Open Access
Review
Issue
4open
Volume 4, 2021
Article Number 2
Number of page(s) 13
Section Life Sciences - Medicine
DOI https://doi.org/10.1051/fopen/2021002
Published online 07 May 2021
  1. Margulis L (1996), Gaia is a tough bitch, Chapter 7, page 129–151, in: J. Brockman (Ed.), Third Culture: Beyond the Scientific Revolution, Simon and Schuster, Touchstone, Rockefeller Center, New York. ISBN: 0-684-80359-3.. [Google Scholar]
  2. Sagan L (1967), On the origin of mitosing cells. J Theor Biol 14, 3, 225–274. https://doi.org/10.1016/0022-5193(67)90079-3. [Google Scholar]
  3. Giles RE, Blanc H, Cann HM, Wallace DC (1980), Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 77, 11, 6715–6719. https://doi.org/10.1073/pnas.77.11.6715. [Google Scholar]
  4. Luo S, Valencia CA, Zhang J, Lee NC, Slone J, Gui B, Wang X, Li Z, Dell S, Brown J, Chen SM, Chien YH, Hwu WL, Fan PC, Wong LJ, Atwal PS, Huang T (2018), Biparental inheritance of mitochondrial DNA in humans. Proc Natl Acad Sci USA 115, 51, 13039–13044. https://doi.org/10.1073/pnas.1810946115. [Google Scholar]
  5. Rius R, Cowley MJ, Riley L, Puttick C, Thorburn DR, Christodoulou J (2019), Biparental inheritance of mitochondrial DNA in humans is not a common phenomenon. Genet Med 12, 2823–2826. https://doi.org/10.1038/s41436-019-0568-0. [Google Scholar]
  6. Lutz-Bonengel S, Parson W (2019), No further evidence for paternal leakage of mitochondrial DNA in humans yet. Proc Natl Acad Sci USA 116, 1821–1822. https://doi.org/10.1073/pnas.1820533116. [Google Scholar]
  7. Luft R, Ikkos D, Palmieri G, Ernster L, Afzelius B (1962), A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest 41, 1776–1804. https://doi.org/10.1172/JCI104637. [Google Scholar]
  8. Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ 2nd, Nikoskelainen EK (1988), Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242, 1427–1430. https://doi.org/10.1126/science.3201231. [Google Scholar]
  9. Edeas M, Weissig V (2013), Targeting mitochondria: strategies, innovations and challenges: The future of medicine will come through mitochondria. Mitochondrion 13, 389–390. https://doi.org/10.1016/j.mito.2013.03.009. [Google Scholar]
  10. Tzagoloff A (1982), Mitochondria, Plenum Press, New York. ISBN 0-306-40799-X. [Google Scholar]
  11. Altmann R (1890), Die Elementarorganismen und ihre Beziehungen zu den Zellen, 1. Auflage, Von Veit & Comp Verlag, Leipzig. Deutsches Textarchiv. https://www.deutschestextarchiv.de/altmann_elementarorganismen_1890/9. Access: April 9, 2021 . [Google Scholar]
  12. Benda C (1898), Ueber die Spermatogenese der Vertebraten und höherer Evertebraten, II. Theil: Die Histiogenese der Spermien. Archiv Anatomie und Physiologie 73, 393–398. [Google Scholar]
  13. Chan DC (2006), Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22, 79–99. https://doi.org/10.1146/annurev.cellbio.22.010305.104638. [Google Scholar]
  14. Chen H, Chan DC (2005), Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14, 2, R283–R289. https://doi.org/10.1093/hmg/ddi270. [Google Scholar]
  15. Griffin EE, Graumann J, Chan DC (2005), The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria. J Cell Biol 170, 237–248. https://doi.org/10.1083/jcb.200503148. [Google Scholar]
  16. Palade GE (1952), The fine structure of mitochondria. Anat Rec 114, 427–451. https://doi.org/10.1002/ar.1091140304. [Google Scholar]
  17. Palade GE (1953), An electron microscope study of the mitochondrial structure. J Histochem Cytochem 1, 188–211. https://doi.org/10.1177/1.4.188. [Google Scholar]
  18. Calvo SE, Mootha VK (2010), The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet. 11, 25–44. https://doi.org/10.1146/annurev-genom-082509-141720. [Google Scholar]
  19. Koopman W (2019), Viscosity and macromolecular crowding affects size-dependent protein diffusion and conformation in the mitochondrial matrix, University of Cambridge, MRC Mitochondrial Biology Unit Seminars. http://talks.cam.ac.uk/talk/index/120409 (accessed March 15, 2021). [Google Scholar]
