Issue
4open
Volume 2, 2019
Difference & Differential Equations and Applications
Article Number 5
Number of page(s) 15
Section Mathematics - Applied Mathematics
DOI https://doi.org/10.1051/fopen/2019003
Published online 25 April 2019
  1. Zhang L, Wang Y (2010), A note on periodic solutions of a forced Liénard-type equation. Anziam J 51, 350–368. [CrossRef] [Google Scholar]
  2. Zhang M (1996), Periodic solutions of Liénard equations with singular forces of repulsive type. J Math Anal Appl 203, 254–269. [CrossRef] [Google Scholar]
  3. Liénard A (1928), Etude des oscillations entretenues. Revue générale de l’électricité 23, 901–912, 946–954. [Google Scholar]
  4. Tiantian M, Wang Z (2011), Periodic solutions of some second-order differential equations with desultorily sublinear nonlinearities. Nonlinear Anal 74, 41–49. [CrossRef] [Google Scholar]
  5. Wang Y, Dai X (2009), New results on existence of asymptotically stable periodic solutions of a forced Liénard type equation. Results Math 54, 359–375. [CrossRef] [Google Scholar]
  6. Zaihong W (2001), Periodic solutions of Liénard differential equations with subquadratic potential conditions. J Math Anal Appl 256, 127–141. [CrossRef] [Google Scholar]
  7. Wang Z (2002), Existence and multiplicity of periodic solutions of the second order Liénard equation with Lipschtzian condition. Nonlinear Anal 49, 1049–1064. [CrossRef] [Google Scholar]
  8. Zheng D, Zaihong W (2007), Periodic solutions of sublinear Liénard differential equations. J Math Anal Appl 330, 1478–1487. [CrossRef] [Google Scholar]
  9. Meng J (2009), Positive periodic solutions for Liénard type p-Laplacian equations. Electron J. Differ. Equ. Paper No. 39, 1–7. [Google Scholar]
  10. Qiu J (2012), Positive solutions for a nonlinear periodic boundary-value problem with a parameter. Electron J Differ Equ 133, 1–10. [Google Scholar]
  11. Xin Y, Han X, Cheng Z (2014), Existence and uniqueness of positive periodic solution for Ф-Laplacian Liénard equation. Boundary Value Problems 244, 1–11. [Google Scholar]
  12. Ding T (1991), On periodic solutions of sublinear duffing equations. J Math Anal Appl 158, 316–332. [CrossRef] [Google Scholar]
  13. Zamora M (2017), A note on the periodic solutions of a Mathieu-Duffing type equations. Math Nachr 290, 7, 1113–1118. [CrossRef] [Google Scholar]
  14. Faraday M (1831), On a peculiar class of acoustical figures, and on certain forms assumed by a group of particles upon vibrating elastic surfaces. Philos Trans R Soc Lond Ser B 121, 299–318. [CrossRef] [Google Scholar]
  15. Natsiavas S, Theodossiades S, Goudas I (2000), Dynamic analysis of piecewise linear oscillators with time periodic coefficients. Int J Non-Linear Mech 35, 53–68. [CrossRef] [Google Scholar]
  16. Raman A, Bajaj AK, Davies P (1996), On the slow transition across instabilities in non-linear dissipative systems. J Sound Vib 192, 4, 835–865. [CrossRef] [Google Scholar]
  17. Ye ZM (1997), The non-linear vibration and dynamic instability of thin shallow shells. J Sound Vib 202, 3, 303–311. [CrossRef] [Google Scholar]
  18. Feng W (2002), Existence for a nonlinear elliptic system at resonance. Dyn Contin Discrete Impuls Syst Ser A Math Anal 9, 69–78. [CrossRef] [Google Scholar]
  19. Mawhin J (1993), Topological methods for ordinary differential equations. Lect Notes Math 1537, 74–142. [CrossRef] [Google Scholar]
  20. Feng W, Webb JRL (1997), Solvability of m-point boundary value problems with nonlinear growth. J Math Anal Appl 212, 2, 467–480. [CrossRef] [Google Scholar]
  21. Feng W (2000), Decomposition conditions for two-point boundary value problems. Int J Math Math Sci 24, 6, 389–401. [CrossRef] [Google Scholar]
  22. Lu S, Wang Y, Guo Y (2017), Existence of periodic solutions of a Liénard equation with a singularity of repulsive type. Bound Value Probl 95, 1–10. [Google Scholar]