Issue
4open
Volume 2, 2019
Disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer”
Article Number 7
Number of page(s) 13
Section Life Sciences - Medicine
DOI https://doi.org/10.1051/fopen/2019002
Published online 25 April 2019
  1. Harper HA, Martin DW, Mayes PA, Rodwell VW (Eds.) (1983), Review of biochemistry, 19th ed., Springer, New York, Berlin, Heidelberg. [Google Scholar]
  2. Boon ME, Kok LP (1991), Formalin is deleterious to cytoskeleton proteins: do we need to replace it by formalin-free Kryofix? Eur J Morphol 29, 173–180. [PubMed] [Google Scholar]
  3. Azumi N, Battifora H (1987), The distribution of vimentin and keratin in epithelial and nonepithelial neoplasms. A comprehensive immunohistochemical study on formalin- and alcohol-fixed tumors. Am J Clin Pathol 88, 286–296. [CrossRef] [PubMed] [Google Scholar]
  4. Alves VA, Wakamatsu A, Kanamura CT, Magalhäes ES, Siqueira SA (1992), The importance of fixation in immunohistochemistry: distribution of vimentin and cytokeratins in samples fixed in alcohol and formol. Rev Hosp Clin Fac Med Sao Paulo 47, 19–24. [PubMed] [Google Scholar]
  5. von Weyhern CH, Brücher BLDM (2011), Application of laser microdissection and quantitative PCR to assess the response of esophageal cancer to neoadjuvant chemo-radiotherapy. Methods Mol Biol 755, 197–202. [CrossRef] [PubMed] [Google Scholar]
  6. Benjamin E, Law S, Bobrow LG (1987), Intermediate filaments cytokeratin and vimentin in ovarian sex cord-stromal tumours with correlative studies in adult and fetal ovaries. J Pathol 152, 253–263. [CrossRef] [PubMed] [Google Scholar]
  7. Hynes RO (2009), The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219. [CrossRef] [PubMed] [Google Scholar]
  8. Rozario T, DeSimone DW (2010), The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341, 126–140. [CrossRef] [PubMed] [Google Scholar]
  9. Lu P, Takai K, Weaver VM, Werb Z (2011), Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3, pii: a005058. [Google Scholar]
  10. Oudin MJ, Jonas O, Kosciuk T, Broye LC, Guido BC, Wyckoff J, Riquelme D, Lamar JM, Asokan SB, Whittaker C, Ma D, Langer R, Cima MJ, Wisinski KB, Hynes RO, Lauffenburger DA, Keely PJ, Bear JE, Gertler FB (2016), Tumor cell-driven extracellular matrix remodeling drives haptotaxis during metastatic progression. Cancer Discov 6, 516–531. [CrossRef] [PubMed] [Google Scholar]
  11. Mohammadi M, Olsen SK, Goetz R (2005), A protein canyon in the FGF-FGF receptor dimer selects from an à la carte menu of heparan sulfate motifs. Curr Opin Struct Biol 15, 506–516. [CrossRef] [PubMed] [Google Scholar]
  12. Hynes RO, Naba A (2014), Overview of the matrisome-an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol 4, a004903. [Google Scholar]
  13. Mouw JK, Ou G, Weaver VM (2014), Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 15, 771–785. [CrossRef] [PubMed] [Google Scholar]
  14. Naba A, Clauser KR, Hynes RO (2015), Enrichment of extracellular matrix proteins from tissues and digestion into peptides for mass spectrometry analysis. J Vis Exp e53057. DOI: 10.3791/53057 [Google Scholar]
  15. Crewther WG, Fraser RDB, Lennox FG, Lindley H (1965), The chemistry of keratins. Adv Protein Chem 20, 191–346. [CrossRef] [PubMed] [Google Scholar]
  16. Fraser RD, Macrae TP (1980), Molecular structure and mechanical properties of keratins. Symp Soc Exp Biol 34, 211–246. [PubMed] [Google Scholar]
  17. Wang B, Yang W, McKittrick J, Meyers MA (2016), Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog Mater Sci 76, 229–318. [CrossRef] [Google Scholar]
  18. Moll R, Divo M, Langbein L (2008), The human keratins: biology and pathology. Histochem Cell Biol 129, 705–733. [CrossRef] [PubMed] [Google Scholar]
  19. Rogers MA, Langbein L, Praetzel-Wunder S, Winter H, Schweizer J (2006), Human hair keratin-associated proteins (KAPs). Int Rev Cytol 251, 209–263. [CrossRef] [Google Scholar]
  20. Wu DD, Irwin DM, Zhang YP (2008), Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair. BMC Evol Biol 8, 241. [CrossRef] [PubMed] [Google Scholar]
  21. Margolis SS, Perry JA, Forester CM, Nutt LK, Guo Y, Jardim MJ, Thomenius MJ, Freel CD, Darbandi R, Ahn JH, Arroyo JD, Wang XF, Shenolikar S, Nairn AC, Dunphy WG, Hahn WC, Virshup DM, Kornbluth S (2006), Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell 127, 759–773. [CrossRef] [PubMed] [Google Scholar]
  22. Hanukoglu I, Fuchs E (1982), The cDNA sequence of a human epidermal keratin: divergence of sequence but conservation of structure among intermediate filament proteins. Cell 31, 243–252. [CrossRef] [PubMed] [Google Scholar]
  23. Lee CH, Kim MS, Chung BM, Leahy DJ, Coulombe PA (2012), Structural basis for heteromeric assembly and perinuclear organization of keratin filaments. Nat Struct Mol Biol 19, 707–715. [CrossRef] [PubMed] [Google Scholar]
