Reuck AVS, Cameron MP (1963), Ciba Foundation Symposium on Lysosomes, London on February 12–14, J.A. Churchill Ltd, 1963. http://www.tandfonline.com/doi/pdf/10.4161/auto.6398?needAccess=true [CrossRef] [Google Scholar]
  231. Blazkova H, Krejcikova K, Moudry P, Frisan T, Hodny Z, Bartek J (2010), Bacterial intoxication evokes cellular senescence with persistent DNA damage and cytokine signaling. J Cell Mol Med 14, 357–367. [CrossRef] [PubMed] [Google Scholar]
  232. Nakamura T, Furukawa A, Uchida K, Ogawa T, Tamura T, Sakonishi D, Wada Y, Suzuki Y, Ishige Y, Minami J, Akashi T, Eishi Y (2016), Autophagy induced by intracellular infection of Propionibacterium acnes . PLoS One 11, e0156298. [CrossRef] [PubMed] [Google Scholar]
  233. Tattoli I, Sorbara MT, Philpott DJ, Girardin SE (2012), Bacterial autophagy, the trigger, the target and the timing. Autophagy 8, 1848–1850. [CrossRef] [PubMed] [Google Scholar]
  234. Wang YH, Wu JJ, Lei HY (2009), The autophagic induction in Helicobacter pylori-infected macrophage. Exp Biol Med (Maywood) 234, 171–180. [CrossRef] [PubMed] [Google Scholar]
  235. Zhirnov OP (2017), Biochemical variations in cytolytic activity of ortho- and paramyxoviruses in human lung tumor cell culture. Biochemistry (Mosc) 82, 1048–1054. [CrossRef] [PubMed] [Google Scholar]
  236. Dou Z, Ghosh K, Vizioli MG, Zhu J, Sen P, Wangensteen KJ, Simithy J, Lan Y, Lin Y, Zhou Z, Capell BC, Xu C, Xu M, Kieckhaefer JE, Jiang T, Shoshkes-Carmel M, Tanim KMAA, Barber GN, Seykora JT, Millar SE, Kaestner KH, Garcia BA, Adams PD, Berger SL (2017), Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406. [CrossRef] [PubMed] [Google Scholar]
  237. Lauretti E, Iuliano L, Praticò D (2017), Extra-virgin olive oil ameliorates cognition and neuropathology of the 3xTg mice: role of autophagy. Ann Clin Transl Neurol 4, 564–574. [CrossRef] [PubMed] [Google Scholar]
  238. Pott J, Maloy KJ (2018), Epithelial autophagy controls chronic colitis by reducing TNF-induced apoptosis. Autophagy 14, 1460–1461. [CrossRef] [PubMed] [Google Scholar]
  239. Grizotte-Lake M, Vaishnava S (2018), Autophagy: suicide prevention hotline for the gut epithelium. Cell Host Microbe 23, 147–148. [CrossRef] [PubMed] [Google Scholar]
  240. Lerch MM, Gorelick FS (2013), Models of acute and chronic pancreatitis. Gastroenterology 144, 1180–1193. [CrossRef] [PubMed] [Google Scholar]
  241. Pinho AV, Chantrill L, Rooman I (2014), Chronic pancreatitis: a path to pancreatic cancer. Cancer Lett 345, 203–209. [CrossRef] [Google Scholar]
  242. Jiao F, Hu H, Yuan C, Wang L, Jiang W, Jin Z, Guo Z, Wang L (2014), Elevated expression level of long noncoding RNA MALAT-1 facilitates cell growth, migration and invasion in pancreatic cancer. Oncol Rep 32, 2485–2492. [CrossRef] [Google Scholar]
  243. Pang EJ, Yang R, Fu XB, Liu YF (2015), Overexpression of long non-coding RNA MALAT1 is correlated with clinical progression and unfavorable prognosis in pancreatic cancer. Tumour Biol 36, 2403–2407. [CrossRef] [PubMed] [Google Scholar]
  244. Li L, Chen H, Gao Y, Wang YW, Zhang GQ, Pan SH, Ji L, Kong R, Wang G, Jia YH, Bai XW, Sun B (2016), Long noncoding RNA MALAT1 promotes aggressive pancreatic cancer proliferation and metastasis via the stimulation of autophagy. Mol Cancer Ther 15, 2232–2243. [CrossRef] [Google Scholar]
  245. Li L, Wang G, Hu JS, Zhang GQ, Chen HZ, Yuan Y, Li YL, Lv XJ, Tian FY, Pan SH, Bai XW, Sun B (2018), RB1CC1-enhanced autophagy facilitates PSCs activation and pancreatic fibrogenesis in chronic pancreatitis. Cell Death Dis 9, 952. [CrossRef] [PubMed] [Google Scholar]
