Logical Entropy
Open Access
Issue
4open
Volume 5, 2022
Logical Entropy
Article Number 3
Number of page(s) 10
Section Physics - Applied Physics
DOI https://doi.org/10.1051/fopen/2021006
Published online 25 January 2022
  1. von Neumann J (1927), Mathematische Begründung der Quantenmechanik. Nachr Ges Wissenschaften Göttingen Math-Phys Klasse 1927, 1–57. [Google Scholar]
  2. Heisenberg W (1926), Mehrkörperproblem und Resonanz in der Quantenmechanik. Zeitschr für Physik 38(6), 411–426. [CrossRef] [Google Scholar]
  3. Slater JC (1929), The theory of complex spectra. Phys Rev 34, 1293–1322. [CrossRef] [Google Scholar]
  4. Sunko DK (2016), Natural generalization of the ground-state Slater determinant to more than one dimension. Phys Rev A 93, 062109. [CrossRef] [Google Scholar]
  5. Ceperley DM (1991), Fermion nodes. J Stat Phys 63(5), 1237–1267. [CrossRef] [Google Scholar]
  6. Bargmann V (1961), On a Hilbert space of analytic functions and an associated integral transform part I. Commun Pure Appl Math 14, 187–214. [CrossRef] [Google Scholar]
  7. Milne JS (2015), Algebraic Geometry (v6.01). Available at https://www.jmilne.org/math/. [Google Scholar]
  8. Weyl H (1946), The classical groups: their invariants and representations, 2nd edn., Princeton University Press, Princeton. [Google Scholar]
  9. Sturmfels B (2008), Algorithms in invariant theory, 2nd edn., Springer-Verlag, Wien. [Google Scholar]
  10. Rožman K, Sunko DK (2020), Generic example of algebraic bosonisation. Eur Phys J Plus 135, 30. [CrossRef] [Google Scholar]
  11. Sunko DK (2020), Many-fermion wave functions: structure and examples, in: J. Bonča, S. Kruchinin (Eds.), Advanced nanomaterials for detection of CBRN in NATO Science for Peace and Security Series A: Chemistry and Biology, Springer, pp. 85–99. [CrossRef] [Google Scholar]
  12. Sunko DK (2017), Fundamental building blocks of strongly correlated wave functions. J Supercond Nov Magn 30(1), 35–41. [CrossRef] [Google Scholar]
  13. Hirsch JE (1985), Two-dimensional Hubbard model: numerical simulation study. Phys Rev B 31, 4403–4419. [CrossRef] [PubMed] [Google Scholar]
  14. Ellerman D (2017), Logical information theory: new logical foundations for information theory. Log J IGPL 25(5), 806–835. [CrossRef] [Google Scholar]
  15. Manfredi G, Feix MR (2000), Entropy and Wigner functions. Phys Rev E 62, 4665–4674. [CrossRef] [PubMed] [Google Scholar]
  16. Bosyk GM, Zozor S, Holik F, Portesi M, Lamberti PW (2016), A family of generalized quantum entropies: definition and properties. Quantum Inf Process 15(8), 3393–3420. [CrossRef] [Google Scholar]
  17. von Neumann J (1932), Mathematical foundations of quantum mechanics, Princeton University Press, Princeton. [Google Scholar]
  18. Tamir B, Cohen E (2014), Logical entropy for quantum states arXiv:1412.0616 [quant-ph]. [Google Scholar]
  19. Ellerman D (2018), Logical entropy: introduction to classical and quantum logical information theory. Entropy 20(9), 679. [CrossRef] [Google Scholar]