Logical Entropy
Open Access
Volume 5, 2022
Logical Entropy
Article Number 2
Number of page(s) 14
Section Physics - Applied Physics
DOI https://doi.org/10.1051/fopen/2021005
Published online 25 January 2022
  1. Brukner Č, Zeilinger A (1999), Operationally invariant information in quantum measurements. Phys Rev Lett 83, 3354. [CrossRef] [Google Scholar]
  2. Brukner Č, Zeilinger A (2001), Conceptual inadequacy of the Shannon information in quantum measurements. Phys Rev A 63, 022113. [CrossRef] [Google Scholar]
  3. Giraldi F, Grigolini P (2001), Quantum entanglement and entropy. Phys Rev A 64, 032310. [CrossRef] [Google Scholar]
  4. Cover TM, Thomas JA (2006), Elements of Information Theory, 2nd edn., Wiley, Hoboken, New Jersey. [Google Scholar]
  5. Ellerman D (2013), Information as distinctions: New foundations for information theory, arXiv:1301.5607. [Google Scholar]
  6. Tsallis C (1988), Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52, 479. [CrossRef] [Google Scholar]
  7. Manfredi G, Feix MR (2000), Entropy and Wigner functions. Phys Rev E 62, 4665. [CrossRef] [PubMed] [Google Scholar]
  8. Ellerman D (2013), An introduction to logical entropy and its relation to Shannon entropy. Int J Semant Comput 7, 121. [CrossRef] [Google Scholar]
  9. Ellerman D (2014), An introduction to partition logic. Log J IGPL 22, 94. [Google Scholar]
  10. Tamir B, Cohen E (2014), Logical entropy for quantum states, arXiv:1412.0616. [Google Scholar]
  11. Tamir B, Cohen E (2015), A Holevo-type bound for a Hilbert Schmidt distance measure. J Quantum Inf Sci 5, 127. [Google Scholar]
  12. Gini C (1912), Variabilità e Mutabilità: Contributo allo Studio delle Distribuzioni e delle Relazioni Statistiche. [Fasc. I.]. Studi economico-giuridici pubblicati per cura della facoltà di Giurisprudenza della R. Università di Cagliari. Tipogr. di P. Cuppini. [Google Scholar]
  13. Rejewski M (1981), How Polish mathematicians broke the Enigma Cipher. Ann Hist Comput 3, 213. [CrossRef] [Google Scholar]
  14. Patil GP, Taillie C (1982), Diversity as a concept and its measurement. J Am Stat Assoc 77, 548. [CrossRef] [Google Scholar]
  15. Good IJ (1982), Comment: Diversity as a concept and its measurement. J Am Stat Assoc 77, 561. [Google Scholar]
  16. Nielsen MA, Chuang IL (2010), Quantum information and quantum computation, University Press, Cambridge. [CrossRef] [Google Scholar]
  17. Ellerman D (2014), Partitions and objective indefiniteness in quantum mechanics, arXiv:1401.2421. [Google Scholar]
  18. Ellerman D (2016), On classical and quantum logical entropy. Available at SSRN 2770162. https://doi.org/10.2139/ssrn.2770162 . [Google Scholar]
  19. Ellerman D (2016), On classical and quantum logical entropy: The analysis of measurement, arXiv:1604.04985. [Google Scholar]
  20. Ellerman D (2017), New logical foundations for quantum information theory: Introduction to quantum logical information theory, arXiv:1707.04728. [Google Scholar]
  21. Ellerman D (2017), Introduction to quantum logical information theory, Available at SSRN 3003279. https://doi.org/10.2139/ssrn.3003279 . [Google Scholar]
  22. Ellerman D (2018), Introduction to quantum logical information theory: Talk. EPJ Web Conf 182, 02039. [CrossRef] [EDP Sciences] [Google Scholar]
  23. Ellerman D (2018), Logical entropy: Introduction to classical and quantum logical information theory. Entropy 20, 679. [CrossRef] [Google Scholar]
  24. Ellerman D (2016), The quantum logic of direct-sum decompositions. Available at SSRN 2770163. https://doi.org/10.2139/ssrn.2770163. [Google Scholar]
  25. Ellerman D (2018), The quantum logic of direct-sum decompositions: the dual to the quantum logic of subspaces. Log J IGPL 26, 1. [CrossRef] [Google Scholar]
  26. Auletta G, Fortunato M, Parisi G (2009), Quantum mechanics, Cambridge University Press, New York. [Google Scholar]
  27. Lüders G (1950), Über die Zustandsänderung durch den Meßprozeß. Ann Phys 443, 322. [CrossRef] [Google Scholar]
  28. von Neumann J (1932), Mathematische Grundlagen der Quantenmechanik, Springer, Berlin. [Google Scholar]
  29. Jaeger G (2007), Quantum information: an overview, Springer, New York. [Google Scholar]
  30. Coles PJ (2011), Non-negative discord strengthens the subadditivity of quantum entropy functions, arXiv:1101.1717. [Google Scholar]
  31. Audenaert KMR (2007), Subadditivity of q-entropies for q > 1. J Math Phys 48, 083507. [CrossRef] [Google Scholar]
  32. Streltsov A, Kampermann H, Wolk S, Gessner M, Brub D (2018), Maximal coherence and the resource theory of purity. New J Phys 20, 053058. [CrossRef] [Google Scholar]
