Logical Entropy
Open Access
Issue
4open
Volume 5, 2022
Logical Entropy
Article Number 3
Number of page(s) 10
Section Physics - Applied Physics
DOI https://doi.org/10.1051/fopen/2021006
Published online 25 January 2022
  1. von Neumann J (1927), Mathematische Begründung der Quantenmechanik. Nachr Ges Wissenschaften Göttingen Math-Phys Klasse 1927, 1–57. [Google Scholar]
  2. Heisenberg W (1926), Mehrkörperproblem und Resonanz in der Quantenmechanik. Zeitschr für Physik 38(6), 411–426. [CrossRef] [Google Scholar]
  3. Slater JC (1929), The theory of complex spectra. Phys Rev 34, 1293–1322. [CrossRef] [Google Scholar]
  4. Sunko DK (2016), Natural generalization of the ground-state Slater determinant to more than one dimension. Phys Rev A 93, 062109. [CrossRef] [Google Scholar]
  5. Ceperley DM (1991), Fermion nodes. J Stat Phys 63(5), 1237–1267. [CrossRef] [Google Scholar]
  6. Bargmann V (1961), On a Hilbert space of analytic functions and an associated integral transform part I. Commun Pure Appl Math 14, 187–214. [CrossRef] [Google Scholar]
  7. Milne JS (2015), Algebraic Geometry (v6.01). Available at https://www.jmilne.org/math/. [Google Scholar]
  8. Weyl H (1946), The classical groups: their invariants and representations, 2nd edn., Princeton University Press, Princeton. [Google Scholar]
  9. Sturmfels B (2008), Algorithms in invariant theory, 2nd edn., Springer-Verlag, Wien. [Google Scholar]
  10. Rožman K, Sunko DK (2020), Generic example of algebraic bosonisation. Eur Phys J Plus 135, 30. [CrossRef] [Google Scholar]
  11. Sunko DK (2020), Many-fermion wave functions: structure and examples, in: J. Bonča, S. Kruchinin (Eds.), Advanced nanomaterials for detection of CBRN in NATO Science for Peace and Security Series A: Chemistry and Biology, Springer, pp. 85–99. [CrossRef] [Google Scholar]
  12. Sunko DK (2017), Fundamental building blocks of strongly correlated wave functions. J Supercond Nov Magn 30(1), 35–41. [CrossRef] [Google Scholar]
  13. Hirsch JE (1985), Two-dimensional Hubbard model: numerical simulation study. Phys Rev B 31, 4403–4419. [CrossRef] [PubMed] [Google Scholar]
  14. Ellerman D (2017), Logical information theory: new logical foundations for information theory. Log J IGPL 25(5), 806–835. [CrossRef] [Google Scholar]
  15. Manfredi G, Feix MR (2000), Entropy and Wigner functions. Phys Rev E 62, 4665–4674. [CrossRef] [PubMed] [Google Scholar]
  16. Bosyk GM, Zozor S, Holik F, Portesi M, Lamberti PW (2016), A family of generalized quantum entropies: definition and properties. Quantum Inf Process 15(8), 3393–3420. [CrossRef] [Google Scholar]
  17. von Neumann J (1932), Mathematical foundations of quantum mechanics, Princeton University Press, Princeton. [Google Scholar]
  18. Tamir B, Cohen E (2014), Logical entropy for quantum states arXiv:1412.0616 [quant-ph]. [Google Scholar]
  19. Ellerman D (2018), Logical entropy: introduction to classical and quantum logical information theory. Entropy 20(9), 679. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.