Volume 2, 2019
Disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer”
Article Number 6
Number of page(s) 8
Section Life Sciences - Medicine
Published online 25 April 2019
  1. Siegel RL, Miller KD, Jemal A (2018), Cancer statistics, 2018. CA Cancer J Clin 68, 1, 7–30. [CrossRef] [PubMed] [Google Scholar]
  2. Population Division, DESA, United Nations (2001), World population ageing. Available from: [Google Scholar]
  3. Brücher BLDM (2018), Science belongs to no one – And to everyone. 4open 1, E1, 1–11. [CrossRef] [EDP Sciences] [Google Scholar]
  4. Foulds L (1969), Neoplastic development, Vol. 10, Academic Press, New York, NY. ISBN-10: 0122628012. [Google Scholar]
  5. Foulds L (1975), Neoplastic development,, Vol. 10, Academic Press, New York, NY. ISBN 10: 0122628020. [Google Scholar]
  6. Brücher BLDM, Lyman G, van Hillegersberg R, Pollock RE, Lordick F, Yang HK, Ushijima T, Yeoh KG, Skricka T, Polkowski W, Wallner G, Verwaal V, Garofalo A, D’Ugo D, Roviello F, Steinau HU, Wallace TJ, Daumer M, Maihle N, Reid TJ III, Ducreux M, Kitagawa Y, Knuth A, Zilberstein B, Steele SR, Jamall IS (2014), Imagine a world without cancer. BMC Cancer 14, 186, 1–8. [CrossRef] [PubMed] [Google Scholar]
  7. Fournier DV, et al. (1980), Growth rate if 147 mammary carcinomas. Cancer 45, 2198–2207. [CrossRef] [PubMed] [Google Scholar]
  8. Eckardt VF, Willems D, Kanzler G, Remmele W, Bettendorf U, Paulus W (1984), Eighty months persistence of poorly differentiated early gastric cancer. Gastroenterology 87, 3, 719–724. [CrossRef] [PubMed] [Google Scholar]
  9. Rovera G, Olashaw N, Meo P (1980), Terminal differentiation in human promyelocytic leukaemic cells in the absence of DNA synthesis. Nature 284, 5751, 69–70. [CrossRef] [PubMed] [Google Scholar]
  10. Nery R (1986), Cancer: an enigma in biology and society, Croom Helm London & Sydney, The Charles Press, Publishers, Philadelphia, PA. ISBN 0-7099-1825-9. [Google Scholar]
  11. Kohler LN, Harris RB, Oren E, Roe DJ, Lance P, Jacobs ET (2018), Adherence to nutrition and physical activity cancer prevention guidelines and development of colorectal adenoma. Nutrients 10, 8. pii: E1098. [Google Scholar]
  12. Schatzkin A, Freedman LS, Dawsey SM, Lanza E (1994), Interpreting precursor studies: What polyp trials tell us about large-bowel cancer. J Natl Cancer Inst 86, 1053–1057. [CrossRef] [PubMed] [Google Scholar]
  13. Bond JH (2000), Polyp guideline: Diagnosis, treatment and surveillance for patients with colorectal polyps, Practice Parameters Committee of the American College of Gastroenterology. Am J Gastroenterol 95, 3053–3063. [Google Scholar]
  14. US Preventive Services Task Force (2008), Screening for colorectal cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 149, 9, 627–637. PMID: 18838716. [CrossRef] [PubMed] [Google Scholar]
  15. American Cancer Society (2014), Cancer facts & figures, 2014, Atlanta, GA, USA. Accessed 6 Oct 2018. [Google Scholar]
  16. Siegel RL, Fedewa SA, Anderson WF, Miller KD, Ma J, Rosenberg PS, Jemal A (2017), Colorectal cancer incidence patterns in the United States, 1974–2013. J Natl Cancer Inst 109, 8, 1–6. [Google Scholar]
  17. Bearzi I, Brancorsini D, Santinelli A, Rezai B, Mannello B, Ranaldi R (1994), Gastric dysplasia: A ten-year follow-up study. Pathol Res Pract 190, 1, 61–68. [CrossRef] [PubMed] [Google Scholar]
  18. Brücher BLDM (2014), An apple found in a car is not synonym of prove apples grow in car’s. [Google Scholar]