  20. Perkins GA, Renken CW, Song JY, Frey TG, Young SJ, Lamont S, Martone ME, Lindsey S, Ellisman MH (1997), Electron tomography of large, multicomponent biological structures. J Struct Biol 120, 219–227. https://doi.org/10.1006/jsbi.1997.3920. [Google Scholar]
  21. Perkins GA, Song JY, Tarsa L, Deerinck TJ, Ellisman MH, Frey TG (1998), Electron tomography of mitochondria from brown adipocytes reveals crista junctions. J Bioenerg Biomembr 30, 5, 431–442. https://doi.org/10.1023/a:1020586012561. [Google Scholar]
  22. Kondadi AK, Anand R, Reichert AS (2019), Functional interplay between cristae biogenesis, mitochondrial dynamics and mitochondrial DNA integrity. Int J Mol Sci 20, 17, 4311. https://doi.org/10.3390/ijms20174311. [Google Scholar]
  23. Hackenbrock CR (1966), Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol 30, 2, 269–297. https://doi.org/10.1083/jcb.30.2.269. [Google Scholar]
  24. Hackenbrock CR (1968), Chemical and physical fixation of isolated mitochondria in low-energy and high-energy states. Proc Natl Acad Sci USA 61, 2, 598–605. https://doi.org/10.1073/pnas.61.2.598. [Google Scholar]
  25. Hackenbrock CR (1968), Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria. J Cell Biol 37, 2, 345–369. https://doi.org/10.1083/jcb.37.2.345. [Google Scholar]
  26. Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA, Korsmeyer SJ (2002), A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2, 1, 55–67. https://doi.org/10.1016/s1534-5807(01)00116-2. [Google Scholar]
  27. Otto AM (2016), Warburg effect(s)-a biographical sketch of Otto Warburg and his impacts on tumor metabolism. Cancer Metab 4, 5. https://doi.org/10.1186/s40170-016-0145-9. [Google Scholar]
  28. Mac Munn CA (1886), Researches on Myohaematin and the Histohaematins. Philos Trans R Soc Lond 177, 267–298. [Google Scholar]
  29. Keilin D (1925), On cytochrome, a respiratory pigment, common to animals, yeast, and higher plants. Proc. R. Soc. Lond. 98, 312–339. [Google Scholar]
  30. Krebs HA, Johnson WA (1937), Metabolism of ketonic acids in animal tissues. Biochem J 31, 4, 645–660. https://doi.org/10.1042/bj0310645. [Google Scholar]
  31. Krebs HA (1937), Dismutation of pyruvic acid in Gonococcus and Staphylococcus. Biochem J 31, 4, 661–671. https://doi.org/10.1042/bj0310661. [Google Scholar]
  32. Krebs HA (1937), The intermediate metabolism of carbohydrates. Lancet 2, 736–738. [Google Scholar]
  33. Krebs HA (1937), The role of fumarate in the respiration of Bacterium coli commune. Biochem J 31, 11, 2095–2124. https://doi.org/10.1042/bj0312095. [Google Scholar]
  34. Krebs HA, Johnson WA (1937), Acetopyruvic acid (ay-diketovaleric acid) as an intermediate metabolite in animal tissues. Biochem J 31, 5, 772–779. https://doi.org/10.1042/bj0310772. [Google Scholar]
  35. Roskoski R (2018), Adenosine Triphosphate (ATP). AccessScience, McGraw-Hill. https://doi.org/10.1036/1097-8542.010700. [Google Scholar]
  36. Kalckar H (1937), The significance of phosphorylation in kidney tissue. Skand Arch Physiol 77, 46–47. [Google Scholar]
  37. Belitser VA, Tsibakova ET (1939), The mechanism of phosphorylation associated with respiration. Biokhimiia 4, 516–535. [Google Scholar]
  38. Lipmann F (1939), Role of phosphate in pyruvic acid dehydrogenation. Nature 144, 381–382. [Google Scholar]
  39. Lipmann F (1940), A phosphorylated oxidation product of pyruvic acid. J Biol Chem 134, 463–464. [Google Scholar]
  40. Lipmann F (1941), Metabolic generation and utilization of phosphate bond energy. Adv Enzymol Rel S Bi 1, 99–162. [Google Scholar]
  41. Slater EC, Holton FA (1953), Oxidative phoshorylation coupled with the oxidation of alpha-ketoglutarate by heart-muscle sarcosomes. 1. Kinetics of the oxidative phosphorylation reaction and adenine nucleotide specificity. Biochem Jl 55, 3, 530–544. https://doi.org/10.1042/bj0550530. [Google Scholar]