  246. Liu J, Wang X, Zheng M, Luan Q (2018), Lipopolysaccharide from Porphyromonas gingivalis promotes autophagy of human gingival fibroblasts through the PI3K/Akt/mTOR signaling pathway. Life Sci 211, 133–139. [CrossRef] [PubMed] [Google Scholar]
  247. Ma Y, Pei Q, Zhang L, Lu J, Shui T, Chen J, Shi C, Yang J, Smith M, Liu Y, Zhu J, Yang D (2018), Live Mycobacterium leprae inhibits autophagy and apoptosis of infected macrophages and prevents engulfment of host cell by phagocytes. Am J Transl Res 10, 2929–2939. [PubMed] [Google Scholar]
  248. Brech A, Ahlquist T, Lothe RA, Stenmark H (2009), Autophagy in tumour suppression and promotion. Mol Oncol 3, 366–375. [CrossRef] [PubMed] [Google Scholar]
  249. Gukovskaya AS, Gukovsky I, Algül H, Habtezion A (2017), Autophagy, inflammation, and immune dysfunction in the pathogenesis of pancreatitis. Gastroenterology 153, 1212–1226. [CrossRef] [PubMed] [Google Scholar]
  250. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998), Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101, 890–898. [CrossRef] [PubMed] [Google Scholar]
  251. Metz M, Grimbaldeston MA, Nakae S, Piliponsky AM, Tsai M, Galli SJ (2007), Mast cells in the promotion and limitation of chronic inflammation. Immunol Rev 217, 304–328. [CrossRef] [PubMed] [Google Scholar]
  252. Wynn TA, Ramalingam TR (2012), Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18, 1028–1040. [CrossRef] [PubMed] [Google Scholar]
  253. Hartupee J, Mann DL (2016), Role of inflammatory cells in fibroblast activation. J Mol Cell Cardiol 93, 143–148. [CrossRef] [PubMed] [Google Scholar]
  254. Parameswaran N, Patial S (2010), Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr 20, 87–103. [CrossRef] [PubMed] [Google Scholar]
  255. Mirza RE, Fang MM, Ennis WJ, Koh TJ (2013), Blocking interleukin-1β induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes 62, 2579–2587. [CrossRef] [PubMed] [Google Scholar]
  256. Zhang X, Li J, Qin JJ, Cheng WL, Zhu X, Gong FH, She Z, Huang Z, Xia H, Li H (2017), Oncostatin M receptor β deficiency attenuates atherogenesis by inhibiting JAK2/STAT3 signaling in macrophages. J Lipid Res 58, 895–906. [CrossRef] [PubMed] [Google Scholar]
  257. Kalluri R (2016), The biology and function of fibroblasts in cancer. Nat Rev Cancer 16, 582–598. [CrossRef] [Google Scholar]
  258. Monaco C, Andreakos E, Young S, Feldmann M, Paleolog E (2002), T cell-mediated signaling to vascular endothelium: induction of cytokines, chemokines, and tissue factor. J Leukoc Biol 71, 659–668. [Google Scholar]
  259. Guo Q, Minnier J, Burchard J, Chiotti K, Spellman P, Schedin P (2017), Physiologically activated mammary fibroblasts promote postpartum mammary cancer. JCI Insight 2, e89206. [Google Scholar]
  260. Dai W, Gupta SL (1990), Molecular cloning, sequencing and expression of human interferon-gamma-inducible indoleamine 2,3-dioxygenase cDNA. Biochem Biophys Res Commun 168, 1–8. [CrossRef] [Google Scholar]
  261. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ (2003), Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2, 3-dioxygenase. Nat Med 9, 1269–1274. [CrossRef] [PubMed] [Google Scholar]
  262. Witkiewicz A, Williams TK, Cozzitorto J, Durkan B, Showalter SL, Yeo CJ, Brody JR (2008), Expression of indoleamine 2, 3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T cells to avoid immune detection. J Am Coll Surg 206, 849–854. [CrossRef] [PubMed] [Google Scholar]