  19. Unknown author Cars in Azerbaijan. [Google Scholar]
  20. Poletaev A, Pukhalenko A, Kukushkin A, Sviridov P (2015), Detection of early cancer: Genetics or immunology? Serum autoantibody profiles as markers of malignancy Anticancer Agents Med Chem 15, 10, 1260–1263. [Google Scholar]
  21. Boveri T (1914), Zur Frage der Entstehung maligner Tumoren, Verlag von Gustav Fischer, Jena, Germany, pp. 29–32. [Google Scholar]
  22. Bauer KH (1928), Mutationstheorie der Geschwulst-Entstehung, Julius Springer Verlag, Berlin, Germany. [Google Scholar]
  23. Grand View Research (2017), Biotechnology market analysis by application (health, food & agriculture, natural resources & environment, industrial processing bioinformatics), by technology, and segment forecasts, 2014–2025. [Google Scholar]
  24. India aims for 100$ billion biotech industry by 2025 (2017) The Pharmaletter, Jul 11, 2017, [Google Scholar]
  25. Russia’s pharmaceutical market will almost double to $39 billion by 2021, says GlobalData (2017) epm, connecting pharma, Feb 28, 2017. [Google Scholar]
  26. Biotechnology in Australia (2017), IBIS World. Accessed Oct 10, 2017. [Google Scholar]
  27. UAE pharmaceutical market set to hit $5.7 billion by 2020 (2017) the pharmaletter, Oct 11, 2016. Oct 11, 2016. [Google Scholar]
  28. McKinnell R, Deggins B, Labat D (1969), Transplantation of pluripotential nuclei from triploid frog tumors. Science 165, 394–396. [Google Scholar]
  29. Lust JM, Carlson DL, Kowles R, Rollins-Smith L, Williams JW 3rd, McKinnell RG (1991), Allografts of tumor nuclear transplantation embryos: differentiation competence. Proc Natl Acad Sci USA 88, 15, 6883–6887. [CrossRef] [Google Scholar]
  30. Rubin H (1980), Is somatic mutation the major mechanism of malignant transformation? J Natl Cancer Inst 64, 5, 995–1000. [PubMed] [Google Scholar]
  31. Brücher BLDM, Jamall IS (2016), Somatic mutation theory – Why it’s wrong for most cancers. Cell Physiol Biochem 38, 5, 1663–1680. [CrossRef] [PubMed] [Google Scholar]
  32. Le Bon G (1895), Psychologie des foules. Ancienne Librairie Germer Baillière et Cie, Paris, Félix Alcan (Ed.). [Google Scholar]
  33. Vu V, Verster AJ, Schertzberg M, Chuluunbaatar T, Spensley M, Pajkic D, Hart GT, Moffat J, Fraser AG (2015), Natural variation in gene expression modulates the severity of mutant phenotypes. Cell 162, 2, 391–402. [CrossRef] [PubMed] [Google Scholar]
  34. Ling S, Hu Z, Yang Z, Yang F, Li Y, Lin P, Chen K, Dong L, Cao L, Tao Y, Hao L, Chen Q, Gong Q, Wu D, Li W, Zhao W, Tian X, Hao C, Hungate EA, Catenacci DV, Hudson RR, Li WH, Lu X, Wu CI (2015), Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. Proc Natl Acad Sci USA 112, E6496–6505. CORRECTION: Proc Natl Acad Sci U S A 2016, 113(5): E663. DOI: [CrossRef] [Google Scholar]
  35. Gatenby RA, Brown J (2017), Mutations, evolution and the central role of a self-defined fitness function in the initiation and progression of cancer. Biochim Biophys Acta 1867, 2, 162–166. [PubMed] [Google Scholar]
  36. Liggett LA, DeGregori J (2017), Changing mutational and adaptive landscapes and the genesis of cancer. Biochim Biophys Acta 1867, 2, 84–94. [PubMed] [Google Scholar]
  37. Tang R, Changchien CR, Wu MC, Fan CW, Liu KW, Chen JS, Chien HT, Hsieh LL (2004), Colorectal cancer without high microsatellite instability and chromosomal instability – An alternative genetic pathway to human colorectal cancer. Carcinogenesis 25, 5, 841–846. [CrossRef] [PubMed] [Google Scholar]
