Open Access
Issue |
4open
Volume 5, 2022
Logical Entropy
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 14 | |
Section | Physics - Applied Physics | |
DOI | https://doi.org/10.1051/fopen/2021005 | |
Published online | 25 January 2022 |
- Brukner Č, Zeilinger A (1999), Operationally invariant information in quantum measurements. Phys Rev Lett 83, 3354. [CrossRef] [Google Scholar]
- Brukner Č, Zeilinger A (2001), Conceptual inadequacy of the Shannon information in quantum measurements. Phys Rev A 63, 022113. [CrossRef] [Google Scholar]
- Giraldi F, Grigolini P (2001), Quantum entanglement and entropy. Phys Rev A 64, 032310. [CrossRef] [Google Scholar]
- Cover TM, Thomas JA (2006), Elements of Information Theory, 2nd edn., Wiley, Hoboken, New Jersey. [Google Scholar]
- Ellerman D (2013), Information as distinctions: New foundations for information theory, arXiv:1301.5607. [Google Scholar]
- Tsallis C (1988), Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52, 479. [CrossRef] [Google Scholar]
- Manfredi G, Feix MR (2000), Entropy and Wigner functions. Phys Rev E 62, 4665. [CrossRef] [PubMed] [Google Scholar]
- Ellerman D (2013), An introduction to logical entropy and its relation to Shannon entropy. Int J Semant Comput 7, 121. [CrossRef] [Google Scholar]
- Ellerman D (2014), An introduction to partition logic. Log J IGPL 22, 94. [CrossRef] [Google Scholar]
- Tamir B, Cohen E (2014), Logical entropy for quantum states, arXiv:1412.0616. [Google Scholar]
- Tamir B, Cohen E (2015), A Holevo-type bound for a Hilbert Schmidt distance measure. J Quantum Inf Sci 5, 127. [CrossRef] [Google Scholar]
- Gini C (1912), Variabilità e Mutabilità: Contributo allo Studio delle Distribuzioni e delle Relazioni Statistiche. [Fasc. I.]. Studi economico-giuridici pubblicati per cura della facoltà di Giurisprudenza della R. Università di Cagliari. Tipogr. di P. Cuppini. [Google Scholar]
- Rejewski M (1981), How Polish mathematicians broke the Enigma Cipher. Ann Hist Comput 3, 213. [CrossRef] [Google Scholar]
- Patil GP, Taillie C (1982), Diversity as a concept and its measurement. J Am Stat Assoc 77, 548. [CrossRef] [Google Scholar]
- Good IJ (1982), Comment: Diversity as a concept and its measurement. J Am Stat Assoc 77, 561. [Google Scholar]
- Nielsen MA, Chuang IL (2010), Quantum information and quantum computation, University Press, Cambridge. [CrossRef] [Google Scholar]
- Ellerman D (2014), Partitions and objective indefiniteness in quantum mechanics, arXiv:1401.2421. [Google Scholar]
- Ellerman D (2016), On classical and quantum logical entropy. Available at SSRN 2770162. https://doi.org/10.2139/ssrn.2770162 . [Google Scholar]
- Ellerman D (2016), On classical and quantum logical entropy: The analysis of measurement, arXiv:1604.04985. [Google Scholar]
- Ellerman D (2017), New logical foundations for quantum information theory: Introduction to quantum logical information theory, arXiv:1707.04728. [Google Scholar]
- Ellerman D (2017), Introduction to quantum logical information theory, Available at SSRN 3003279. https://doi.org/10.2139/ssrn.3003279 . [Google Scholar]
- Ellerman D (2018), Introduction to quantum logical information theory: Talk. EPJ Web Conf 182, 02039. [CrossRef] [EDP Sciences] [Google Scholar]
- Ellerman D (2018), Logical entropy: Introduction to classical and quantum logical information theory. Entropy 20, 679. [CrossRef] [Google Scholar]
- Ellerman D (2016), The quantum logic of direct-sum decompositions. Available at SSRN 2770163. https://doi.org/10.2139/ssrn.2770163. [Google Scholar]
- Ellerman D (2018), The quantum logic of direct-sum decompositions: the dual to the quantum logic of subspaces. Log J IGPL 26, 1. [CrossRef] [Google Scholar]
- Auletta G, Fortunato M, Parisi G (2009), Quantum mechanics, Cambridge University Press, New York. [Google Scholar]
- Lüders G (1950), Über die Zustandsänderung durch den Meßprozeß. Ann Phys 443, 322. [CrossRef] [Google Scholar]
- von Neumann J (1932), Mathematische Grundlagen der Quantenmechanik, Springer, Berlin. [Google Scholar]
- Jaeger G (2007), Quantum information: an overview, Springer, New York. [Google Scholar]
- Coles PJ (2011), Non-negative discord strengthens the subadditivity of quantum entropy functions, arXiv:1101.1717. [Google Scholar]
- Audenaert KMR (2007), Subadditivity of q-entropies for q > 1. J Math Phys 48, 083507. [CrossRef] [Google Scholar]
- Streltsov A, Kampermann H, Wolk S, Gessner M, Brub D (2018), Maximal coherence and the resource theory of purity. New J Phys 20, 053058. [CrossRef] [Google Scholar]