  24. Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, Maltais L, Omary MB, Parry DA, Rogers MA, Wright MW (2006), New consensus nomenclature for mammalian keratins. J Cell Biol 174, 169–174. [CrossRef] [PubMed] [Google Scholar]
  25. Plowman JE (2007), The proteomics of keratin proteins. J Chromatogr B Analyt Technol Biomed Life Sci 849, 181–189. [CrossRef] [PubMed] [Google Scholar]
  26. Kawaguchi M, Kanemaru A, Sawaguchi A, Yamamoto K, Baba T, Lin CY, Johnson MD, Fukushima T, Kataoka H (2015), Hepatocyte growth factor activator inhibitor type 1 maintains the assembly of keratin into desmosomes in keratinocytes by regulating protease-activated receptor 2-dependent p38 signaling. Am J Pathol 185, 1610–1623. [CrossRef] [PubMed] [Google Scholar]
  27. Kawai T, Yasuchika K, Ishii T, Katayama H, Yoshitoshi EY, Ogiso S, Kita S, Yasuda K, Fukumitsu K, Mizumoto M, Hatano E, Uemoto S (2015), Keratin 19, a cancer stem cell marker in human hepatocellular carcinoma. Clin Cancer Res 21, 3081–3091. [CrossRef] [PubMed] [Google Scholar]
  28. Bonin S, Pracella D, Barbazza R, Sulfaro S, Stanta G (2015), In stage II/III lymph node-positive breast cancer patients less than 55 years of age, keratin 8 expression in lymph node metastases but not in the primary tumour is an indicator of better survival. Virchows Arch 466, 571–580. [CrossRef] [PubMed] [Google Scholar]
  29. Safall H, Azar HA (1966), Keratin granulomas in irradiated squamous cell carcinoma of various sites. Cancer Res 26, 500–508. [Google Scholar]
  30. Hall JW, Friedman M (1948), Histologic changes in squamous-cell carcinoma of the mouth and oropharynx produced by fractional external roentgen irradiation. Radiology 50, 318–350. [CrossRef] [PubMed] [Google Scholar]
  31. Pastuszak M, Groszewski K, Pastuszak M, Dyrla P, Wojtuń S, Gil J (2015), Cytokeratins in gastroenterology. Systematic review. Prz Gastroenterol 10, 61–70. [Google Scholar]
  32. Lavallard VJ, Bonnafous S, Patouraux S, Saint-Paul MC, Rousseau D, Anty R, Le Marchand-Brustel Y, Tran A, Gual P (2011), Serum markers of hepatocyte death and apoptosis are non invasive biomarkers of severe fibrosis in patients with alcoholic liver disease. PLoS One 6, e17599. [CrossRef] [PubMed] [Google Scholar]
  33. Gupta R, Rajput R, Sharma R, Gupta N (2013), Biotechnological applications and prospective market of microbial keratinases. Appl Microbiol Biotechnol 97, 9931–9940. [CrossRef] [PubMed] [Google Scholar]
  34. Daroit DJ, Brandelli A (2003), A current assessment on the production of bacterial keratinases. Crit Rev Biotechnol 34, 372–384. [CrossRef] [Google Scholar]
  35. Molyneux GS (1959), The digestion of wool by a keratinolytic Bacillus. Aust J Biol Sci 12, 274–281. [CrossRef] [Google Scholar]
  36. Noval JJ, Nickerson WJ (1959), Decomposition of native keratin by Streptomyces fradiae. J Bacteriol 77, 251–263. [PubMed] [Google Scholar]
  37. Safranek WW, Goos RD (1982), Degradation of wool by saprophytic fungi. Can J Microbiol 28, 137–140. [Google Scholar]
  38. Dahl MV (1994), Dermatophytosis and the immune response. J Am Acad Dermatol 31, 34–41. [Google Scholar]
  39. Bockle B, Muller R (1997), Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feathers. Appl Environ Microbiol 63, 790–792. [Google Scholar]
  40. Rubin JS, Osada H, Finch PW, Taylor WG, Rudikoff S, Aaronson SA (1989), Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc Natl Acad Sci USA 86, 802–806. [CrossRef] [Google Scholar]
  41. Nakazawa K, Yashiro M, Hirakawa K (2003), Keratinocyte growth factor produced by gastric fibroblasts specifically stimulates proliferation of cancer cells from scirrhous gastric carcinoma. Cancer Res 63, 8848–8852. [Google Scholar]
  42. Finch PW, Rubin JS, Miki T, Ron D, Aaronson SA (1989), Human KGF is FGF related with properties of a paracrine effector of epithelial cell growth. Science 245, 752–755. [Google Scholar]
  43. Miki T, Bottaro DP, Fleming TP, Smith CL, Burgess WH, Chan AM, Aaronson SA (1992), Determination of ligand-binding specificity by alternative splicing: two distinct growth factor receptors encoded by a single gene. Proc Natl Acad Sci USA 89, 246–250. [CrossRef] [Google Scholar]
  44. Raffa S, Leone L, Scrofani C, Monini S, Torrisi MR, Barbara M (2012), Cholesteatoma-associated fibroblasts modulate epithelial growth and differentiation through KGF/FGF7 secretion. Histochem Cell Biol 138, 251–269. [CrossRef] [PubMed] [Google Scholar]
  45. Belleudi F, Leone L, Purpura V, Cannella F, Scrofani C, Torrisi MR (2011), HPV16 E5 affects the KGFR/FGFR2b-mediated epithelial growth through alteration of the receptor expression, signaling and endocytic traffic. Oncogene 30, 4963–4976. [Google Scholar]
  46. Ranieri D, Belleudi F, Magenta A, Torrisi MR (2015), HPV16 E5 expression induces switching from FGFR2b to FGFR2c and epithelial-mesenchymal transition. Int J Cancer 137, 61–72. [CrossRef] [PubMed] [Google Scholar]