  38. Cirillo N, Hassona Y, Celentano A, Lim KP, Manchella S, Parkinson EK, Prime SS (2017), Cancer-associated fibroblasts regulate keratinocyte cell-cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer. Carcinogenesis 38, 1, 76–85. [CrossRef] [PubMed] [Google Scholar]
  39. Shindo K, Yu J, Suenaga M, Fesharakizadeh S, Cho C, Macgregor-Das A, Siddiqui A, Witmer PD, Tamura K, Song TJ, Navarro Almario JA, Brant A, Borges M, Ford M, Barkley T, He J, Weiss MJ, Wolfgang CL, Roberts NJ, Hruban RH, Klein AP, Goggins M (2017), Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol 35, 30, 3382–3390. [CrossRef] [PubMed] [Google Scholar]
  40. Wang RA, Li ZS, Zhang HZ, Zheng PJ, Li QL, Shi JG, Yan QG, Ye J, Wang JB, Guo Y, Huang XF, Yu YH (2013), Invasive cancers are not necessarily from preformed in situ tumours – An alternative way of carcinogenesis from misplaced stem cells. J Cell Mol Med 17, 7, 921–926. [CrossRef] [PubMed] [Google Scholar]
  41. Brücher BLDM, Jamall IS (2014), Epistemology of the origin of cancer: A new paradigm. BMC Cancer 14, 1–15. [CrossRef] [PubMed] [Google Scholar]
  42. Brücher BLDM, Jamall IS (2014), Cell-cell communication in tumor microenvironment, carcinogenesis and anticancer treatment. Cell Physiol Biochem 34, 2, 213–243. [CrossRef] [PubMed] [Google Scholar]
  43. Ariga T, Kondoh T, Yamaguchi K, Yamada M, Sasaki S, Nelson DL, Ikeda H, Kobayashi K, Moriuchi H, Sakiyama Y (2001), Spontaneous in vivo reversion of an inherited mutation in the Wiskott-Aldrich syndrome. J Immunol 166, 8, 5245–5249. [CrossRef] [PubMed] [Google Scholar]
  44. Xie JW, Zhang ZY, Wu JF, Liu DW, Liu W, Zhao Y, Jiang LP, Tang XM, Wang M, Zhao XD (2015), In vivo reversion of an inherited mutation in a Chinese patient with Wiskott-Aldrich syndrome. Hum Immunol 76, 6, 406–413. [CrossRef] [PubMed] [Google Scholar]
  45. Jongmans MC, Verwiel ET, Heijdra Y, Vulliamy T, Kamping EJ, Hehir-Kwa JY, Bongers EM, Pfundt R, van Emst L, van Leeuwen FN, van Gassen KL, Geurts van Kessel A, Dokal I, Hoogerbrugge N, Ligtenberg MJ, Kuiper RP (2012), Revertant somatic mosaicism by mitotic recombination in dyskeratosis congenital. Am J Hum Genet 90, 3, 426–433. [Google Scholar]
  46. Rogers MS, Novak K, Zurakowski D, Cryan LM, Blois A, Lifshits E, Bø TH, Oyan AM, Bender ER, Lampa M, Kang SY, Naxerova K, Kalland KH, Straume O, Akslen LA, Watnick RS, Folkman J, Naumov GN (2014), Spontaneous reversion of the angiogenic phenotype to a nonangiogenic and dormant state in human tumors. Mol Cancer Res 12, 5, 754–764. [CrossRef] [PubMed] [Google Scholar]
  47. Chao YL, Shepard CR, Wells A (2010), Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer 9, 179. [Google Scholar]
  48. Chao Y, Wu Q, Acquafondata M, Dhir R, Wells A (2012), Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron 5, 1, 19–28. [Google Scholar]
  49. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Massé A, Kosmider O, Le Couedic JP, Robert F, Alberdi A, Lécluse Y, Plo I, Dreyfus FJ, Marzac C, Casadevall N, Lacombe C, Romana SP, Dessen P, Soulier J, Viguié F, Fontenay M, Vainchenker W, Bernard OA (2009), Mutation in TET2 in myeloid cancers. N Engl J Med 360, 22, 2289–2301. [Google Scholar]
  50. Bowman RL, Busque L, Levine RL (2018), Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 22, 2, 157–170. [Google Scholar]