  42. Slater EC (1953), Mechanism of phosphorylation in the respiratory chain. Nature 172, 4387, 975–978. https://doi.org/10.1038/172975a0. [Google Scholar]
  43. Siekevitz P (1957), Powerhouse of the cell. Scientific American 197, 131–144. [Google Scholar]
  44. Williams RJ (1961), Possible Functions of chains of catalysts. J Theor Biol 11–17, 1961. https://doi.org/10.1016/0022-5193(61)90023-6. [Google Scholar]
  45. Mitchell P (1961), Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148. https://doi.org/10.1038/191144a0. [Google Scholar]
  46. Mitchell P (1961), Conduction of protons through membranes of mitochondria and bacteria by uncouplers of oxidative phosphorylation. Biochem J 81, 1, P24. ISSN: 0264–6021. [Google Scholar]
  47. Mitchell P (1961), Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biochem J 79, 3, P23. ISSN:0264–6021. [Google Scholar]
  48. Hatefi Y, Haavik AG, Griffiths DE (1962), Studies on electron transfer system. 41. Reduced coenzyme Q (Qh2)-Cytochrome C reductase. J Biol Chem 237, 1681–1685. PMID: 13905328. [Google Scholar]
  49. Fowler LR, Richardson SH, Hatefi Y (1962), A rapid method for preparation of highly purified cytochrome oxidase. Bioch Biophys Acta 64, 170–173. https://doi.org/10.1016/0006-3002(62)90770-9. [Google Scholar]
  50. Hatefi Y, Haavik AG, Fowler LR, Griffiths DE (1962), Studies on electron transfer system. Reconstitution of electron transfer system. J Biol Chem 237, 2661–2669PMID: 13905326. [Google Scholar]
  51. Hatefi Y, Haavik AG, Griffiths DE (1962), Studies on electron transfer system. Preparation and properties of mitochondrial Dpnh-Coenzyme Q reductase. J Biol Chem 237, 1676–1680. PMID: 13905327. [Google Scholar]
  52. Hochli M, Hackenbrock CR (1976), Fluidity in mitochondrial-membranes - thermotropic lateral translational motion of intramembrane particles. Proc Natl Acad Sci USA 73, 5, 1636–1640. https://doi.org/10.1073/pnas.73.5.1636. [Google Scholar]
  53. Hackenbrock CR, Höchli M, Chau RM (1976), Calorimetric and freeze fracture analysis of lipid phase-transitions and lateral translational motion of intramembrane particles in mitochondrial membranes. Biochim Biophys Acta 455, 2, 466–484. https://doi.org/10.1016/0005-2736(76)90318-7. [Google Scholar]
  54. Schagger H, Pfeiffer K (2000), Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO Jl 19, 1777–1783. https://doi.org/10.1093/emboj/19.8.1777. [Google Scholar]
  55. Dudkina NV, Kouril R, Peters K, Braun HP, Boekema EJ (2010), Structure and function of mitochondrial supercomplexes. Biochim Biophys Acta 1797, 664–670. https://doi.org/10.1016/j.bbabio.2009.12.013. [Google Scholar]
  56. Gu J, Wu M, Guo R, Yan K, Lei J, Gao N, Yang M (2016), The architecture of the mammalian respirasome. Nature 537, 639–643. https://doi.org/10.1038/nature19359. [Google Scholar]
  57. Lenaz G, Genova ML (2010), Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 12, 961–1008. https://doi.org/10.1089/ars.2009.2704. [Google Scholar]
  58. Guo R, Gu J, Wu M, Yang M (2016), Amazing structure of respirasome: unveiling the secrets of cell respiration. Protein Cell 7, 854–865. https://doi.org/10.1007/s13238-016-0329-7. [Google Scholar]
  59. Luft R (1994), The development of mitochondrial medicine. Proc Natl Acad Sci USA 91, 19, 8731–8738. https://doi.org/10.1073/pnas.91.19.8731. [Google Scholar]
  60. Holt IJ, Harding AE, Morgan-Hughes JA (1988), Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331, 717–719. https://doi.org/10.1038/331717a0. [Google Scholar]
  61. Nass MM, Nass S (1963), Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions. J Cell Biol 19, 593–611. https://doi.org/10.1083/jcb.19.3.593. [Google Scholar]
  62. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981), Sequence and organization of the human mitochondrial genome. Nature 290, 457–465. https://doi.org/10.1038/290457a0. [Google Scholar]
