Open Access
Review
Issue
4open
Volume 5, 2022
Article Number 5
Number of page(s) 27
Section Life Sciences - Medicine
DOI https://doi.org/10.1051/fopen/2022002
Published online 28 January 2022
  1. Weissig V, Edeas M (2021), Recent deveopments in mitochondrial medicine (part 1). 4Open 4, 1–13. https://doi.org/10.1051/fopen/2021002. [CrossRef] [Google Scholar]
  2. Tzagoloff A (1982), Mitochondria, Plenum Press, New York. ISBN 0-306-40799-X. [Google Scholar]
  3. Altmann R(1890), Die Elementarorganismen und ihre Beziehungen zu den Zellen, 1. Auflage, Von Veit & Comp Verlag, Leipzig. Deutsches Textarchiv. https://www.deutschestextarchiv.de/altmann_elementarorganismen_1890/9. Access: April 9, 2021. [Google Scholar]
  4. Siekevitz P (1957), Powerhouse of the cell. Scientific American 197, 131–144. [Google Scholar]
  5. Luft R, Ikkos D, Palmieri G, Ernster L, Afzelius B (1962), A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest 41(9), 1776–1804. https://doi.org/10.1172/JCI104637. PMCID: PMC291101; PMID: 14467237. [CrossRef] [PubMed] [Google Scholar]
  6. Luft R (1994), The development of mitochondrial medicine. Proc Natl Acad Sci U S A. 91(19), 8731–8738. https://doi.org/10.1073/pnas.91.19.8731. PMCID: PMC44681. [CrossRef] [PubMed] [Google Scholar]
  7. Nass S, Nass MM (1963), Intramitochondrial fibers with DNA characteristics. Ii. Enzymatic and other hydrolytic treatments. J Cell Biol 19, 613–629. PMID: 14086139. PMCID: PMC2106332. https://doi.org/10.1083/jcb.19.3.613 [CrossRef] [PubMed] [Google Scholar]
  8. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981), Sequence and organization of the human mitochondrial genome. Nature 290(5806), 457–465. https://doi.org/10.1038/290457a0. PMID: 7219534. [CrossRef] [PubMed] [Google Scholar]
  9. Holt IJ, Harding AE, Morgan-Hughes JA (1988), Deletions of muscle mitochondrial DNA. Nature 331(6158), 717–719. https://doi.org/10.1038/331717a0. PMID: 2830540. [CrossRef] [PubMed] [Google Scholar]
  10. Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ 2nd, Nikoskelainen EK (1988), Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242(4884), 1427–1430. https://doi.org/10.1126/science.3201231. PMID: 3201231. [CrossRef] [PubMed] [Google Scholar]
  11. Brown GC, Nicholls DG, Cooper CE (Eds.) (1999), Mitochondria and cell death, Princeton University Press. ISBN: 0-691-05026-0. [Google Scholar]
  12. Mills EL, Kelly B, O’Neill LAJ (2017), Mitochondria are the powerhouses of immunity. Nat Immunol 18(5), 488–498. https://doi.org/10.1038/ni.3704. PMID: 28418387. [CrossRef] [PubMed] [Google Scholar]
  13. Edeas M, Weissig V (2013), Targeting mitochondria: strategies, innovations and challenges: the future of medicine will come through mitochondria. Mitochondrion 13(5), 389–390. https://doi.org/10.1016/j.mito.2013.03.009. [CrossRef] [PubMed] [Google Scholar]
  14. De Benedictis G, Franceschi C (2006), The unusual genetics of human longevity. Sci Aging Knowl Environ 2006(10), pe20. https://doi.org/10.1126/sageke.2006.10.pe20. PMID: 16807484. [CrossRef] [Google Scholar]
  15. Salmon AB, Richardson A, Pérez VI (2010), Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 48(5), 642–655. https://doi.org/10.1016/j.freeradbiomed.2009.12.015. PMID: 20036736. [CrossRef] [PubMed] [Google Scholar]