  51. Meisel M, Hinterleitner R, Pacis A, Chen L, Earley ZM, Mayassi T, Pierre JF, Ernest JD, Galipeau HJ, Thuille N, Bouziat R, Buscarlet M, Ringus DL, Wang Y, Li Y, Dinh V, Kim SM, McDonald BD, Zurenski MA, Musch MW, Furtado GC, Lira SA, Baier G, Chang EB, Eren AM, Weber CR, Busque L, Godley LA, Verdú EF, Barreiro LB, Jabri B (2018), Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557, 7706, 580–584. [CrossRef] [PubMed] [Google Scholar]
  52. Shi W, Ng CKY, Lim RS, Jiang T, Kumar S, Li X, Wali VB, Piscuoglio S, Gerstein MB, Chagpar AB, Weigelt B, Pusztai L, Reis-Filho JS, Hatzis C (2018), Reliability of whole-exome sequencing for assessing intratumor genetic heterogeneity. Cell Rep 25, 6, 1446–1457. [CrossRef] [PubMed] [Google Scholar]
  53. Adjiri A (2017), DNA mutations may not be the cause of cancer. Oncol Ther 5, 1, 85–101. [CrossRef] [PubMed] [Google Scholar]
  54. McNairn AJ, Chuang CH, Bloom JC, Wallace MD, Schimenti JC (2019), Female-biased embryonic death from inflammation induced by genomic instability. Nature 567, 105–108. [CrossRef] [PubMed] [Google Scholar]
  55. Li J, Wen WX, Eklund M, Kvist A, Eriksson M, Christensen HN, Torstensson A, Bajalica-Lagercrantz S, Dunning AM, Decker B, Allen J, Luccarini C, Pooley K, Simard J, Dorling L, Easton DF, Teo SH, Hall P, Borg Å, Grönberg H, Czene K (2019), Prevalence of BRCA1 and BRCA2 pathogenic variants in a large, unselected breast cancer cohort. Int J Cancer 144, 5, 1195–1204. [CrossRef] [PubMed] [Google Scholar]
  56. Deng M, Chen HH, Zhu X, Luo M, Zhang K, Xu CJ, Hu KM, Cheng P, Zhou JJ, Zheng S, Chen YD (2019), Prevalence and clinical outcomes of germline mutations in BRCA1/2 and PALB2 genes in 2769 unselected breast cancer patients in China. Int J Cancer Feb 5. [Google Scholar]
  57. Lee-Six H, Øbro NF, Shepherd MS, Grossmann S, Dawson K, Belmonte M, Osborne RJ, Huntly BJP, Martincorena I, Anderson E, O’Neill L, Stratton MR, Laurenti E, Green AR, Kent DG, Campbell PJ (2018), Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 7724, 473–478. [CrossRef] [PubMed] [Google Scholar]
  58. Sutou S (2018), Low-dose radiation from A-bombs elongated lifespan and reduced cancer mortality relative to un-irradiated individuals. Genes Environ 40, 26. [CrossRef] [PubMed] [Google Scholar]
  59. Bennett WH (1899), Some peculiarities in the behavior of certain malignant and innocent growths. Lancet 1, 3–7. [Google Scholar]
  60. Rosenman RH (1946), Spontaneous regression of metastatic sarcoma; report of case. Am J Clin Pathol 16, 281–289. [Google Scholar]
  61. Penner DW (1953), Spontaneous regression of a case of myosarcoma. Cancer 64, 776–779. [CrossRef] [PubMed] [Google Scholar]
  62. Sumner WC (1953), Spontaneous regression of melanoma. Cancer 6, 5, 1040–1043. [CrossRef] [PubMed] [Google Scholar]
  63. Levison VB (1955), Spontaneous regression of a malignant melanoma. Br Med J 1, 4911, 458–459. PMCID: PMC2061225. [CrossRef] [PubMed] [Google Scholar]
  64. Everton TC, Cole WH (1966), Spontaneous regression of cancer, W.B. Saunders, Philadelphia, PA. [Google Scholar]
  65. Fairlamb DG (1981), Spontaneous regression of metastases of renal cancer: A report of two cases including the first recorded regression following irradiation of a dominant metastasis and review of the world literature. Cancer 47, 8, 2102–2106. PMID: 7226102. [CrossRef] [PubMed] [Google Scholar]
  66. Racker E (1972), Bioenergetics and the problem of tumor growth. Am Sci 60, 56–63. [PubMed] [Google Scholar]
  67. Warburg O (1923), Versuche an überlebendem Carcinom-Gewebe (Methoden). Biochem Zeitschr 142, 317–333. [Google Scholar]