  63. Elmore S (2007), Apoptosis: a review of programmed cell death. Toxicol Pathol 35, 4, 495–516. https://doi.org/10.1080/01926230701320337. [Google Scholar]
  64. Brown GC, Nicholls DG, Cooper CE (Eds.) (1999), Mitochondria and cell death, Princeton University Press. ISBN: 0-691-05026-0. [Google Scholar]
  65. Seibel P, Trappe J, Villani G, Klopstock T, Papa S, Reichmann H (1995), Transfection of mitochondria: strategy towards a gene therapy of mitochondrial DNA diseases. Nucleic Acids Res 23, 10–17. https://doi.org/10.1093/nar/23.1.10. [Google Scholar]
  66. Weissig V, Lasch J, Erdos G, Meyer HW, Rowe TC, Hughes J (1998), DQAsomes: a novel potential drug and gene delivery system made from Dequalinium. Pharm Res 15, 334–337. https://doi.org/10.1023/a:1011991307631. [Google Scholar]
  67. Weissig V (2011), From serendipity to mitochondria-targeted nanocarriers. Pharm Res 28, 11, 2657–2668. https://doi.org/10.1007/s11095-011-0556-9. [Google Scholar]
  68. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987), Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84, 21, 7413–7417. https://doi.org/10.1073/pnas.84.21.7413. [Google Scholar]
  69. Weissig V, Torchilin VP (2001), Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Adv Drug Deliv Rev 49, 1–2, 127–149. https://doi.org/10.1016/s0169-409x(01)00131-4. [Google Scholar]
  70. Weissig V, Torchilin VP (2001), Towards mitochondrial gene therapy: DQAsomes as a strategy. J Drug Targeting 9, 1, 1–13. https://doi.org/10.3109/10611860108995628. [Google Scholar]
  71. Lasch J, Meye A, Taubert H, Koelsch R, Mansa-ard J, Weissig V (1999), Dequalinium vesicles form stable complexes with plasmid DNA which are protected from DNase attack. Biol Chem 380, 6, 647–652. https://doi.org/10.1515/BC.1999.080. [Google Scholar]
  72. Weissig V, D’Souza GG, Torchilin VP (2001), DQAsome/DNA complexes release DNA upon contact with isolated mouse liver mitochondria. J Control Release 75, 3, 401–408. https://doi.org/10.1016/s0168-3659(01)00392-3. [Google Scholar]
  73. D’Souza GG, Rammohan R, Cheng SM, Torchilin VP, Weissig V (2003), DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release 92, 1–2, 189–197. https://doi.org/10.1016/s0168-3659(03)00297-9. [Google Scholar]
  74. Weissig V, Lizano C, Torchilin VP (2000), Selective DNA release from DQAsome/DNA complexes at mitochondria-like membranes. Drug Delivery 7, 1, 1–5. https://doi.org/10.1080/107175400266722. [Google Scholar]
  75. D’Souza GG, Boddapati SV, Weissig V (2005), Mitochondrial leader sequence–plasmid DNA conjugates delivered into mammalian cells by DQAsomes co-localize with mitochondria. Mitochondrion 5, 5, 352–358. https://doi.org/10.1016/j.mito.2005.07.001. [Google Scholar]
  76. Lyrawati D, Trounson A, Cram D (2011), Expression of GFP in the mitochondrial compartment using DQAsome-mediated delivery of an artificial mini-mitochondrial genome. Pharm Res 28, 11, 2848–2862. https://doi.org/10.1007/s11095-011-0544-0. [Google Scholar]
  77. Bae Y, Jung MK, Song SJ, Green ES, Lee S, Park HS, Jeong SH, Han J, Mun JY, Ko KS, Choi JS (2017), Functional nanosome for enhanced mitochondria-targeted gene delivery and expression. Mitochondrion 37, 27–40. https://doi.org/10.1016/j.mito.2017.06.005. [Google Scholar]
  78. Weissig V, Lozoya M, Yu N, D’Souza GGM (2021), DQAsomes as the prototype of mitochondria-targeted pharmaceutical nanocarriers: An Update. Methods Mol Biol, in press. [Google Scholar]
  79. Yamada Y, Akita H, Kamiya H, Kogure K, Yamamoto T, Shinohara Y, Yamashita K, Kobayashi H, Kikuchi H, Harashima H (2008), MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim Biophysi Acta 1778, 2, 423–432. https://doi.org/10.1016/j.bbamem.2007.11.002. [Google Scholar]
  80. Yamada Y, Furukawa R, Yasuzaki Y, Harashima H (2011), Dual function MITO-Porter, a nano carrier integrating both efficient cytoplasmic delivery and mitochondrial macromolecule delivery. Mol Ther 19, 8, 1449–1456. https://doi.org/10.1038/mt.2011.99. [Google Scholar]