  263. Zhang T, Tan XL, Xu Y, Wang ZZ, Xiao CH, Liu R (2017), Expression and prognostic value of indoleamine 2,3-dioxygenase in pancreatic cancer. Chin Med J (Engl) 130, 710–716. [CrossRef] [PubMed] [Google Scholar]
  264. Löb S, Königsrainer A, Zieker D, Brücher BLDM, Rammensee HG, Oplez G, Terness P (2009), IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol Immun 58, 153–157. [CrossRef] [PubMed] [Google Scholar]
  265. El-Zaatari M, Bass AJ, Bowlby R, Zhang M, Syu LJ, Yang Y, Grasberger H, Shreiner A, Tan B, Bishu S, Leung WK, Todisco A, Kamada N, Cascalho M, Dlugosz AA, Kao JY (2017), Indoleamine 2,3-dioxygenase 1, increased in human gastric pre-neoplasia, promotes inflammation and metaplasia in mice and is associated with type II hypersensitivity/autoimmunity. Gastroenterology, pii: S0016-5085(17)36137–1. [Google Scholar]
  266. Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, Werner ER, Werner-Felmayer G, Weiss HG, Gobel G, Margreiter R, Konigsrainer A, Fuchs D, Amberger A (2006), Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: eVect on tumor-infiltrating T cells. Clin Cancer Res 12, 1144–1151. [CrossRef] [PubMed] [Google Scholar]
  267. Travers MT, Gow IF, Barber MC, Thomson J, Shennan DB (2004), Indoleamine 2,3-dioxygenase activity and l-tryptophan transport in human breast cancer cells. Biochim Biophys Acta 1661, 106–112. [CrossRef] [PubMed] [Google Scholar]
  268. Okamoto A, Nikaido T, Ochiai K, Takakura S, Saito M, Aoki Y, Ishii N, Yanaihara N, Yamada K, Takikawa O, Kawaguchi R, Isonishi S, Tanaka T, Urashima M (2005), Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin Cancer Res 11, 6030–6039. [CrossRef] [PubMed] [Google Scholar]
  269. Ino K, Yoshida N, Kajiyama H, Shibata K, Yamamoto E, Kidokoro K, Takahashi N, Terauchi M, Nawa A, Nomura S, Nagasaka T, Takikawa O, Kikkawa F (2006), Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer. Br J Cancer 95, 1555–1561. [CrossRef] [PubMed] [Google Scholar]
  270. Metz R, Duhadaway JB, Rust S, Munn DH, Muller AJ, Mautino M, Prendergast GC (2010), Zinc protoporphyrin IX stimulates tumor immunity by disrupting the immunosuppressive enzyme indoleamine 2,3-dioxygenase. Mol Cancer Ther 9, 1864–1871. [CrossRef] [Google Scholar]
  271. Popper H (1977), Pathologic aspects of cirrhosis: a review. Am J Pathol 87, 228–264. [PubMed] [Google Scholar]
  272. Larriba MJ, Ordóñez-Morán P, Chicote I, Martín-Fernández G, Puig I, Muñoz A, Pálmer HG (2011), Vitamin D receptor deficiency enhances Wnt/β-catenin signaling and tumor burden in colon cancer. PLoS One 6, e23524. [CrossRef] [PubMed] [Google Scholar]
  273. Csepregi A, Röcken C, Hoffmann J, Gu P, Saliger S, Müller O, Schneider-Stock R, Kutzner N, Roessner A, Malfertheiner P, Ebert MP (2008), APC promoter methylation and protein expression in hepatocellular carcinoma. J Cancer Res Clin Oncol 134, 579–589. [CrossRef] [PubMed] [Google Scholar]
  274. Rexhepaj R, Rotte A, Gu S, Michael D, Pasham V, Wang K, Kempe DS, Ackermann TF, Brücher BLDM, Fend F, Föller M, Lang F (2011), Tumor suppressor gene adenomatous polyposis coli downregulates intestinal transport. Pflug Arch 461, 527–536. [CrossRef] [Google Scholar]
  275. Agüera-González S, Burton OT, Vázquez-Chávez E, Cuche C, Herit F, Bouchet J, Lasserre R, Del Río-Iñiguez I, Di Bartolo V, Alcover A (2017), Adenomatous polyposis coli defines treg differentiation and anti-inflammatory function through microtubule-mediated NFAT localization. Cell Rep 21, 181–194. [CrossRef] [PubMed] [Google Scholar]
