Open Access
Volume 3, 2020
Article Number 2
Number of page(s) 19
Section Mathematics - Applied Mathematics
Published online 27 April 2020
  1. Ricci PE (2018), Complex spirals and pseudo-Chebyshev polynomials of fractional degree. Symmetry 10, 671. [Google Scholar]
  2. Cesarano C, Ricci PE (2019), Orthogonality properties of the pseudo-Chebyshev functions (variations on a Chebyshev’s theme). Mathematics 7, 180. [CrossRef] [Google Scholar]
  3. Cesarano C, Pinelas S, Ricci PE (2019), The third and fourth kind pseudo-Chebyshev polynomials of half-integer degree. Symmetry 11, 274. [Google Scholar]
  4. Aghigh K, Masjed-Jamei M, Dehghan M (2008), A survey on third and fourth kind of Chebyshev polynomials and their applications. Appl Math Comput 199, 2–12. [Google Scholar]
  5. Heath TL (1897), The Works of Archimedes, Cambridge Univ. Press, Google Books. [Google Scholar]
  6. Archibald RC (1920), Notes on the logarithmic spiral, golden section and the Fibonacci series, in: J. Hambidge (Ed.), Dynamic symmetry, Yale Univ. Press, New Haven, pp. 16–18. [Google Scholar]
  7. Rivlin TJ (1974), The Chebyshev polynomials, J. Wiley and Sons, New York. [Google Scholar]
  8. Ricci PE (1974–1975), Alcune osservazioni sulle potenze delle matrici del secondo ordine e sui polinomi di Tchebycheff di seconda specie. Atti Accad Sci Torino 109, 405–410. [Google Scholar]
  9. Ricci PE (1976), Sulle potenze di una matrice. Rend Mat 9, 179–194. [Google Scholar]
  10. Ricci PE (1978), I polinomi di Tchebycheff in più variabili. Rend Mat 11, 295–327. [Google Scholar]
  11. Srivastava HM, Manocha HL (1984), A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), J. Wiley and Sons, New York, Chichester, Brisbane and Toronto. [Google Scholar]
  12. Gautschi W (1992), On mean convergence of extended Lagrange interpolation. J Comput Appl Math 43, 19–35. [Google Scholar]
  13. Doha EH, Abd-Elhameed WM, Alsuyuti M.M. (2015), On using third and fourth kinds Chebyshev polynomials for solving the integrated forms of high odd-order linear boundary value problems. J Egypt Math Soc 23, 397–405. [CrossRef] [Google Scholar]
  14. Mason JC (1993), Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms. J Comput Appl Math 49, 169–178. [Google Scholar]
  15. Mason JC, Handscomb DC (2003), Chebyshev Polynomials, Chapman and Hall, New York, NY, CRC, Boca Raton. [Google Scholar]
  16. Brandi P, Ricci PE (2019), Some properties of the pseudo-Chebyshev polynomials of half-integer degree. Tbilisi Math J 12, 111–121. [CrossRef] [Google Scholar]
  17. Ricci PE (1986), Una proprietà iterativa dei polinomi di Chebyshev di prima specie in più variabili. Rend Mat Appl 6, 555–563. [Google Scholar]
  18. Butzer P, Jongmans F (1999), P.L. Chebyshev (1821–1894). A guide to his life and work. J Approx Theory 96, 111–138. [Google Scholar]
  19. Kirchberger P (1903), Űber Tschebyscheffsche Annäherungsmethoden (Diss., Gött. 1902). Math. Ann. 57, 509–540. [Google Scholar]
  20. Borel E (1905), Leçons sur les fonctions de variables réelles et les développements en série de polynomes, Gauthier-Villars, Paris. [Google Scholar]
  21. Carleson L (1966), On convergence and growth of partial sums of Fourier series. Acta Math 116, 135–157. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.