  68. Warburg O, Posener K, Negelein E (1924), Über den Stoffwechsel der Carcinomzelle. Biochem Zeitschr 152, 309–344. [Google Scholar]
  69. Cori CA, Cori GT (1925), The carbohydrate metabolism of tumours I: The free sugar, lactic acid, and glycogen content of malignant tumors. J Biol Chem 64, 11–22. [Google Scholar]
  70. Cori CA, Cori GT (1925), The carbohydrate metabolism of tumours II: The changes in the suga, latic acid, and co-combining power of blood passing through a tumor. J Biol Chem 65, 397–405. [Google Scholar]
  71. Warburg O (1925), Über den Stoffwechsel der Carcinomzelle. Klin Wochenschr 4, 534–536. [Google Scholar]
  72. Warburg O, Wind F, Negelein E (1927), The metabolism of tumors in the body. J Gen Physiol 8, 6, 519–530. [CrossRef] [PubMed] [Google Scholar]
  73. Koppenol WH, Bounds PL, Dang CV (2011), Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11, 5, 325–337. [Google Scholar]
  74. Cordier-Bussat M, Thibert C, Sujobert P, Genestier L, Fontaine É, Billaud M (2018), Même l’effet Warburg est oxydable: Coopération métabolique et développement tumoral. Med Sci (Paris) 34, 8–9, 701–708. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  75. Tan MM, Ho WK, Yoon SY, Mariapun S, Hasan SN, Lee DS, Hassan T, Lee SY, Phuah SY, Sivanandan K, Ng PP, Rajaram N, Jaganathan M, Jamaris S, Islam T, Rahmat K, Fadzli F, Vijayananthan A, Rajadurai P, See MH, Thong MK, Mohd Taib NA, Yip CH, Teo SH (2018), A case-control study of breast cancer risk factors in 7,663 women in Malaysia. PLoS One 13, 9, e0203469. [Google Scholar]
  76. Sormunen J, Talibov M, Sparén P, Martinsen JI, Weiderpass E, Pukkala E (2018), Perceived physical strain at work and incidence of prostate cancer – A case-control study in Sweden and Finland. Asian Pac J Cancer Prev 19, 8, 2331–2335. [PubMed] [Google Scholar]
  77. Nery R (1986), Cancer: An enigma in biology and society, Croom Helm, London, UK. ISBN 0709918259. [Google Scholar]
  78. Haeckel E (1868), Natürliche Schöpfungsgeschichte, Georg Reimer, Berlin, Germany. [Google Scholar]
  79. Haeckel E (1877), Anthropogenie oder Entwickelungsgeschichte des Menschen, 3rd edn., Wilhelm Engelmann, Leipzig, Germany, p. 1877. [Google Scholar]
  80. Maehle AH (2011), Ambiguous cells: The emergence of the stem cell concept in the nineteenth and twentieth centuries. Notes Rec R Soc Lond 65, 4, 359–378. PMCID: PMC3793240. [Google Scholar]
  81. Boveri T (1892), Ueber die Entstehung des Gegensatzes zwischen den Geschlechtszellen und den somatischen Zellen bei Ascaris megalocephala, nebst Bemerkungen zur Entwicklungsgeschichte der Nematoden. Sitzungsbericht Gesellschaft Morphologie und Physiologie, München 8, 114–125. [Google Scholar]
  82. Cohnheim J (1877-1880), Vorlesungen über allgemeine Pathologie, Ein Handbuch für Aerzte und Studierende (2 volumes), August Hirschwald, Berlin, Germany. [Google Scholar]
  83. Kleinsmith LJ, Pierce GB Jr (1964), Multipotentiality of single embryonal carcinoma cells. Cancer Res 24, 1544–1551. [Google Scholar]
  84. Brinster RL (1974), The effect of cells transferred into the mouse blastocyst on subsequent development. J Exp Med 140, 1049–1056. [CrossRef] [PubMed] [Google Scholar]
  85. Mintz B, Illmensee K (1975), Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci USA 72, 3585–3589. [CrossRef] [Google Scholar]