  16. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P (2018), Oxidative stress, aging, and diseases. Clin Interv Aging 13, 757–772. https://doi.org/10.2147/CIA.S158513. eCollection 2018. PMID: 29731617. [CrossRef] [Google Scholar]
  17. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013), The hallmarks of aging. Cell 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039. PMID: 23746838. [CrossRef] [PubMed] [Google Scholar]
  18. Harman D (1956), Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3), 298–300. https://doi.org/10.1093/geronj/11.3.298. PMID: 13332224. [CrossRef] [PubMed] [Google Scholar]
  19. Harman D (1972), The biologic clock: the mitochondria? J Am Geriatr Soc 20(4), 145–147. https://doi.org/10.1111/j.1532-5415.1972.tb00787.x. PMID: 5016631. [CrossRef] [PubMed] [Google Scholar]
  20. Miquel J, Economos AC, Fleming J, Johnson JE Jr (1980), Mitochondrial role in cell aging. Exp Gerontol 15(6), 575–591. https://doi.org/10.1016/0531-5565(80)90010-8. PMID: 7009178. [CrossRef] [PubMed] [Google Scholar]
  21. Sastre J, Pallardó FV, Plá R, Pellín A, Juan G, O’Connor JE, Estrela JM, Miquel J, Viña J (1996), Aging of the liver: age-associated mitochondrial damage in intact hepatocytes. Hepatology 24(5), 1199–1205. https://doi.org/10.1002/hep.510240536. PMID: 8903398. [CrossRef] [PubMed] [Google Scholar]
  22. Hagen TM, Yowe DL, Bartholomew JC, Wehr CM, Do KL, Park JY, Ames BN (1997), Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proc Natl Acad Sci U S A 94(7), 3064–3069. https://doi.org/10.1073/pnas.94.7.3064. PMID: 9096346. [CrossRef] [PubMed] [Google Scholar]
  23. Nass MM, Nass S (1963), Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions. J Cell Biol 19(3), 593–611. https://doi.org/10.1083/jcb.19.3.593. PMID: 14086138 PMCID: PMC2106331. [CrossRef] [PubMed] [Google Scholar]
  24. Wallace DC (1992), Diseases of the mitochondrial DNA. Annu Rev Biochem 61, 1175–1212. https://doi.org/10.1146/annurev.bi.61.070192.005523. PMID: 1497308. [CrossRef] [PubMed] [Google Scholar]
  25. Cooper JM, Mann VM, Schapira AH (1992), Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: effect of ageing. J Neurol Sci 113(1), 91–98. https://doi.org/10.1016/0022-510x(92)90270-u. PMID: 1469460. [CrossRef] [PubMed] [Google Scholar]
  26. Hattori K, Tanaka M, Sugiyama S, Obayashi T, Ito T, Satake T, Hanaki Y, Asai J, Nagano M, Ozawa T (1991), Age-dependent increase in deleted mitochondrial DNA in the human heart: possible contributory factor to presbycardia. Am Heart J 121(6 Pt 1), 1735–1742. https://doi.org/10.1016/0002-8703(91)90020-i. PMID: 2035386. [CrossRef] [PubMed] [Google Scholar]
  27. Sun J, Folk D, Bradley TJ, Tower J (2002), Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 161(2), 661–672. https://doi.org/10.1093/genetics/161.2.661. PMID: 12072463. [CrossRef] [PubMed] [Google Scholar]
  28. Orr WC, Sohal RS (1994), Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263(5150), 1128–1130. https://doi.org/10.1126/science.8108730. PMID: 8108730. [CrossRef] [PubMed] [Google Scholar]