  47. Muto V, Stellacci E, Lamberti AG, Perrotti E, Carrabba A, Matera G, Sgarbanti M, Battistini A, Liberto MC, Focà A (2011), Human papillomavirus type 16 E5 protein induces expression of beta interferon through interferon regulatory factor 1 in human keratinocytes. J Virol 85, 5070–5080. [PubMed] [Google Scholar]
  48. Yang K, Yin J, Sheng B, Wang Q, Han B, Pu A, Yu M, Sun L, Xiao W, Yang H (2017), AhR‑E2F1‑KGFR signaling is involved in KGF‑induced intestinal epithelial cell proliferation. Mol Med Rep 15, 3019–3026. [CrossRef] [PubMed] [Google Scholar]
  49. Araldi RP, Assaf SMR, Carvalho RF, Carvalho MACR, Souza JM, Magnelli RF, Módolo DG, Roperto FP, Stocco RC, Beçak W (2017), Papillomaviruses: a systematic review. Genet Mol Biol 40, 1–21. [CrossRef] [PubMed] [Google Scholar]
  50. Astbury WT, Bell FO (1940), The molecular structure of the fibers of the collagen group. Nature 145, 421–422. [Google Scholar]
  51. Pauling L, Corey RB (1951), The structure of fibrous proteins of the collagen-gelatin group. Proc Natl Acad Sci USA 37, 272–281. [CrossRef] [Google Scholar]
  52. Shoulders MD, Raines RT (2009), Collagen structure and stability. Annu Rev Biochem 78, 929–958. [CrossRef] [PubMed] [Google Scholar]
  53. Nimni ME (1977), Mechanism of inhibition of collagen crosslinking by penicillamine. Proc R Soc Med 70, 65–72. [PubMed] [Google Scholar]
  54. Lazarus GS, Daniels JR, Lian J, Burleigh MC (1972), Role of granulocyte collagenase in collagen degradation. Am J Pathol 68, 565–578. [PubMed] [Google Scholar]
  55. Duffy MJ, Maguire TM, Hill A, McDermott E, O'Higgins N (2000), Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res 2, 252–257. [CrossRef] [PubMed] [Google Scholar]
  56. Bager CL, Willumsen N, Kehlet SN, Hansen HB, Bay-Jensen AC, Leeming DJ, Dragsbæk K, Neergaard JS, Christiansen C, Høgdall E, Karsdal M (2016), Remodeling of the tumor microenvironment predicts increased risk of cancer in postmenopausal women: the prospective epidemiologic risk factor (PERF I) study. Cancer Epidemiol Biomark Prev 25, 1348–1355. [CrossRef] [Google Scholar]
  57. Yeo SJ, Kim SJ, Kim JH, Lee HJ, Kook YH (1999), Influenza A virus infection modulates the expression of type IV collagenase in epithelial cells. Arch Virol 144, 1361–1370. [CrossRef] [PubMed] [Google Scholar]
  58. Agha-Hosseini F, Mirzaii-Dizgah I (2015), Serum and saliva collagenase-3 (MMP-13) in patients with oral lichen planus and oral squamous cell carcinoma. Med J Islam Repub Iran 29, 218. eCollection 2015. [Google Scholar]
  59. Seoane S, Montero JC, Ocaña A, Pandiella A (2016), Breast cancer dissemination promoted by a neuregulin-collagenase 3 signalling node. Oncogene 35, 2756–2765. [Google Scholar]
  60. Jackson JG, Orr JW (1957), The ducts of carcinomatous breasts, with particular reference to connective-tissue changes. J Pathol Bacterial 74, 265–273. [CrossRef] [Google Scholar]
  61. Ozzello L, Sanpitak P (1970), Epithelial-stromal junction of intraductal carcinoma of the breast. Cancer 26, 1186–1198. [CrossRef] [PubMed] [Google Scholar]
  62. Lundmark C (1972), Breast cancer and elastosis. Cancer 30, 1195–1201. [CrossRef] [PubMed] [Google Scholar]
  63. Bereiter-Hahn J, Matoltsy AG, Richards KS (Eds.) (2013), Biology of the integument: 2 vertebrates, Springer Science & Business Media, Berlin. [Google Scholar]
  64. Mandl I, Cohen BB (1960), Bacterial elastase. I. Isolation, purification and properties. Arch Biochem Biophys 91, 47–53. [CrossRef] [PubMed] [Google Scholar]
  65. Sbarra AJ, Baumstark JS, Gilfillan RF, Bardawil WA (1963), Elastase production by micro-organisms. Nature 197, 153–155. [CrossRef] [PubMed] [Google Scholar]
  66. Rippon JW (1967), Elastase: production by ringworm fungi. Science 157, 947. [Google Scholar]
  67. Rippon JW, Hoo MS (1971), Determination of fungal elastase. Appl Microbiol 22, 471–472. [PubMed] [Google Scholar]
  68. Unanue ER, Beller DI, Calderon J, Kiely JM, Stadecker MJ (1976), Regulation of immunity and inflammation by mediators from macrophages. Am J Pathol 85, 465–478. [PubMed] [Google Scholar]
  69. Häse CC, Finkelstein RA (1993), Bacterial extracellular zinc-containing metalloproteases. Microbiol Rev 57, 823–837. [PubMed] [Google Scholar]
  70. Gregory AD, Kliment CR, Metz HE, Kim KH, Kargl J, Agostini BA, Crum LT, Oczypok EA, Oury TA, Houghton AM (2015), Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis. J Leukoc Biol 98, 143–152. [Google Scholar]
  71. Takemasa A, Ishii Y, Fukuda T (2012), A neutrophil elastase inhibitor prevents bleomycin-induced pulmonary fibrosis in mice. Eur Respir J 40, 1475–1482. [CrossRef] [PubMed] [Google Scholar]
  72. Bieth JG (2001), The elastases. J Soc Biol 195, 173–179. [CrossRef] [PubMed] [Google Scholar]
  73. Heck LW, Alarcon PG, Kulhavy RM, Morihara K, Russell MW, Mestecky JF (1990), Degradation of IgA proteins by Pseudomonas aeruginosa elastase. J Immunol 144, 2253–2257. [PubMed] [Google Scholar]
