Issue
4open
Volume 2, 2019
Difference & Differential Equations and Applications
Article Number 4
Number of page(s) 9
Section Mathematics - Applied Mathematics
DOI https://doi.org/10.1051/fopen/2019004
Published online 25 April 2019
  1. Ricci PE, Natalini P, Bretti G (2017), Sheffer and Brenke polynomials associated with generalized Bell numbers. Jnanabha, Vijnana Parishad of India 47, 2, 337–352. [Google Scholar]
  2. Bretti G, Natalini P, Ricci PE (2019), A new set of Sheffer-Bell polynomials and logarithmic numbers. Georgian Math J, https://doi.org/10.1515/gmj-2019-2007. [Google Scholar]
  3. Sheffer IM (1939), Some properties of polynomials sets of zero type. Duke Math J 5, 590–622. [CrossRef] [Google Scholar]
  4. Brenke WC (1945), On generating functions of polynomial systems. Am Math Mon 52, 297–301. [CrossRef] [Google Scholar]
  5. Natalini P, Ricci PE (2004), An extension of the Bell polynomials. Comput Math Appl 47, 719–725. [CrossRef] [Google Scholar]
  6. Bernardini A, Natalini P, Ricci PE (2005), Multi-dimensional Bell polynomials of higher order. Comput Math Appl 50, 1697–1708. [CrossRef] [Google Scholar]
  7. Natalini P, Ricci PE (2016), Remarks on Bell and higher order Bell polynomials and numbers. Cogent Math 3, 1–15. [CrossRef] [Google Scholar]
  8. Natalini P, Ricci PE (2017), Higher order Bell polynomials and the relevant integer sequences. Appl Anal Discrete Math 11, 327–339. [CrossRef] [Google Scholar]
  9. Natalini P, Ricci PE (2018), Bell-Sheffer polynomial sets. Axioms 7, 71. https://doi.org/10.3390/axioms7040071. [CrossRef] [Google Scholar]
  10. Sloane NJA (2016), On-line encyclopedia of integer sequences, Published electronically at http://oeis.org. [Google Scholar]
  11. Bell ET (1934), Exponential polynomials. Ann Math 35, 258–277. [CrossRef] [Google Scholar]
  12. Bell ET (1938), The iterated exponential integers. Ann Math 39, 539–557. [CrossRef] [Google Scholar]
  13. Feng Q, Da-Wei N, Dongkyu L, Bai-Ni G (2018), Some properties and an application of multivariate exponential polynomials, HAL archives, available online at https://hal.archives-ouvertes.fr/hal-01745173. [Google Scholar]
  14. Feng Q (2018), Integral representations for multivariate logarithmic potentials. J Comput Appl Math 336, 54–62. [CrossRef] [Google Scholar]
  15. Feng Q (2018), On multivariate logarithmic polynomials and their properties. Indag Math 29, 5, 1179–1192. [CrossRef] [Google Scholar]
  16. Srivastava HM, Manocha HL (1984), A treatise on generating functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto. [Google Scholar]
  17. Huff WN (1947), The type of the polynomials generated by f(x t)ϕ(t). Duke Math J 14, 4, 1091–1104. [CrossRef] [Google Scholar]
  18. Roman SM (1984), The umbral calculus, Academic Press, New York. [Google Scholar]
  19. Boas RP, Buck RC (1958), Polynomial expansions of analytic functions, Springer-Verlag, Berlin, Gottingen, Heidelberg, New York. [CrossRef] [Google Scholar]
  20. Bretti G, Natalini P, Ricci PE (2018), New sets of Euler-type polynomials. J Ana Num Theor 6, 2, 51–54. [CrossRef] [Google Scholar]
  21. Steffensen JF (1941), The poweroid, an extension of the mathematical notion of power. Acta Math 73, 333–366. [CrossRef] [Google Scholar]
  22. Dattoli G (2000), Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle, in: Cocolicchio D, Dattoli G, Srivastava HM (Eds.), Advanced Special Functions and Applications (Proceedings of the Melfi School on Advanced Topics in Mathematics and Physics; Melfi, 9–12 May, 1999), Aracne, Roma, pp. 147–164. [Google Scholar]
  23. Dattoli G, Ricci PE, Srivastava HM (Eds.) (2003), Advanced special functions and related topics in probability and in differential equations (Proceedings of the Melfi school on advanced topics in mathematics and Physics; Melfi, June 24–29, 2001). Appl Math Comput 141, 1, 1–230. [Google Scholar]
  24. Dattoli G, Germano B, Martinelli MR, Ricci PE (2009), Monomiality and partial differential equations. Math Comput Model 50, 1332–1337. [CrossRef] [Google Scholar]
  25. Ben Cheikh Y (2003), Some results on quasi-monomiality. Appl Math Comput 141, 63–76. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.