- Uhlmann A (1970), On the Shannon entropy and related functionals on convex sets. Rep Math Phys 1, 147. [CrossRef] [Google Scholar]
- Nielsen MA (2002), An introduction to majorization and its applications to quantum mechanics (Lecture Notes), Department of Physics, University of Queensland, Australia. [Google Scholar]
- Aharonov Y, Bergmann PG, Lebowitz JL (1964), Time symmetry in the quantum process of measurement. Phys Rev 134, B1410. [CrossRef] [Google Scholar]
- Salek S, Schubert R, Wiesner K (2014), Negative conditional entropy of postselected states. Phys Rev A 90, 022116. [CrossRef] [Google Scholar]
- Aharonov Y, Albert DZ, Vaidman L (1988), How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys Rev Lett 60, 1351. [CrossRef] [PubMed] [Google Scholar]
- Dixon PB, Starling DJ, Jordan AN, Howell JC (2009), Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys Rev Lett 102, 173601. [CrossRef] [PubMed] [Google Scholar]
- Jacobs K (2009), Second law of thermodynamics and quantum feedback control: Maxwell’s demon with weak measurements. Phys Rev A 80, 012322. [CrossRef] [Google Scholar]
- Turner MD, Hagedorn CA, Schlamminger S, Gundlach JH (2011), Picoradian deflection measurement with an interferometric quasi-autocollimator using weak value amplification. Opt Lett 36, 1479. [CrossRef] [PubMed] [Google Scholar]
- Aharonov Y, Cohen E, Elitzur AC (2014), Foundations and applications of weak quantum measurements. Phys Rev A 89, 052105. [CrossRef] [Google Scholar]
- Dressel J, Malik M, Miatto FM, Jordan AN, Boyd RW (2014), Colloquium: Understanding quantum weak values: Basics and applications. Rev Mod Phys 86, 307. [CrossRef] [Google Scholar]
- Alves GB, Escher BM, de Matos Filho RL, Zagury N, Davidovich L (2015), Weak-value amplification as an optimal metrological protocol. Phys Rev A 91, 062107. [CrossRef] [Google Scholar]
- Cortez L, Chantasri A, Garca-Pintos LP, Dressel J, Jordan AN (2017), Rapid estimation of drifting parameters in continuously measured quantum systems. Phys Rev A 95, 012314. [CrossRef] [Google Scholar]
- Kim Y, Kim Y-S, Lee S-Y, Han S-W, Moon S, Kim Y-H, Cho Y-W (2018), Direct quantum process tomography via measuring sequential weak values of incompatible observables. Nat Commun 9, 192. [CrossRef] [PubMed] [Google Scholar]
- Naghiloo M, Alonso JJ, Romito A, Lutz E, Murch KW (2018), Information gain and loss for a quantum Maxwell’s demon. Phys Rev Lett 121, 030604. [CrossRef] [PubMed] [Google Scholar]
- Hu M-J, Zhou Z-Y, Hu X-M, Li C-F, Guo G-C, Zhang Y-S (2018), Observation of non-locality sharing among three observers with one entangled pair via optimal weak measurement. npj Quantum Inf 4, 63. [CrossRef] [Google Scholar]
- Pfender M, Wang P, Sumiya H, Onoda S, Yang W, Dasari DBR, Neumann P, Pan X-Y, Isoya J, Liu R-B, Wrachtrup J (2019), High-resolution spectroscopy of single nuclear spins via sequential weak measurements. Nat Commun 10, 594. [CrossRef] [PubMed] [Google Scholar]
- Cujia KS, Boss JM, Herb K, Zopes J, Degen CL (2019), Tracking the precession of single nuclear spins by weak measurements. Nature 571, 230. [CrossRef] [PubMed] [Google Scholar]
- Paiva IL, Aharonov Y, Tollaksen J, Waegell M (2021), Aharonov-Bohm effect with an effective complex-valued vector potential, arXiv:2101.11914. [Google Scholar]
- Dieguez PR, Angelo RM (2018), Information-reality complementarity: The role of measurements and quantum reference frames. Phys. Rev. A 97, 022107. [CrossRef] [Google Scholar]
- Zurek WH, Habib S, Paz JP (1993), Coherent states via decoherence. Phys Rev Lett 70, 1187. [CrossRef] [PubMed] [Google Scholar]
- Buscemi F, Bordone P, Bertoni A (2007), Linear entropy as an entanglement measure in two-fermion systems. Phys Rev A 75, 032301. [CrossRef] [Google Scholar]
- Nayak AS, Devi ARU, Rajagopal AK, et al. (2017), Biseparability of noisy pseudopure, W and GHZ states using conditional quantum relative Tsallis entropy. Quantum Inf Process 16, 51. [CrossRef] [Google Scholar]
- Khordad R, Sedehi HRR (2017), Application of non-extensive entropy to study of decoherence of RbCl quantum dot qubit: Tsallis entropy. Superlattices Microstruct 101, 559. [CrossRef] [Google Scholar]
- Tamir B (2017), Tsallis entropy is natural in the formulation of quantum noise, arXiv:1702.07864. [Google Scholar]
- Almheiri A, Marolf D, Polchinski J, Sully J (2013), Black holes: complementarity or firewalls? J High Energy Phys 2, 62. [CrossRef] [Google Scholar]