  74. Grant AJ, Russell PJ, Raghavan D (1989), Elastase activities of human bladder cancer cell lines derived from high grade invasive tumours. Biochem Biophys Res Commun 162, 308–315. [Google Scholar]
  75. Shimada S, Yamaguchi K, Takahashi M, Ogawa M (2002), Pancreatic elastase IIIA and its variants are expressed in pancreatic carcinoma cells. Int J Mol Med 10, 599–603. [PubMed] [Google Scholar]
  76. Bazan JF, Fletterick RJ (1988), Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc Natl Acad Sci USA 86, 7872–7876. [CrossRef] [Google Scholar]
  77. Matsuyama S, Ujike M, Morikawa S, Tashiro M, Taguchi F (2005), Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc Natl Acad Sci USA 102, 12543–12547. [CrossRef] [Google Scholar]
  78. Belouzard S, Madu I, Whittaker GR (2010), Elastase-mediated activation of the severe acute respiratory syndromecoronavirus spike protein at discrete sites within the S2 domain. J Biol Chem 285, 22758–22763. [PubMed] [Google Scholar]
  79. Diamandopoulos GT, Dalton-Tucker MF (1969), Induction in hamsters of various carcinomas and sarcomas by in-vitro SV40-transformed homologous embryonic skin and subcutaneous tissue cells. Role of target cells in determining tumor morphology. Am J Pathol 56, 59–77. [PubMed] [Google Scholar]
  80. Namiki K, Goodison S, Porvasnik S, Allan RW, Iczkowski KA, Urbanek C, Reyes L, Sakamoto N, Rosser CJ (2009), Persistent exposure to Mycoplasma induces malignant transformation of human prostate cells. PLoS One 4, e6872. [CrossRef] [PubMed] [Google Scholar]
  81. Kidd ME, Shumaker DK, Ridge KM (2014), The role of vimentin intermediate filaments in the progression of lung cancer. Am J Respir Cell Mol Biol 50, 1–6. [PubMed] [Google Scholar]
  82. Saentaweesuk W, Araki N, Vaeteewoottacharn K, Silsirivanit A, Seubwai W, Talabnin C, Muisuk K, Sripa B, Wongkham S, Okada S, Wongkham C (2018), Activation of vimentin is critical to promote a metastatic potential of cholangiocarcinoma cells. Oncol Res 26, 605–616. [CrossRef] [PubMed] [Google Scholar]
  83. Leader M, Collins M, Patel J, Henry K (1987), Vimentin: an evaluation of its role as a tumour marker. Histopathology 11, 63–72. [PubMed] [Google Scholar]
  84. Sommers CL, Walker-Jones D, Heckford SE, Worland P, Valverius E, Clark R, McCormick F, Stampfer M, Abularach S, Gelmann EP (1989), Vimentin rather than keratin expression in some hormone-independent breast cancer cell lines and in oncogene-transformed mammary epithelial cells. Cancer Res 49, 4258–4263. [Google Scholar]
  85. Zeisberg M, Neilson EG (2009), Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119, 1429–1437. [CrossRef] [PubMed] [Google Scholar]
  86. Sethi S, Sarkar FH, Ahmed Q, Bandyopadhyay S, Nahleh ZA, Semaan A, Sakr W, Munkarah A, Ali-Fehmi R (2011), Molecular markers of epithelial-to-mesenchymal transition are associated with tumor aggressiveness in breast carcinoma. Transl Oncol 4, 222–226. [Google Scholar]
  87. Satelli A, Li S (2011), Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 68, 3033–3046. [CrossRef] [PubMed] [Google Scholar]
  88. Witzgall R, Brown D, Schwarz C, Bonventre JV (1994), Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J Clin Invest 93, 2175–2188. [CrossRef] [PubMed] [Google Scholar]
  89. Thiery JP (2002), Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2, 442–454. [Google Scholar]
  90. Mendez MG, Kojima S, Goldman RD (2010), Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J 24, 1838–1851. [CrossRef] [PubMed] [Google Scholar]
  91. Murray ME, Mendez MG, Janmey PA (2014), Substrate stiffness regulates solubility of cellular vimentin. Mol Biol Cell 25, 87–94. [CrossRef] [PubMed] [Google Scholar]
  92. Bordeleau F, Mason BN, Lollis EM, Mazzola M, Zanotelli MR, Somasegar S, Califano JP, Montague C, LaValley DJ, Huynh J, Mencia-Trinchant N, Negrón Abril YL, Hassane DC, Bonassar LJ, Butcher JT, Weiss RS, Reinhart-King CA (2017), Matrix stiffening promotes a tumor vasculature phenotype. Proc Natl Acad Sci USA 114, 492–497. [CrossRef] [Google Scholar]
  93. Margiotta A, Progida C, Bakke O, Bucci C (2017), Rab7a regulates cell migration through Rac1 and vimentin. Biochim Biophys Acta Mol Cell Res 1864, 367–381. [PubMed] [Google Scholar]
  94. Krause M, Leslie JD, Stewart M, Lafuente EM, Valderrama F, Jagannathan R, Strasser GA, Rubinson DA, Liu H, Way M, Yaffe MB, Boussiotis VA, Gertler FB (2004), Lamellipodin, an Ena/VASP ligand, is implicated in the regulation of lamellipodial dynamics. Dev Cell 7, 571–583. [CrossRef] [PubMed] [Google Scholar]
  95. Carmona G, Perera U, Gillett C, Naba A, Law AL, Sharma VP, Wang J, Wyckoff J, Balsamo M, Mosis F, De Piano M, Monypenny J, Woodman N, McConnell RE, Mouneimne G, Van Hemelrijck M, Cao Y, Condeelis J, Hynes RO, Gertler FB, Krause M (2016), Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE. Oncogene 35, 5155–5169. [Google Scholar]
  96. Insall RH, Machesky LM (2009), Actin dynamics at the leading edge: from simple machinery to complex networks. Dev Cell 17, 310–322. [CrossRef] [PubMed] [Google Scholar]