  81. Kawamura E, Maruyama M, Abe J, Sudo A, Takeda A, Takada S, Yokota T, Kinugawa S, Harashima H, Yamada Y (2020), Validation of gene therapy for mutant mitochondria by delivering mitochondrial RNA using a MITO-Porter. Mol Ther Nucleic Acids 20, 687–698. https://doi.org/10.1016/j.omtn.2020.04.004. [Google Scholar]
  82. Schatz G (1998), Protein transport. The doors to organelles. Nature 395, 6701, 439–440. https://doi.org/10.1038/26620. [Google Scholar]
  83. Koehler CM, Jarosch E, Tokatlidis K, Schmid K, Schweyen RJ, Schatz G (1998), Import of mitochondrial carriers mediated by essential proteins of the intermembrane space. Science 279, 5349, 369–373. https://doi.org/10.1126/science.279.5349.369. [Google Scholar]
  84. Kaldi K, Neupert W (1998), Protein translocation into mitochondria. BioFactors 8, 3–4, 221–224. https://doi.org/10.1002/biof.5520080308. [Google Scholar]
  85. Entelis NS, Kolesnikova OA, Martin RP, Tarassov IA (2001), RNA delivery into mitochondria. Adv Drug Deliv Rev 49, 1–2, 199–215. https://doi.org/10.1016/s0169-409x(01)00135-1. [Google Scholar]
  86. Schneider A (1994), Import of RNA into mitochondria. Trends Cell Biol 4, 8, 282–286. https://doi.org/10.1016/0962-8924(94)90218-6. [Google Scholar]
  87. Entelis NS, Krasheninnikov IA, Martin RP, Tarassov IA (1996), Mitochondrial import of a yeast cytoplasmic tRNA (Lys): possible roles of aminoacylation and modified nucleosides in subcellular partitioning. FEBS Lett 384, 1, 38–42. https://doi.org/10.1016/0014-5793(96)00259-1. [Google Scholar]
  88. Tarassov IA, Martin RP (1996), Mechanisms of tRNA import into yeast mitochondria: an overview. Biochimie 78, 6, 502–510. https://doi.org/10.1016/0300-9084(96)84756-0. [Google Scholar]
  89. Jeandard D, Smirnova A, Tarassov IA, Barrey E, Smirnov A, Entelis N (2019), Import of non-coding rnas into human mitochondria: A critical review and emerging approaches. Cells 8, 3, 286. https://doi.org/10.3390/cells8030286. [Google Scholar]
  90. Loutre R, Heckel AM, Smirnova A, Entelis N, Tarassov I (2018), Can mitochondrial DNA be CRISPRized: Pro and contra. IUBMB Life 70, 12, 1233–1239. https://doi.org/10.1002/iub.1919. [Google Scholar]
  91. Taylor RW, Chinnery PF, Turnbull DM, Lightowlers RN (1997), Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nat Genet 15, 2, 212–215. https://doi.org/10.1038/ng0297-212. [Google Scholar]
  92. Russell OM, Gorman GS, Lightowlers RN, Turnbull DM (2020), Mitochondrial diseases: hope for the future. Cell 181, 1, 168–188. https://doi.org/10.1016/j.cell.2020.02.051. [Google Scholar]
  93. Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A (2008), Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 36, 12, 3926–3938. https://doi.org/10.1093/nar/gkn313. [Google Scholar]
  94. Bacman SR, Kauppila JHK, Pereira CV, Nissanka N, Miranda M, Pinto M, Williams SL, Larsson NG, Stewart JB, Moraes CT (2018), Author correction: MitoTALEN reduces mutant mtDNA load and restores tRNA(Ala) levels in a mouse model of heteroplasmic mtDNA mutation. Nat Med 24, 12, 1940. https://doi.org/10.1038/s41591-018-0234-0. [Google Scholar]
  95. Bacman SR, Kauppila JHK, Pereira CV, Nissanka N, Miranda M, Pinto M, Williams SL, Larsson NG, Stewart JB, Moraes CT (2018), MitoTALEN reduces mutant mtDNA load and restores tRNA(Ala) levels in a mouse model of heteroplasmic mtDNA mutation. Nat Med 24, 11, 1696–1700. https://doi.org/10.1038/s41591-018-0166-8. [Google Scholar]
  96. Law RH, Farrell LB, Nero D, Devenish RJ, Nagley P (1988), Studies on the import into mitochondria of yeast ATP Synthase subunit-8 and subunit-9 encoded by artificial nuclear genes. FEBS Lett 236, 2, 501–505. https://doi.org/10.1016/0014-5793(88)80086-3. [Google Scholar]