  33. Uhlmann A (1970), On the Shannon entropy and related functionals on convex sets. Rep Math Phys 1, 147. [CrossRef] [Google Scholar]
  34. Nielsen MA (2002), An introduction to majorization and its applications to quantum mechanics (Lecture Notes), Department of Physics, University of Queensland, Australia. [Google Scholar]
  35. Aharonov Y, Bergmann PG, Lebowitz JL (1964), Time symmetry in the quantum process of measurement. Phys Rev 134, B1410. [CrossRef] [Google Scholar]
  36. Salek S, Schubert R, Wiesner K (2014), Negative conditional entropy of postselected states. Phys Rev A 90, 022116. [CrossRef] [Google Scholar]
  37. Aharonov Y, Albert DZ, Vaidman L (1988), How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys Rev Lett 60, 1351. [CrossRef] [PubMed] [Google Scholar]
  38. Dixon PB, Starling DJ, Jordan AN, Howell JC (2009), Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys Rev Lett 102, 173601. [CrossRef] [PubMed] [Google Scholar]
  39. Jacobs K (2009), Second law of thermodynamics and quantum feedback control: Maxwell’s demon with weak measurements. Phys Rev A 80, 012322. [CrossRef] [Google Scholar]
  40. Turner MD, Hagedorn CA, Schlamminger S, Gundlach JH (2011), Picoradian deflection measurement with an interferometric quasi-autocollimator using weak value amplification. Opt Lett 36, 1479. [CrossRef] [PubMed] [Google Scholar]
  41. Aharonov Y, Cohen E, Elitzur AC (2014), Foundations and applications of weak quantum measurements. Phys Rev A 89, 052105. [CrossRef] [Google Scholar]
  42. Dressel J, Malik M, Miatto FM, Jordan AN, Boyd RW (2014), Colloquium: Understanding quantum weak values: Basics and applications. Rev Mod Phys 86, 307. [CrossRef] [Google Scholar]
  43. Alves GB, Escher BM, de Matos Filho RL, Zagury N, Davidovich L (2015), Weak-value amplification as an optimal metrological protocol. Phys Rev A 91, 062107. [CrossRef] [Google Scholar]
  44. Cortez L, Chantasri A, Garca-Pintos LP, Dressel J, Jordan AN (2017), Rapid estimation of drifting parameters in continuously measured quantum systems. Phys Rev A 95, 012314. [CrossRef] [Google Scholar]
  45. Kim Y, Kim Y-S, Lee S-Y, Han S-W, Moon S, Kim Y-H, Cho Y-W (2018), Direct quantum process tomography via measuring sequential weak values of incompatible observables. Nat Commun 9, 192. [CrossRef] [PubMed] [Google Scholar]
  46. Naghiloo M, Alonso JJ, Romito A, Lutz E, Murch KW (2018), Information gain and loss for a quantum Maxwell’s demon. Phys Rev Lett 121, 030604. [CrossRef] [PubMed] [Google Scholar]
  47. Hu M-J, Zhou Z-Y, Hu X-M, Li C-F, Guo G-C, Zhang Y-S (2018), Observation of non-locality sharing among three observers with one entangled pair via optimal weak measurement. npj Quantum Inf 4, 63. [CrossRef] [Google Scholar]
  48. Pfender M, Wang P, Sumiya H, Onoda S, Yang W, Dasari DBR, Neumann P, Pan X-Y, Isoya J, Liu R-B, Wrachtrup J (2019), High-resolution spectroscopy of single nuclear spins via sequential weak measurements. Nat Commun 10, 594. [CrossRef] [PubMed] [Google Scholar]
  49. Cujia KS, Boss JM, Herb K, Zopes J, Degen CL (2019), Tracking the precession of single nuclear spins by weak measurements. Nature 571, 230. [CrossRef] [PubMed] [Google Scholar]
  50. Paiva IL, Aharonov Y, Tollaksen J, Waegell M (2021), Aharonov-Bohm effect with an effective complex-valued vector potential, arXiv:2101.11914. [Google Scholar]
  51. Dieguez PR, Angelo RM (2018), Information-reality complementarity: The role of measurements and quantum reference frames. Phys. Rev. A 97, 022107. [CrossRef] [Google Scholar]
  52. Zurek WH, Habib S, Paz JP (1993), Coherent states via decoherence. Phys Rev Lett 70, 1187. [CrossRef] [PubMed] [Google Scholar]
  53. Buscemi F, Bordone P, Bertoni A (2007), Linear entropy as an entanglement measure in two-fermion systems. Phys Rev A 75, 032301. [CrossRef] [Google Scholar]
  54. Nayak AS, Devi ARU, Rajagopal AK, et al. (2017), Biseparability of noisy pseudopure, W and GHZ states using conditional quantum relative Tsallis entropy. Quantum Inf Process 16, 51. [CrossRef] [Google Scholar]
  55. Khordad R, Sedehi HRR (2017), Application of non-extensive entropy to study of decoherence of RbCl quantum dot qubit: Tsallis entropy. Superlattices Microstruct 101, 559. [CrossRef] [Google Scholar]
  56. Tamir B (2017), Tsallis entropy is natural in the formulation of quantum noise, arXiv:1702.07864. [Google Scholar]
  57. Almheiri A, Marolf D, Polchinski J, Sully J (2013), Black holes: complementarity or firewalls? J High Energy Phys 2, 62. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.