  97. Law AL, Vehlow A, Kotini M, Dodgson L, Soong D, Theveneau E, Bodo C, Taylor E, Navarro C, Perera U, Michael M, Dunn GA, Bennett D, Mayor R, Krause M (2013), Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo. J Cell Biol 203, 673–689. [CrossRef] [PubMed] [Google Scholar]
  98. Bae YH, Mui KL, Hsu BY, Liu SL, Cretu A, Razinia Z, Xu T, Puré E, Assoian RK (2014), A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling. Sci Signal 7, ra57. [Google Scholar]
  99. Bae YH, Liu SL, Byfield FJ, Janmey PA, Assoian RK (2016), Measuring the stiffness of ex vivo mouse aortas using atomic force microscopy. J Vis Exp (116). DOI: 10.3791/54630 [Google Scholar]
  100. Liu PF, Kang BH, Wu YM, Sun JH, Yen LM, Fu TY, Lin YC, Liou HH, Lin YS, Sie HC, Hsieh IC, Tseng YK, Shu CW, Hsieh YD, Ger LP (2017), Vimentin is a potential prognostic factor for tongue squamous cell carcinoma among five epithelial-mesenchymal transition-related proteins. PLoS One 12, e0178581. [CrossRef] [PubMed] [Google Scholar]
  101. Shoeman RL, Hüttermann C, Hartig R, Traub P (2001), Amino-terminal polypeptides of vimentin are responsible for the changes in nuclear architecture associated with human immunodeficiency virus type 1 protease activity in tissue culture cells. Mol Biol Cell 12, 143–154. [CrossRef] [PubMed] [Google Scholar]
  102. Li R, Dong T, Hu C, Lu J, Dai J, Liu P (2017), Salinomycin repressed the epithelial-mesenchymal transition of epithelial ovarian cancer cells via downregulating Wnt/β-catenin pathway. Onco Targets Ther 10, 1317–1325. [Google Scholar]
  103. Hynes RO, Yamada KM (1982), Fibronectins: multifunctional modular glycoproteins. J Cell Biol 95, 369–377. [CrossRef] [PubMed] [Google Scholar]
  104. Christensen L (1992), The distribution of fibronectin, laminin and tetranectin in human breast cancer with special attention to the extracellular matrix. APMIS Suppl 26, 1–39. [PubMed] [Google Scholar]
  105. Koukoulis GK, Howeedy AA, Korhonen M, Virtanen I, Gould VE (1993), Distribution of tenascin, cellular fibronectins and integrins in the normal, hyperplastic and neoplastic breast. J Submicrosc Cytol Pathol 25, 285–295. [PubMed] [Google Scholar]
  106. Williams CM, Engler AJ, Slone RD, Galante LL, Schwarzbauer JE (2008), Fibronectin expression modulates mammary epithelial cell proliferation during acinar differentiation. Cancer Res 68, 3185–3192. [Google Scholar]
  107. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005), Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254. [CrossRef] [PubMed] [Google Scholar]
  108. Boyd NF, Jensen HM, Cooke G, Han HL (1992), Relationship between mammographic and histological risk factors for breast cancer. J Natl Cancer Inst 84, 1170–1179. [CrossRef] [PubMed] [Google Scholar]
  109. Alowami S, Troup S, Al-Haddad S, Kirkpatrick I, Watson PH (2003), Mammographic density is related to stroma and stromal proteoglycan expression. Breast Cancer Res 5, R129–R135. [CrossRef] [PubMed] [Google Scholar]
  110. Gocheva V, Naba A, Bhutkar A, Guardia T, Miller KM, Li CM, Dayton TL, Sanchez-Rivera FJ, Kim-Kiselak C, Jailkhani N, Winslow MM, Del Rosario A, Hynes RO, Jacks T (2017), Quantitative proteomics identify Tenascin-C as a promoter of lung cancer progression and contributor to a signature prognostic of patient survival. Proc Natl Acad Sci USA 114, E5625–E5634. [CrossRef] [Google Scholar]
  111. Naba A, Clauser KR, Mani DR, Carr SA, Hynes RO (2017), Quantitative proteomic profiling of the extracellular matrix of pancreatic islets during the angiogenic switch and insulinoma progression. Sci Rep 7, 40495. [CrossRef] [PubMed] [Google Scholar]
  112. Wilson AC, Boutros M, Johnson KM, Herr W (2000), HCF-1 amino- and carboxy-terminal subunit association through two separate sets of interaction modules: involvement of fibronectin type 3 repeats. Mol Cell Biol 20, 6721–6730. [PubMed] [Google Scholar]
  113. Sharma-Walia N, Paul AG, Bottero V, Sadagopan S, Veettil MV, Kerur N, Chandran B (2010), Kaposi's sarcoma associated herpes virus (KSHV) induced COX-2: a key factor in latency, inflammation, angiogenesis, cell survival and invasion. PLoS Pathog 6, e1000777. [CrossRef] [PubMed] [Google Scholar]
  114. Park J, Lammers F, Herr W, Song JJ (2012), HCF-1 self-association via an interdigitated Fn3 structure facilitates transcriptional regulatory complex formation. Proc Natl Acad Sci USA 109, 17430–17435. [CrossRef] [Google Scholar]
  115. Grosche L, Draßner C, Mühl-Zürbes P, Kamm L, Le-Trilling VTK, Trilling M, Steinkasserer A, Heilingloh CS (2017), Human cytomegalovirus-induced degradation of CYTIP modulates dendritic cell adhesion and migration. Front Immunol 8, 461. [PubMed] [Google Scholar]
  116. Yang J, Ding X, Zhang Y, Bo X, Zhang M, Wang S (2006), Fibronectin is essential for hepatitis B virus propagation in vitro: may be a potential cellular target? Biochem Biophys Res Commun 344, 757–764. [Google Scholar]