  97. Farrell LB, Gearing DP, Nagley P (1988), Reprogrammed expression of subunit-9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae – Expression invitro from a chemically synthesized gene and import into isolated mitochondria. Eur J Biochem 173, 1, 131–137. https://doi.org/10.1111/j.1432-1033.1988.tb13976.x. [Google Scholar]
  98. de Grey AD (2000), Mitochondrial gene therapy: an arena for the biomedical use of inteins. Trends Biotechnol 18, 9, 394–399. https://doi.org/10.1016/s0167-7799(00)01476-1. [Google Scholar]
  99. Manfredi G, Fu J, Ojaimi J, Sadlock JE, Kwong JQ, Guy J, Schon EA (2002), Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet 30, 4, 394–399. https://doi.org/10.1038/ng851. [Google Scholar]
  100. Guy J, Qi X, Pallotti F, Schon EA, Manfredi G, Carelli V, Martinuzzi A, Hauswirth WW, Lewin AS (2002), Rescue of a mitochondrial deficiency causing Leber hereditary optic neuropathy. Ann Neurol 52, 5, 534–542. https://doi.org/10.1002/ana.10354. [Google Scholar]
  101. Weissig V (2020), Drug development for the therapy of mitochondrial diseases. Trends Mol Med 26, 1, 40–57. https://doi.org/10.1016/j.molmed.2019.09.002. [Google Scholar]
  102. Guy J, Feuer WJ, Davis JL, Porciatti V, Gonzalez PJ, Koilkonda RD, Yuan H, Hauswirth WW, Lam BL (2017), Gene therapy for Leber Hereditary Optic Neuropathy. Ophthalmology 124, 11, 1621–1634. https://doi.org/10.1016/j.ophtha.2017.05.016. [Google Scholar]
  103. Guy J, Koilkonda RD, Feuer WJ, Davis JL, Porciatti V, Gonzalez P, Yuan H, Lam BL (2017), Gene therapy for LHON suppresses neurodegeneration. Investigative Ophthalmology Visual Science (IVOS) 58, 4492. [Google Scholar]
  104. Lightowlers RN, Chrzanowska-Lightowlers ZM, Russell OM (2020), Mitochondrial transplantation-a possible therapeutic for mitochondrial dysfunction? Mitochondrial transfer is a potential cure for many diseases but proof of efficacy and safety is still lacking. EMBO Rep 21, 9, e50964. https://doi.org/10.15252/embr.202050964. [Google Scholar]
  105. Bertero E, Maack C, O’Rourke B (2018), Mitochondrial transplantation in humans: “magical” cure or cause for concern? J Clin Invest 128, 12, 5191–5194. https://doi.org/10.1172/JCI124944. [Google Scholar]
  106. Tressoldi PE (2011), Extraordinary claims require extraordinary evidence: the case of non-local perception, a classical and bayesian review of evidences. Front Psychol 2, 117. https://doi.org/10.3389/fpsyg.2011.00117. [Google Scholar]
  107. Clark MA, Shay JW (1982), Mitochondrial transformation of mammalian cells. Nature 295, 5850, 605–607. https://doi.org/10.1038/295605a0. [Google Scholar]
  108. Ber R, Stauver MG, Shay JW (1984), Use of isolated mitochondria to transfer chloramphenicol resistance in hamster cells. Isr J Med Sci 20, 3, 244–248. PMID: 6724871. [Google Scholar]
  109. Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006), Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA 103, 5, 1283–1288. https://doi.org/10.1073/pnas.0510511103. [Google Scholar]
  110. Csordas A (2006), Mitochondrial transfer between eukaryotic animal cells and its physiologic role. Rejuvenation Res 9, 4, 450–454. https://doi.org/10.1089/rej.2006.9.450. [Google Scholar]
  111. Katrangi E, D’Souza GGM, Boddapati SV, Kulawiec M, Singh KK, Bigger B, Weissig V (2007), Xenogenic transfer of isolated murine mitochondria into human rho0 cells can improve respiratory function. Rejuvenation Res 10, 4, 561–570. https://doi.org/10.1089/rej.2007.0575. [Google Scholar]
  112. McCully JD, Cowan DB, Pacak CA, Toumpoulis IK, Dayalan H, Levitsky S (2009), Injection of isolated mitochondria during early reperfusion for cardioprotection. Am J Physiol Heart Circ Physiol 296, 1, H94–H105. https://doi.org/10.1152/ajpheart.00567.2008. [Google Scholar]
  113. Guariento A, Doulamis IP, Duignan T, Kido T, Regan WL, Saeed MY, Hoganson DM, Emani SM, Fynn-Thompson F, Matte GS, Del Nido PJ, McCully JD (2020), Mitochondrial transplantation for myocardial protection in ex-situ-perfused hearts donated after circulatory death. J Heart Lung Transplant S1053–2498, 20, 31625–31629. https://doi.org/10.1016/j.healun.2020.06.023. [Google Scholar]
