Open Access
Volume 5, 2022
Article Number 6
Number of page(s) 8
Section Life Sciences - Medicine
Published online 28 February 2022
  1. Vanneman M, Dranoff G (2012), Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12(4), 237–251. [CrossRef] [PubMed] [Google Scholar]
  2. Zhang Y, Zhang Z (2020), The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol 17(8), 807–821. [CrossRef] [PubMed] [Google Scholar]
  3. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S (2014), Drug resistance in cancer: an overview. Cancers (Basel) 6(3), 1769–1792. [CrossRef] [PubMed] [Google Scholar]
  4. Bosc C, Selak MA, Sarry JE (2017), Resistance is futile: targeting mitochondrial energetics and metabolism to overcome drug resistance in cancer treatment. Cell Metab 26(5), 705–707. [CrossRef] [PubMed] [Google Scholar]
  5. Solomon MA, Shah AA, D’Souza GG (2013), In vitro assessment of the utility of stearyl triphenyl phosphonium modified liposomes in overcoming the resistance of ovarian carcinoma Ovcar-3 cells to paclitaxel. Mitochondrion 13(5), 464–472. [CrossRef] [PubMed] [Google Scholar]
  6. Boddapati SV, Tongcharoensirikul P, Hanson RN, D’Souza GG, Torchilin VP, Weissig V (2005), Mitochondriotropic liposomes. J Liposome Res 15(1–2), 49–58. [CrossRef] [PubMed] [Google Scholar]
  7. Patel NR, Hatziantoniou S, Georgopoulos A, Demetzos C, Torchilin VP, Weissig V, D’Souza GG (2010), Mitochondria-targeted liposomes improve the apoptotic and cytotoxic action of sclareol. J Liposome Res 20(3), 244–249. [CrossRef] [PubMed] [Google Scholar]
  8. Benien P, Solomon MA, Nguyen P, Sheehan EM, Mehanna AS, D’Souza GG (2016), Hydrophobized triphenyl phosphonium derivatives for the preparation of mitochondriotropic liposomes: choice of hydrophobic anchor influences cytotoxicity but not mitochondriotropic effect. J Liposome Res 26(1), 21–27. [CrossRef] [PubMed] [Google Scholar]
  9. Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP (2012), Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release 159(3), 393–402. [CrossRef] [PubMed] [Google Scholar]
  10. Benien P, Almuteri M, Shah S, Böhlke M, Mehanna A, D’Souza GG (2021), Synthesis of triphenylphosphonium phospholipid conjugates for the preparation of mitochondriotropic liposomes, in: V Weissig, M Edeas (Eds.), Mitochondrial Medicine : Volume 1: Targeting Mitochondria, Springer US, New York, NY, pp. 119–126. [CrossRef] [PubMed] [Google Scholar]
  11. De Francesco EM, Ózsvári B, Sotgia F, Lisanti MP (2019), Dodecyl-TPP targets mitochondria and potently eradicates cancer stem cells (CSCs): synergy with FDA-approved drugs and natural compounds (vitamin C and berberine). Front Oncol 9, 615. [CrossRef] [PubMed] [Google Scholar]
  12. Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sánchez N, Marchesini M, Carugo A, Green T, Seth S, Giuliani V, Kost-Alimova M (2014), Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514(7524), 628–632. [CrossRef] [PubMed] [Google Scholar]
  13. Matassa DS, Amoroso MR, Lu H, Avolio R, Arzeni D, Procaccini C, Faicchia D, Maddalena F, Simeon V, Agliarulo I, Zanini E (2016), Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ 23(9), 1542–1554. [CrossRef] [PubMed] [Google Scholar]
  14. Lee KM, Giltnane JM, Balko JM, Schwarz LJ, Guerrero-Zotano AL, Hutchinson KE, Nixon MJ, Estrada MV, Sánchez V, Sanders ME, Lee T (2017), MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab 26(4), 633–647.e7. [CrossRef] [PubMed] [Google Scholar]
  15. Chang SY, Lee MY, Chung PS, Kim S, Choi B, Suh MW, Rhee CK, Jung JY (2019), Enhanced mitochondrial membrane potential and ATP synthesis by photobiomodulation increases viability of the auditory cell line after gentamicin-induced intrinsic apoptosis. Sci Rep 9(1), 19248. [CrossRef] [PubMed] [Google Scholar]
  16. Reers M, Smiley ST, Mottola-Hartshorn C, Chen A, Lin M, Chen LB (1995), Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol 260, 406–417. [CrossRef] [PubMed] [Google Scholar]
  17. Cossarizza A, Baccaranicontri M, Kalashnikova G, Franceschi C (1993), A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun 197(1), 40–45. [CrossRef] [PubMed] [Google Scholar]
  18. Sivandzade F, Bhalerao A, Cucullo L (2019), Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio Protoc 9(1), PMID: 30687773. [CrossRef] [PubMed] [Google Scholar]
  19. Gottesman MM, Lavi O, Hall MD, Gillet JP (2016), Toward a better understanding of the complexity of cancer drug resistance. Annu Rev Pharmacol Toxicol 56, 85–102. [CrossRef] [PubMed] [Google Scholar]