  276. Ekman M, Mu Y, Lee SY, Edlund S, Kozakai T, Thakur N, Tran H, Qian J, Groeden J, Heldin CH, Landström M (2012), APC and Smad7 link TGFβ type I receptors to the microtubule system to promote cell migration. Mol Biol Cell 23, 2109–2121. [CrossRef] [PubMed] [Google Scholar]
  277. Ashida N, Kishihata M, Tien DN, Kamei K, Kimura T, Yokode M (2014), Aspirin augments the expression of adenomatous polyposis coli protein by suppression of IKKbeta. Biochem Biophys Res Commun 446, 460–464. [CrossRef] [Google Scholar]
  278. Zeineldin M, Neufeld KL (2015), New insights from animal models of colon cancer: inflammation control as a new facet on the tumor suppressor APC gem. Gastrointest Cancer 5, 39–52. [Google Scholar]
  279. Spirio L, Otterud B, Stauffer D, Lynch H, Lynch P, Watson P, Lanspa S, Smyrk T, Cavalieri J, Howard L, Burt R, White R, Leppert M (1992), Linkage of a variant or attenuated form of adenomatous polyposis coli to the adenomatous polyposis coli (APC) locus. Am J Hum Genet 51, 92–100. [Google Scholar]
  280. Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, Vogelstein B, Kinzler KW (1992), APC mutations occur early during colorectal tumorigenesis. Nature 359, 235–237. [CrossRef] [PubMed] [Google Scholar]
  281. Moser AR, Pitot HC, Dove WF (1990), A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324. [CrossRef] [Google Scholar]
  282. Terzić J, Grivennikov S, Karin E, Karin M (2010), Inflammation and colon cancer. Gastroenterology 138, 2101–2114. [CrossRef] [PubMed] [Google Scholar]
  283. Zeineldin M, Cunningham J, McGuinness W, Alltizer P, Cowley B, Blanchat B, Xu W, Pinson D, Neufeld KL (2012), A knock-in mouse model reveals roles for nuclear Apc in cell proliferation, Wnt signal inhibition and tumor suppression. Oncogene 31, 2423–2437. [CrossRef] [Google Scholar]
  284. Zeineldin M, Miller MA, Sullivan R, Neufeld KL (2014), Nuclear adenomatous polyposis coli suppresses colitis-associated tumorigenesis in mice. Carcinogenesis 35, 1881–1890. [CrossRef] [PubMed] [Google Scholar]
  285. Prosperi JR, Lue HH, Goss KH (2011), Dysregulation of the WNT pathway in solid tumors, in: G Kathleen, M Kahn (Eds.), Targeting the Wnt Pathway in Cancer, Springer, New York, pp. 81–128. ISBN 978-1-4419-8023–6. [CrossRef] [Google Scholar]
  286. Grødeland G, Fossum E, Bogen B (2015), Polarizing T and B cell responses by APC-targeted subunit vaccines. Front Immunol 6, 367. [Google Scholar]
  287. Van der Auwera I, Van Laere SJ, Van den Bosch SM, Van den Eynden GG, Trinh BX, van Dam PA, Colpaert CG, van Engeland M, Van Marck EA, Vermeulen PB, Dirix LY (2008), Aberrant methylation of the Adenomatous Polyposis Coli (APC) gene promoter is associated with the inflammatory breast cancer phenotype. Br J Cancer 99, 1735–1742. [CrossRef] [PubMed] [Google Scholar]
  288. Brabender J, Usadel H, Danenberg KD, Metzger R, Schneider PM, Lord RV, Wickramasinghe K, Lum CE, Park J, Salonga D, Singer J, Sidransky D, Hölscher AH, Meltzer SJ, Danenberg PV (2001), Adenomatous polyposis coli gene promoter hypermethylation in non-small cell lung cancer is associated with survival. Oncogene 20, 3528–3532. [CrossRef] [Google Scholar]
  289. Usadel H, Brabender J, Danenberg KD, Jerónimo C, Harden S, Engles J, Danenberg PV, Yang S, Sidransky D (2002), Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Res 62, 371–375. [Google Scholar]
  290. Jeronimo C, Henrique R, Hoque MO, Mambo E, Ribeiro FR, Varzim G, Oliveira J, Teixeira MR, Lopes C, Sidransky D (2004), A quantitative promoter methylation profile of prostate cancer. Clin Cancer Res 10, 8472–8478. [CrossRef] [PubMed] [Google Scholar]