  114. Doulamis IP, Guariento A, Duignan T, Kido T, Orfany A, Saeed MY, Weixler VH, Blitzer D, Shin B, Snay ER, Inkster JA, Packard AB, Zurakowski D, Rousselle T, Bajwa A, Parikh SM, Stillman IE, Del Nido PJ, McCully JD (2020), Mitochondrial transplantation by intra-arterial injection for acute kidney injury. Am J Physiol Renal Physiol 3193, F403–F413. https://doi.org/10.1152/ajprenal.00255.2020. [Google Scholar]
  115. Doulamis IP, Guariento A, Duignan T, Orfany A, Kido T, Zurakowski D, Del Nido PJ, McCully JD (2020), Mitochondrial transplantation for myocardial protection in diabetic hearts. Eur J Cardiothorac Surg 57, 5, 836–845. https://doi.org/10.1093/ejcts/ezz326. [Google Scholar]
  116. Moskowitzova K, Orfany A, Liu K, Ramirez-Barbieri G, Thedsanamoorthy JK, Yao R, Guariento A, Doulamis IP, Blitzer D, Shin B, Snay ER, Inkster JHA, Iken K, Packard AB, Cowan DB, Visner GA, Del Nido PJ, McCully JD (2020), Mitochondrial transplantation enhances murine lung viability and recovery after ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol 318, 1, L78–L88. https://doi.org/10.1152/ajplung.00221.2019. [Google Scholar]
  117. Orfany A, Arriola CG, Doulamis IP, Guariento A, Ramirez-Barbieri G, Moskowitzova K, Shin B, Blitzer D, Rogers C, Del Nido PJ, McCully JD (2020), Mitochondrial transplantation ameliorates acute limb ischemia. J Vasc Surg 71, 3, 1014–1026. https://doi.org/10.1016/j.jvs.2019.03.079. [Google Scholar]
  118. Emani SM, McCully JD (2018), Mitochondrial transplantation: applications for pediatric patients with congenital heart disease. Transl Pediatr 7, 2, 169–175. https://doi.org/10.21037/tp.2018.02.02. [Google Scholar]
  119. Cowan DB, Yao R, Thedsanamoorthy JK, Zurakowski D, Del Nido PJ, McCully JD (2017), Transit and integration of extracellular mitochondria in human heart cells. Sci Rep 7, 1, 17450. https://doi.org/10.1038/s41598-017-17813-0. [Google Scholar]
  120. Emani SM, Piekarski BL, Harrild D, Del Nido PJ, McCully JD (2017), Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg 154, 1, 286–289. https://doi.org/10.1016/j.jtcvs.2017.02.018. [Google Scholar]
  121. Cowan DB, Yao R, Akurathi V, Snay ER, Thedsanamoorthy JK, Zurakowski D, Ericsson M, Friehs I, Wu Y, Levitsky S, Del Nido PJ, Packard AB, McCully JD (2016), Intracoronary delivery of mitochondria to the ischemic heart for cardioprotection. PloS One 11, 8, e0160889. https://doi.org/10.1371/journal.pone.0160889. [Google Scholar]
  122. Pacak CA, Preble JM, Kondo H, Seibel P, Levitsky S, Del Nido PJ, Cowan DB, McCully JD (2015), Actin-dependent mitochondrial internalization in cardiomyocytes: evidence for rescue of mitochondrial function. Biol Open 4, 5, 622–626. https://doi.org/10.1242/bio.201511478. [Google Scholar]
  123. Masuzawa A, Black KM, Pacak CA, Ericsson M, Barnett RJ, Drumm C, Seth P, Bloch DB, Levitsky S, Cowan DB, McCully JD (2013), Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 304, 7, H966–H982. https://doi.org/10.1152/ajpheart.00883.2012. [Google Scholar]
  124. Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, Ji X, Lo EH (2016), Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 7613, 551–555. https://doi.org/10.1038/nature18928. [Google Scholar]
  125. Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S, Bhattacharya J (2012), Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18, 5, 759–765. [Google Scholar]
  126. Kaza AK, Wamala I, Friehs I, Kuebler JD, Rathod RH, Berra I, Ericsson M, Yao R, Thedsanamoorthy JK, Zurakowski D, Levitsky S, Del Nido PJ, Cowan DB, McCully JD (2017), Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J Thorac Cardiovasc Surg 153, 4, 934–943. https://doi.org/10.1016/j.jtcvs.2016.10.077. [Google Scholar]
  127. Kristensen SG, Pors SE, Andersen CY (2017), Improving oocyte quality by transfer of autologous mitochondria from fully grown oocytes. Hum Reprod 32, 4, 725–732. https://doi.org/10.1093/humrep/dex043. [Google Scholar]