  29. Huang TT, Carlson EJ, Gillespie AM, Shi Y, Epstein CJ (2000), Ubiquitous overexpression of CuZn superoxide dismutase does not extend life span in mice. J Gerontol A Biol Sci Med Sci 55(1), B5–B9. https://doi.org/10.1093/gerona/55.1.b5. PMID: 10719757. [CrossRef] [PubMed] [Google Scholar]
  30. Simmons TW, Jamall IS (1989), Relative importance of intracellualr glutathione peroxidase and catalasein vivo for prevention of peroxidation to the heart. Cardiovasc Res 23(9), 774–779. PMID: 2611816. https://doi.org/10.1093/cvr/23.9.774. [CrossRef] [PubMed] [Google Scholar]
  31. Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, Alderson NL, Baynes JW, Epstein CJ, Huang TT, Nelson J, Strong R, Richardson A (2003), Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genom 16(1), 29–37. https://doi.org/10.1152/physiolgenomics.00122.2003. PMID: 14679299. [CrossRef] [PubMed] [Google Scholar]
  32. Andziak B, O’Connor TP, Qi W, DeWaal EM, Pierce A, Chaudhuri AR, Van Remmen H, Buffenstein R (2006), High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell 5(6), 463–471. https://doi.org/10.1111/j.1474-9726.2006.00237.x. PMID: 17054663. [CrossRef] [PubMed] [Google Scholar]
  33. Richardson A (2012), Is the free radical (oxidative stress) theory of aging dead? Gerontologist 52, 405–405. [Google Scholar]
  34. Pérez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y, Richardson A (2009), Is the oxidative stress theory of aging dead? Biochim Biophys Acta 1790(10), 1005–1014. https://doi.org/10.1016/j.bbagen.2009.06.003. PMID: 19524016. [CrossRef] [PubMed] [Google Scholar]
  35. Sharma A, Smith HJ, Yao P, Mair WB (2019), Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Rep 20(12), e48395. https://doi.org/10.15252/embr.201948395. PMID: 31667999; PMCID: PMC6893295. [CrossRef] [PubMed] [Google Scholar]
  36. Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, Nishimoto I (2001), A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci U S A 98(11), 6336–6341. https://doi.org/10.1073/pnas.101133498. PMID: 11371646. [CrossRef] [PubMed] [Google Scholar]
  37. Hashimoto Y, Niikura T, Ito Y, Sudo H, Hata M, Arakawa E, Abe Y, Kita Y, Nishimoto I (2001), Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer’s disease-relevant insults. J Neurosci 21(23), 9235–9245. https://doi.org/10.1523/JNEUROSCI.21-23-09235.2001. PMID: 11717357; PMCID: PMC6763898. [CrossRef] [PubMed] [Google Scholar]
  38. Hashimoto Y, Ito Y, Niikura T, Shao Z, Hata M, Oyama F, Nishimoto I (2001), Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein. Biochem Biophys Res Commun 283(2) 460–468. https://doi.org/10.1006/bbrc.2001.4765. PMID: 11327724. [CrossRef] [PubMed] [Google Scholar]
  39. Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA, Shearwood AMJ, Haugen E, Bracken CP, Rackham O, Stamatoyannopoulos JA, Filipovska A, Mattick JS (2011), The human mitochondrial transcriptome. Cell 146(4), 645–658. https://doi.org/10.1016/j.cell.2011.06.051. PMID: 21854988; PMCID: PMC3160626. [CrossRef] [PubMed] [Google Scholar]
  40. Mercer TR, Wilhelm D, Dinger ME, Soldà G, Korbie DJ, Glazov EA, Truong V, Schwenke M, Simons C, Matthaei KI, Saint R, Koopman P, Mattick JS (2011), Expression of distinct RNAs from 3’ untranslated regions. Nucleic Acids Res 39(6), 2393–2403. https://doi.org/10.1093/nar/gkq1158. PMID: 21075793; PMCID: PMC3064787. [CrossRef] [PubMed] [Google Scholar]