  291. Bastian PJ, Ellinger J, Wellmann A, Wernert N, Heukamp LC, Müller SC, von Ruecker A (2005), Diagnostic and prognostic information in prostate cancer with the help of a small set of hypermethylated gene loci. Clin Cancer Res 11, 4097–4106. [CrossRef] [PubMed] [Google Scholar]
  292. Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, Walsh PC, Bova GS, De Marzo AM, Isaacs WB, Nelson WG (2004), Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64, 1975–1986. [CrossRef] [Google Scholar]
  293. Debouki-Joudi S, Trifa F, Khabir A, Sellami-Boudawara T, Frikha M, Daoud J, Mokdad-Gargouri R (2017), CpG methylation of APC promoter 1A in sporadic and familial breast cancer patients. Cancer Biomark 18, 133–141. [CrossRef] [PubMed] [Google Scholar]
  294. Schauer IG, Zhang J, Xing Z, Guo X, Mercado-Uribe I, Sood AK, Huang P, Liu J (2013), Interleukin-1β promotes ovarian tumorigenesis through a p53/NF-κB-mediated inflammatory response in stromal fibroblasts. Neoplasia 15, 409–420. [CrossRef] [Google Scholar]
  295. Battat R, Kopylov U, Bessissow T, Bitton A, Cohen A, Jain A, Martel M, Seidman E, Afif W (2017), Association between ustekinumab trough concentrations and clinical, biomarker, and endoscopic outcomes in patients with Crohn's disease. Clin Gastroenterol Hepatol 15, 1427–1434. [CrossRef] [PubMed] [Google Scholar]
  296. Steenport M, Khan KM, Du B, Barnhard SE, Dannenberg AJ, Falcone DJ (2009), Matrix metalloproteinase (MMP)-1 and MMP-3 induce macrophage MMP-9: evidence for the role of TNF-alpha and cyclooxygenase-2. J Immunol 183, 8119–8127. [CrossRef] [PubMed] [Google Scholar]
  297. Gong Y, Chippada-Venkata UD, Oh WK (2014), Roles of matrix metalloproteinases and their natural inhibitors in prostate cancer progression. Cancers (Basel) 6, 1298–1327. [CrossRef] [PubMed] [Google Scholar]
  298. Boström PJ, Ravanti L, Reunanen N, Aaltonen V, Söderström KO, Kähäri VM, Laato M (2000), Expression of collagenase-3 (matrix metalloproteinase-13) in transitional-cell carcinoma of the urinary bladder. Int J Cancer 88, 417–423. [CrossRef] [PubMed] [Google Scholar]
  299. Reunanen N, Kähäri VM (2000–2013), Matrix metalloproteinases in cancer cell invasion. Madame Curie Bioscience Database, Landes Bioscience, 2000–2013. Available at https://www.ncbi.nlm.nih.gov/books/NBK6598/ [Google Scholar]
  300. Sternlicht MD1, Werb Z (2001), How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17, 463–516. [CrossRef] [PubMed] [Google Scholar]
  301. Lu P, Takai K, Weaver VM, Werb Z (2011), Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3, pii: a005058. [Google Scholar]
  302. Miyoshi A, Kitajima Y, Sumi K, Sato K, Hagiwara A, Koga Y, Miyazaki K (2004), Snail and SIPl increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer 22, 1265–1273. [CrossRef] [Google Scholar]
  303. Miyoshi A, Kitajima Y, Kido S, Shimonishi T, Matsuyama S, Kitahara K, Miyazaki K (2005), Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br J Cancer 2005, 92, 252–258. [CrossRef] [Google Scholar]
  304. Brücher BLDM, Jamall IS (2019), Undervalued ubiquitous proteins. 4open 2, 7, 1–13, https://doi.org/10.1051/fopen/2019002 [CrossRef] [EDP Sciences] [Google Scholar]
  305. Brücher BLDM, Jamall IS (2019), Microbiome and morbid obesity increase pathogenic stimulus diversity. 4open 2, 10, 1–16, https://doi.org/10.1051/fopen/2018007 [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.