  117. Yang J, Wang F, Tian L, Su J, Zhu X, Lin L, Ding X, Wang X, Wang S (2010), Fibronectin and asialoglyprotein receptor mediate hepatitis B surface antigen binding to the cell surface. Arch Virol 155, 881–888. [CrossRef] [PubMed] [Google Scholar]
  118. Ren S, Wang J, Chen TL, Li HY, Wan YS, Peng NF, Gui XE, Zhu Y (2016), Hepatitis B virus stimulated fibronectin facilitates viral maintenance and replication through two distinct mechanisms. PLoS One 11, e0152721. [CrossRef] [PubMed] [Google Scholar]
  119. Al Adnani MS (1985), Concomitant immunohistochemical localization of fibronectin and collagen in schistosome granulomata. J Pathol 147, 77–85. [PubMed] [Google Scholar]
  120. Wyler DJ, Ehrlich HP, Postlethwaite AE, Raghow R, Murphy MM (1987), Fibroblast stimulation in schistosomiasis. VII. Egg granulomas secrete factors that stimulate collagen and fibronectin synthesis. J Immunol 138, 1581–1586. [PubMed] [Google Scholar]
  121. Zhu Y (1996), Fibronectin co-stimulates via the alpha 5 beta 1 receptor IL-2, IL-4 production by splenic, granuloma lymphocytes of Schistosoma mansoni infected mice. Scand J Immunol 43, 633–639. [PubMed] [Google Scholar]
  122. Hussein MR, Nassar MI, Kamel NA, Osman ME, Georguis MN (2005), Analysis of fibronectin expression in the bilharzial granulomas and of laminin in the transformed urothelium in schistosoma haematobium infested patients. Cancer Biol Ther 4, 676–678. [CrossRef] [PubMed] [Google Scholar]
  123. Luo J, Liang Y, Kong F, Qiu J, Liu X, Chen A, Luxon BA, Wu HW, Wang Y (2017), Vascular endothelial growth factor promotes the activation of hepatic stellate cells in chronic schistosomiasis. Immunol Cell Biol 95, 399–407. [CrossRef] [PubMed] [Google Scholar]
  124. Khoontawad J, Laothong U, Roytrakul S, Pinlaor P, Mulvenna J, Wongkham C, Yongvanit P, Pairojkul C, Mairiang E, Sithithaworn P, Pinlaor S (2012), Proteomic identification of plasma protein tyrosine phosphatase alpha and fibronectin associated with liver fluke. Opisthorchis viverrini, infection. PLoS One 7, e45460. [CrossRef] [PubMed] [Google Scholar]
  125. Charoensuk L, Pinlaor P, Wanichwecharungruang S, Intuyod K, Vaeteewoottacharn K, Chaidee A, Yongvanit P, Pairojkul C, Suwannateep N, Pinlaor S (2016), Nanoencapsulated curcumin and praziquantel treatment reduces periductal fibrosis and attenuates bile canalicular abnormalities in Opisthorchis viverrini-infected hamsters. Nanomedicine 12, 21–32. [CrossRef] [PubMed] [Google Scholar]
  126. Lim JW, Kim H, Kim KH (2003), Cell adhesion-related gene expression by Helicobacter pylori in gastric epithelial AGS cells. Int J Biochem Cell Biol 35, 1284–1296. [CrossRef] [PubMed] [Google Scholar]
  127. Hennig EE, Godlewski MM, Butruk E, Ostrowski J (2005), Helicobacter pylori VacA cytotoxin interacts with fibronectin and alters HeLa cell adhesion and cytoskeletal organization in vitro. FEMS Immunol Med Microbiol 44, 143–150. [Google Scholar]
  128. Tegtmeyer N, Hartig R, Delahay RM, Rohde M, Brandt S, Conradi J, Takahashi S, Smolka AJ, Sewald N, Backert S (2010), A small fibronectin-mimicking protein from bacteria induces cell spreading and focal adhesion formation. J Biol Chem 285, 23515–23526. [PubMed] [Google Scholar]
  129. Pachathundikandi SK, Tegtmeyer N, Backert S (2013), Signal transduction of Helicobacter pylori during interaction with host cell protein receptors of epithelial and immune cells. Gut Microbes 4, 454–474. [CrossRef] [PubMed] [Google Scholar]
  130. Yavlovich A, Rottem S (2007), Binding of host extracellular matrix proteins to Mycoplasma fermentans and its effect on adherence to, and invasion of HeLa cells. FEMS Microbiol Lett 266, 158–162. [CrossRef] [PubMed] [Google Scholar]
  131. Balasubramanian S, Kannan TR, Hart PJ, Baseman JB (2009), Amino acid changes in elongation factor Tu of Mycoplasma pneumoniae and Mycoplasma genitalium influence fibronectin binding. Infect Immun 77, 3533–3541. [CrossRef] [PubMed] [Google Scholar]
  132. Yu Y, Liu M, Hua L, Qiu M, Zhang W, Wei Y, Gan Y, Feng Z, Shao G, Xiong Q (2018), Fructose-1,6-bisphosphate aldolase encoded by a core gene of Mycoplasma hyopneumoniae contributes to host cell adhesion. Vet Res 49, 114 [CrossRef] [PubMed] [Google Scholar]
  133. Chen X, Huang J, Zhu H, Guo Y, Khan FA, Menghwar H, Zhao G, Guo A (2018), P27 (MBOV_RS03440) is a novel fibronectin binding adhesin of Mycoplasma bovis. Int J Med Microbiol 308, 848–857. [CrossRef] [PubMed] [Google Scholar]
  134. Yu Y, Wang H, Wang J, Feng Z, Wu M, Liu B, Xin J, Xiong Q, Liu M, Shao G (2018), Elongation Factor Thermo Unstable (EF-Tu) Moonlights as an Adhesin on the Surface of Mycoplasma hyopneumoniae by Binding to Fibronectin. Front Microbiol 9, 974. [CrossRef] [PubMed] [Google Scholar]
  135. Shinde A, Libring S, Alpsoy A, Abdullah A, Schaber JA, Solorio L, Wendt MK (2018), Autocrine Fibronectin Inhibits Breast Cancer Metastasis. Mol Cancer Res 16, 1579–1589. [CrossRef] [PubMed] [Google Scholar]