  128. Herbert M, Turnbull D (2018), Progress in mitochondrial replacement therapies. Nat Rev Mol Cell Biol 19, 2, 71–72. https://doi.org/10.1038/nrm.2018.3. [Google Scholar]
  129. Herbert M, Turnbull D (2015), Mitochondrial replacement to prevent the transmission of mitochondrial DNA disease. EMBO Rep 16, 5, 539–540. https://doi.org/10.15252/embr.201540354. [Google Scholar]
  130. Chinnery PF, Craven L, Mitalipov S, Stewart JB, Herbert M, Turnbull DM (2014), The challenges of mitochondrial replacement. PLoS Genet 10, 4, e1004315. https://doi.org/10.1371/journal.pgen.1004315. [Google Scholar]
  131. John A, Kubosumi A, Reddy PH (2020), Mitochondrial MicroRNAs in aging and neurodegenerative diseases. Cells 9, 6, 1345. https://doi.org/10.3390/cells9061345. [Google Scholar]
  132. Lee RC, Feinbaum RL, Ambros V (1993), The C-Elegans heterochronic gene Lin-4 encodes small RNAs with antisense complementarity to Lin-14. Cell 75, 5, 843–854. https://doi.org/10.1016/0092-8674(93)90529-y. [Google Scholar]
  133. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000), Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 6808, 86–89. https://doi.org/10.1038/35040556. [Google Scholar]
  134. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000), The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 6772, 901–906. https://doi.org/10.1038/35002607. [Google Scholar]
  135. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001), Identification of novel genes coding for small expressed RNAs. Science 294, 5543, 853–858. https://doi.org/10.1126/science.1064921. [Google Scholar]
  136. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001), An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 5543, 858–862. https://doi.org/10.1126/science.1065062. [Google Scholar]
  137. Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, Newcomb JM, Sempere LF, Flatmark K, Hovig E, Peterson KJ (2015), A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu Rev Genet 49, 213–242. https://doi.org/10.1146/annurev-genet-120213-092023. [Google Scholar]
  138. Barrey E, Saint-Auret G, Bonnamy B, Damas D, Boyer O, Gidrol X (2011), Pre-microRNA and mature microRNA in human mitochondria. PloS One 6, 5, e20220. https://doi.org/10.1371/journal.pone.0020220. [Google Scholar]
  139. Bandiera S, Rüberg S, Girard M, Cagnard N, Hanein S, Chrétien D, Munnich A, Lyonnet S, Henrion-Caude A (2011), Nuclear outsourcing of RNA interference vomponents to human mitochondria. PloS One 6, 6, e20746. https://doi.org/10.1371/journal.pone.0020746. [Google Scholar]
  140. Das S, Ferlito M, Kent OA, Fox-Talbot K, Wang R, Liu D, Raghavachari N, Yang Y, Wheelan SJ, Murphy E, Steenbergen C (2012), Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res 110, 12, 1596–1603. https://doi.org/10.1161/CIRCRESAHA.112.267732. [Google Scholar]
  141. Kren BT, Wong PYP, Sarver A, Zhang X, Zeng Y, Steer CJ (2009), microRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol 6, 1, 65–72. https://doi.org/10.4161/rna.6.1.7534. [Google Scholar]
  142. Sripada L, Tomar D, Singh R (2012), Mitochondria: One of the destinations of miRNAs. Mitochondrion 12, 6, 593–599. https://doi.org/10.1016/j.mito.2012.10.009. [Google Scholar]
  143. Sripada L, Tomar D, Prajapati P, Singh R, Singh AK, Singh R (2012), Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: Detailed analysis of mitochondrial associated miRNA. PloS One 7, 9, e44873. https://doi.org/10.1371/journal.pone.0044873. [Google Scholar]
  144. Weissig V, Torchilin VP (2001), Drug and DNA delivery to mitochondria. Adv Drug Deliv Rev 49, 1–2, 1–2. PMID: 11377799. [Google Scholar]
  145. D’Souza GGM, Weissig V (2004), Approaches to mitochondrial gene therapy. Curr Gene Ther 4, 3, 317–328. https://doi.org/10.2174/1566523043346200. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.