  20. Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, Saponara S, Sarmento-Ribeiro AB, Xavier CP, Vasconcelos MH (2019), The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat 46, 100645. [CrossRef] [PubMed] [Google Scholar]
  21. Nobili S, Landini I, Giglioni B, Mini E (2006), Pharmacological strategies for overcoming multidrug resistance. Curr Drug Targets 7(7), 861–879. [CrossRef] [PubMed] [Google Scholar]
  22. Shukla S, Wu CP, Ambudkar SV (2008), Development of inhibitors of ATP-binding cassette drug transporters: present status and challenges. Expert Opin Drug Metab Toxicol 4(2), 205–223. [CrossRef] [PubMed] [Google Scholar]
  23. Nanayakkara AK, Follit CA, Chen G, Williams NS, Vogel PD, Wise JG (2018), Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci Rep 8(1), 967. [CrossRef] [PubMed] [Google Scholar]
  24. Elshimali YI, Wu Y, Khaddour H, Wu Y, Gradinaru D, Sukhija H, Chung SS, Vadgama JV (2018), Optimization of cancer treatment through overcoming drug resistance. J Cancer Res Oncobiol 1(2), PMID: 29932172. [PubMed] [Google Scholar]
  25. Chan MS, Liu LS, Leung HM, Lo PK (2017), Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl Mater Interfaces 9(13), 11780–11789. [CrossRef] [PubMed] [Google Scholar]
  26. Dong X, Mumper RJ (2010), Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine (Lond) 5(4), 597–615. [CrossRef] [PubMed] [Google Scholar]
  27. Yuan Y, Cai T, Xia X, Zhang R, Chiba P, Cai Y (2016), Nanoparticle delivery of anticancer drugs overcomes multidrug resistance in breast cancer. Drug Deliv 23(9), 3350–3357. [CrossRef] [PubMed] [Google Scholar]
  28. Wolf DA (2014), Is reliance on mitochondrial respiration a “chink in the armor” of therapy-resistant cancer? Cancer Cell 26(6), 788–795. [CrossRef] [PubMed] [Google Scholar]
  29. Lee JS, Lee H, Jang H, Woo SM, Park JB, Lee SH, Kang JH, Kim HY, Song J, Kim SY (2020), Targeting oxidative phosphorylation reverses drug resistance in cancer cells by blocking autophagy recycling. Cells 9(9), PMID: 32883024. [PubMed] [Google Scholar]
  30. Hirpara J, Eu JQ, Tan JKM, Wong AL, Clement MV, Kong LR, Ohi N, Tsunoda T, Qu J, Goh BC, Pervaiz S (2019), Metabolic reprogramming of oncogene-addicted cancer cells to OXPHOS as a mechanism of drug resistance. Redox Biol 25, 101076. [CrossRef] [PubMed] [Google Scholar]
  31. van Zutphen H, van Deenen LLM (1967), The effect of lysolecithin on the electrical resistance of lecithin bilayer membranes. Chem Phys Lipids 1(4), 389–391. [CrossRef] [Google Scholar]
  32. Lee Y, Chan SI (1977), Effect of lysolecithin on the structure and permeability of lecithin bilayer vesicles. Biochemistry 16(7), 1303–1309. [CrossRef] [PubMed] [Google Scholar]
  33. Benz R, McLaughlin S (1983), The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). Biophys J 41(3), 381–398. [CrossRef] [PubMed] [Google Scholar]
  34. Chernomordik L, Chanturiya A, Green J, Zimmerberg J (1995), The hemifusion intermediate and its conversion to complete fusion: regulation by membrane composition. Biophys J 69(3), 922–929. [CrossRef] [PubMed] [Google Scholar]
  35. Gunther-Ausborn S, Praetor A, Stegmann T (1995), Inhibition of influenza-induced membrane fusion by lysophosphatidylcholine. J Biol Chem 270(49), 29279–29285. [CrossRef] [PubMed] [Google Scholar]
  36. Wu H, Zheng L, Lentz BR (1996), A slight asymmetry in the transbilayer distribution of lysophosphatidylcholine alters the surface properties and poly(ethylene glycol)-mediated fusion of dipalmitoylphosphatidylcholine large unilamellar vesicles. Biochemistry 35(38), 12602–12611. [CrossRef] [PubMed] [Google Scholar]
  37. Chernomordik L, Kozlov MM, Zimmerberg J (1995), Lipids in biological membrane fusion. J Membr Biol 146(1), 1–14. [CrossRef] [PubMed] [Google Scholar]
  38. Fuller N, Rand RP (2001), The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys J 81(1), 243–254. [CrossRef] [PubMed] [Google Scholar]
  39. Milas L, Hunter NR, Kurdoglu B, Mason KA, Meyn RE, Stephens LC, Peters LJ (1995), Kinetics of mitotic arrest and apoptosis in murine mammary and ovarian tumors treated with taxol. Cancer Chemother Pharmacol 35(4), 297–303. [CrossRef] [PubMed] [Google Scholar]
  40. Jang SH, Wientjes MG, Au JL (2001), Determinants of paclitaxel uptake, accumulation and retention in solid tumors. Invest New Drugs 19(2), 113–123. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.