  86. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994), A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 6464, 645–648. [CrossRef] [PubMed] [Google Scholar]
  87. Bonnet D, Dick JE (1997), Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3, 7, 730–737. [CrossRef] [PubMed] [Google Scholar]
  88. Nuciforo P, Fraggetta F (2004), Cancer stem cell theory: pathologists’ considerations and ruminations about wasting time and wrong evaluations. J Clin Pathol 57, 7, 782. [Google Scholar]
  89. Tosato G, Jones KD (1990), Interleukin-1 induces interleukin-6 production in peripheral blood monocytes. Blood 75, 6, 1305–1310. PMID: 2310829. [Google Scholar]
  90. Chakravarthy A, Khan L, Bensler NP, Bose P, De Carvalho DD (2018), TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat Commun 9, 1, 4692–4693. [Google Scholar]
  91. Pérez L, Vallejos A, Echeverria C, Varela D, Cabello-Verrugio C, Simon F (2019), OxHDL controls LOX-1 expression and plasma membrane localization through a mechanism dependent on NOX/ROS/NF-κB pathway on endothelial cells. Lab Invest 99, 3, 421–437. [Google Scholar]
  92. Huang M, Liu Z, Baugh L, DeFuria J, Maione A, Smith A, Kashpur O, Black Iii LD, Georgakoudi I, Whitfield ML, Garlick J (2018), Lysyl oxidase enzymes mediate TGF-β1-induced fibrotic phenotypes in human skin-like tissues. Lab Invest Dec 19. [Google Scholar]
  93. Saito T, Uzawa K, Terajima M, Shiiba M, Amelio AL, Tanzawa H, Yamauchi M (2019), Aberrant collagen cross-linking in human oral squamous cell carcinoma. J Dent Res Feb 20. [Google Scholar]
  94. Leeming DJ, Willumsen N, Sand JMB, Holm Nielsen S, Dasgupta B, Brodmerkel C, Curran M, Bager CL, Karsdal MA (2018), A serological marker of the N-terminal neoepitope generated during LOXL2 maturation is elevated in patients with cancer or idiopathic pulmonary fibrosis. Biochem Biophys Rep 17, 38–43. [Google Scholar]
  95. Schilter H, Findlay AD, Perryman L, Yow TT, Moses J, Zahoor A, Turner CI, Deodhar M, Foot JS, Zhou W, Greco A, Joshi A, Rayner B, Townsend S, Buson A, Jarolimek W (2019), The lysyl oxidase like 2/3 enzymatic inhibitor, PXS-5153A, reduces crosslinks and ameliorates fibrosis. J Cell Mol Med 23, 3, 1759–1770. [PubMed] [Google Scholar]
  96. Xu Y, Wang X, Huang Y, Ma Y, Jin X, Wang H, Wang J (2018), Inhibition of lysyl oxidase expression by dextran sulfate affects invasion and migration of gastric cancer cells. Int J Mol Med 42, 5, 2737–2749. [PubMed] [Google Scholar]
  97. Hollande C, Boussier J, Ziai J, Nozawa T, Bondet V, Phung W, Lu B, Duffy D, Paradis V, Mallet V, Eberl G, Sandoval W, Schartner JM, Pol S, Barreira da Silva R, Albert ML (2019), Inhibition of the dipeptidyl peptidase DPP4 (CD26) reveals IL-33-dependent eosinophil-mediated control of tumor growth. Nat Immunol 20, 3, 257–264. [CrossRef] [PubMed] [Google Scholar]
  98. Zur Hausen H, Bund T, de Villiers EM (2019), Specific nutritional infections early in life as risk factors for human colon and breast cancers several decades later. Int J Cancer 144, 7, 1574–1583. [CrossRef] [PubMed] [Google Scholar]
  99. Tez M (2018), Pragmatic cancer approach – Time to change? 4open 1, 2. [CrossRef] [EDP Sciences] [Google Scholar]
  100. Brücher BLDM, Li Y, Schnabel P, Daumer M, Wallace TJ, Kube R, Zilberstein B, Steele S, Voskuil JL, Jamall IS (2016), Genomics, microRNA, epigenetics, and proteomics for future diagnosis, treatment and monitoring response in upper GI cancers. Clin Transl Med 5, 1, 1–16. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.