  136. Zhang X, Liu S, Hu T, Liu S, He Y, Sun S (2009), Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology 50, 490–499. [CrossRef] [PubMed] [Google Scholar]
  137. Glasner A, Levi A, Enk J, Isaacson B, Viukov S, Orlanski S, Scope A, Neuman T, Enk CD, Hanna JH, Sexl V, Jonjic S, Seliger B, Zitvogel L, Mandelboim O (2018), NKp46 receptor-mediated interferon-γ production by natural killer cells increases fibronectin 1 to alter tumor architecture and control metastasis. Immunity 48, 107.e4–119.e4. [Google Scholar]
  138. Zella D, Curreli S, Benedetti F, Krishnan S, Cocchi F, Latinovic OS, Denaro F, Romerio F, Djavani M, Charurat ME, Bryant JL, Tettelin H, Gallo RC (2018), Mycoplasma promotes malignant transformation in vivo, and its DnaK, a bacterial chaperon protein, has broad oncogenic properties. Proc Natl Acad Sci USA pii:201815660. DOI: 10.1073/pnas.1815660115 [Google Scholar]
  139. Mivechi NF, Rossi JJ (1990), Use of polymerase chain reaction to detect the expression of the Mr 70,000 heat shock genes in control or heat shock leukemic cells as correlated to their heat response. Cancer Res 50, 2877–2884. [Google Scholar]
  140. Lazaris AC, Theodoropoulos GE, Davaris PS, Panoussopoulos D, Nakopoulou L, Kittas C, Golematis BC (1995), Heat shock protein 70 and HLA-DR molecules tissue expression. Prognostic implications in colorectal cancer. Dis Colon Rectum 38, 739–745. [CrossRef] [PubMed] [Google Scholar]
  141. Ricaniadis N, Kataki A, Agnantis N, Androulakis G, Karakousis CP (2001), Long-term prognostic significance of HSP-70, c-myc and HLA-DR expression in patients with malignant melanoma. Eur J Surg Oncol 27, 88–93. [CrossRef] [PubMed] [Google Scholar]
  142. Sagol O, Tuna B, Coker A, Karademir S, Obuz F, Astarcioglu H, Küpelioglu A, Astarcioglu I, Topalak O (2002), Immunohistochemical detection of pS2 protein and heat shock protein-70 in pancreatic adenocarcinomas. Relationship with disease extent and patient survival. Pathol Res Pract 198, 77–84. [CrossRef] [PubMed] [Google Scholar]
  143. Kawanishi K, Shiozaki H, Doki Y, Sakita I, Inoue M, Yano M, Tsujinaka T, Shamma A, Monden M (1999), Prognostic significance of heat shock proteins 27 and 70 in patients with squamous cell carcinoma of the esophagus. Cancer 85, 1649–1657. [CrossRef] [PubMed] [Google Scholar]
  144. LaThangue NB, Latchman DS (1987), Nuclear accumulation of a heat-shock 70-like protein during herpes simplex virus replication. Biosci Rep 7, 475–483. [CrossRef] [PubMed] [Google Scholar]
  145. Baluk P, Raymond WW, Ator E, Coussens LM, McDonald DM, Caughey GH (2004), Matrix metalloproteinase-2 and −9 expression increases in Mycoplasma-infected airways but is not required for microvascular remodeling. Am J Physiol Lung Cell Mol Physiol 287, L307–L317. [CrossRef] [PubMed] [Google Scholar]
  146. Giacominelli-Stuffler R, Marruchella G, Storelli MM, Sabatucci A, Angelucci CB, Maccarrone M (2012), 5-Lipoxygenase and cyclooxygenase-2 in the lungs of pigs naturally affected by enzootic pneumonia and porcine pleuropneumonia. Res Vet Sci 93, 898–903. [CrossRef] [PubMed] [Google Scholar]
  147. Zhao J, Zhang W, Shen L, Yang X, Liu Y, Gai Z (2017), Association of the ACE, GSTM1, IL-6, NOS3, and CYP1A1 polymorphisms with susceptibility of mycoplasma pneumoniae pneumonia in Chinese children. Medicine (Baltimore) 96, e6642. [CrossRef] [PubMed] [Google Scholar]
  148. Hagemann L, Gründel A, Jacobs E, Dumke R (2017), The surface-displayed chaperones GroEL and DnaK of Mycoplasma pneumoniae interact with human plasminogen and components of the extracellular matrix. Pathog Dis 75. DOI: 10.1093/femspd/ftx017 [Google Scholar]
  149. Gomersall AC, Phan HA, Iacuone S, Li SF, Parish RW (2015), The Mycoplasma hyorhinis p37 protein rapidly induces genes in fibroblasts associated with inflammation and cancer. PLoS One 10, e0140753. [CrossRef] [PubMed] [Google Scholar]
  150. Horowitz S, Evinson B, Borer A, Horowitz J (2000), Mycoplasma fermentans in rheumatoid arthritis and other inflammatory arthritides. J Rheumatol 27, 2747–2753. [PubMed] [Google Scholar]
  151. Lin Y, Tan D, Kan Q, Xiao Z, Jiang Z (2018), The protective effect of naringenin on airway remodeling after Mycoplasma Pneumoniae infection by inhibiting autophagy-mediated lung inflammation and fibrosis. Mediators Inflamm 2018, 8753894. [PubMed] [Google Scholar]
  152. Huang G, Redelman-Sidi G, Rosen N, Glickman MS, Jiang X (2012), Inhibition of mycobacterial infection by the tumor suppressor PTEN. J Biol Chem 287, 23196–23202. [PubMed] [Google Scholar]
  153. Duan H, Qu L, Shou C (2014), Activation of EGFR-PI3K-AKT signaling is required for Mycoplasma hyorhinis-promoted gastric cancer cell migration. Cancer Cell Int 14, 135. [CrossRef] [PubMed] [Google Scholar]
  154. Yuan B, Zou M, Zhao Y, Zhang K, Sun Y, Peng X (2018), Up-regulation of miR-130b-3p activates the PTEN/PI3K/AKT/NF-κB pathway to defense against Mycoplasma gallisepticum (HS strain) infection of chicken. Int J Mol Sci 19, pii: E2172. [Google Scholar]
  155. Cheng Q, Wu L, Tu R, Wu J, Kang W, Su T, Du R, Liu W (2017), Mycoplasma fermentans deacetylase promotes mammalian cell stress tolerance. Microbiol Res 201, 1–11. [CrossRef] [PubMed] [Google Scholar]
  156. Obara H, Harasawa R (2010), Nitric oxide causes anoikis through attenuation of E-cadherin and activation of caspase-3 in human gastric carcinoma AZ-521 cells infected with Mycoplasma hyorhinis. J Vet Med Sci 72, 869–874. [CrossRef] [PubMed] [Google Scholar]
  157. Lee JH, Shin JU, Jung I, Lee H, Rah DK, Jung JY, Lee WJ (2013), Proteomic profiling reveals upregulated protein expression of hsp70 in keloids. Biomed Res Int 2013, 621538. [Google Scholar]
  158. Goder M, Kornhaber R, Bordoni D, Winkler E, Haik J, Tessone A (2016), Cutaneous basal cell carcinoma arising within a keloid scar: a case report. Onco Targets Ther 9, 4793–4796. [Google Scholar]
  159. Jia J, Wang M, Song L, Feng Y (2017), A melanotic malignant melanoma presenting as a keloid: a case report. Medicine (Baltimore) 96, e9047. [CrossRef] [PubMed] [Google Scholar]
  160. Sleiwah A, Clinton A, Herbert K (2018), Delayed diagnosis of dermal leiomyosarcoma mimicking keloid scar. BMJ Case Rep 2018, pii: bcr-2017-222616. [Google Scholar]
  161. Ueno H, Kanemitsu Y, Sekine S, Ishiguro M, Ito E, Hashiguchi Y, Kondo F, Shimazaki H, Mochizuki S, Kajiwara Y, Shinto E, Yamamoto J (2017), Desmoplastic pattern at the tumor front defines poor-prognosis subtypes of colorectal cancer. Am J Surg Pathol 41, 1506–1512. [CrossRef] [PubMed] [Google Scholar]
  162. Lee WJ, Song SY, Roh H, Ahn HM, Na Y, Kim J, Lee JH, Yun CO (2018), Profibrogenic effect of high-mobility group box protein-1 in human dermal fibroblasts and its excess in keloid tissues. Sci Rep 8, 8434. [CrossRef] [PubMed] [Google Scholar]
  163. Krusius T, Ruoslahti E (1986), Primary structure of an extracellular matrix proteoglycan core protein deduced from cloned cDNA. Proc Natl Acad Sci USA 83, 7683–7687. [CrossRef] [Google Scholar]
  164. Mann DM, Yamaguchi Y, Bourdon MA, Ruoslahti E (1990), Analysis of glycosaminoglycan substitution in decorin by site-directed mutagenesis. J Biol Chem 265, 5317–5323. [PubMed] [Google Scholar]
  165. Winnemöller M, Schmidt G, Kresse H (1991), Influence of decorin on fibroblast adhesion to fibronectin. Eur J Cell Biol 54, 10–17. [PubMed] [Google Scholar]
  166. Dawoody Nejad L, Biglari A, Annese T, Ribatti D (2017), Recombinant fibromodulin and decorin effects on NF-κB and TGFβ1 in the 4T1 breast cancer cell line. Oncol Lett 13, 4475–4480. [CrossRef] [PubMed] [Google Scholar]
  167. Yamaguchi Y, Ruoslahti E (1988), Expression of human proteoglycan in Chinese hamster ovary cells inhibits cell proliferation. Nature 336, 244–246. [CrossRef] [PubMed] [Google Scholar]
  168. Yamaguchi Y, Mann DM, Ruoslahti E (1990), Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 346, 281–284. [CrossRef] [PubMed] [Google Scholar]
  169. Schönherr E, Broszat M, Brandan E, Bruckner P, Kresse H (1998), Decorin core protein fragment Leu155-Val260 interacts with TGF-beta but does not compete for decorin binding to type I collagen. Arch Biochem Biophys 355, 241–248. [CrossRef] [PubMed] [Google Scholar]
  170. Liu Y, Wang X, Wang Z, Ju W, Wang D (2016), Decorin inhibits the proliferation of HepG2 cells by elevating the expression of transforming growth factor-β receptor II. Exp Ther Med 12, 2191–2195. [CrossRef] [PubMed] [Google Scholar]
  171. Border WA, Okuda S, Languino LR, Ruoslahti E (1990), Transforming growth factor-beta regulates production of proteoglycans by mesangial cells. Kidney Int 37, 689–695. [CrossRef] [PubMed] [Google Scholar]
  172. Neill T, Schaefer L, Iozzo RV (2012), Decorin: a guardian from the matrix. Am J Pathol 181, 380–387. [CrossRef] [PubMed] [Google Scholar]
  173. Merline R, Moreth K, Beckmann J, Nastase MV, Zeng-Brouwers J, Tralhão JG, Lemarchand P, Pfeilschifter J, Schaefer RM, Iozzo RV, Schaefer L (2011), Signaling by the matrix proteoglycan decorin controls inflammation and cancer through PDCD4 and MicroRNA-21. Sci Signal 4, ra75. [Google Scholar]
  174. Takeuchi Y, Kodama Y, Matsumoto T (1994), Bone matrix decorin binds transforming growth factor-beta and enhances its bioactivity. J Biol Chem 269, 32634–32638. [PubMed] [Google Scholar]
  175. Goetsch KP, Niesler CU (2016), The extracellular matrix regulates the effect of decorin and transforming growth factor beta-2 (TGF-β2) on myoblast migration. Biochem Biophys Res Commun 479, 351–357. [Google Scholar]
  176. Ji C, Liu H, Xiang M, Liu J, Yue F, Wang W, Chu X (2015), Deregulation of decorin and FHL1 are associated with esophageal squamous cell carcinoma progression and poor prognosis. Int J Clin Exp Med 8, 20965–20970. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.