  41. Merry TL, Chan A, Woodhead JST, Reynolds JC, Kumagai H, Kim SJ, Lee C (2020), Mitochondrial-derived peptides in energy metabolism. Am J Physiol Endocrinol Metab 319(4), E659–E666. https://doi.org/10.1152/ajpendo.00249.2020. PMID: 32776825; PMCID: PMC7750512. [CrossRef] [PubMed] [Google Scholar]
  42. Yen K, Mehta HH, Kim SJ, Lue YH, Hoang J, Guerrero N, Port J, Bi Q, Navarrete G, Brandhorst S, Lewis KN, Wan J, Swerdloff R, Mattison JA, Buffenstein R, Breton CV, Wang C, Longo V, Atzmon G, Wallace D, Barzilai N, Cohen P (2020), The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan. Aging (Albany NY) 12(12), 11185–11199. https://doi.org/10.18632/aging.103534. PMID: 32575074. [CrossRef] [PubMed] [Google Scholar]
  43. Berry BJ, Kaeberlein M (2021), An energetics perspective on geroscience: mitochondrial protonmotive force and aging. Geroscience. https://doi.org/10.1007/s11357-021-00365-7. PMID: 33864592. [PubMed] [Google Scholar]
  44. Duchen MR(2010), Mitochondrial function and dysfunction in human disease – potential therapeutic targets from cradle to grave, in: M. Edeas(Ed.), 1st World Conference on Targeting Mitochondria, ISANH, p. 22. [Google Scholar]
  45. Duchen MR, Szabadkai G (2010), Roles of mitochondria in human disease. Essays Biochem 47, 115–137. https://doi.org/10.1042/bse0470115. PMID: 20533904. [CrossRef] [PubMed] [Google Scholar]
  46. Qiu Z, Wei Y, Song Q, Du B, Wang H, Chu Y, Hu Y (2019), The role of myocardial mitochondrial quality control in heart failure. Front Pharmacol 10, 1404. https://doi.org/10.3389/fphar.2019.01404. PMID: 31866862. [CrossRef] [PubMed] [Google Scholar]
  47. Stotland A, Gottlieb RA (2015), Mitochondrial quality control: easy come, easy go. Biochim Biophys Acta 1853(10 Pt B), 2802–2811. https://doi.org/10.1016/j.bbamcr.2014.12.041. PMID: 25596427. [CrossRef] [PubMed] [Google Scholar]
  48. Popov LD (2020), Mitochondrial biogenesis: an update. J Cell Mol Med 24(9), 4892–4899. https://doi.org/10.1111/jcmm.15194. PMID: 32279443. [CrossRef] [PubMed] [Google Scholar]
  49. Chan DC (2020), Mitochondrial dynamics and its involvement in disease. Review Annu Rev Pathol 15, 235–259. https://doi.org/10.1146/annurev-pathmechdis-012419-032711. PMID: 31585519. [CrossRef] [PubMed] [Google Scholar]
  50. Bakula D, Scheibye-Knudsen M (2020), MitophAging: mitophagy in aging and disease. Front Cell Dev Biol 8, 239. https://doi.org/10.3389/fcell.2020.00239. PMID: 32373609. [CrossRef] [PubMed] [Google Scholar]
  51. Leuenberger D, Curran SP, Koehler CM(2005), Mitochondrial biogenesis, in: C. Mullins (Ed.), The biogenesis of cellular organelles, Springer, pp. 138–163. ISBN 978-0- 387-26867-5. [CrossRef] [Google Scholar]
  52. Holloszy JO (1967), Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242(9), 2278–2282. PMID: 4290225. [CrossRef] [PubMed] [Google Scholar]
  53. Holloszy JO (2011), Regulation of mitochondrial biogenesis and GLUT4 expression by exercise. Compr Physiol 1(2), 921–940. https://doi.org/10.1002/cphy.c100052. PMID: 23737207. [CrossRef] [PubMed] [Google Scholar]
  54. Hagberg JM, Coyle EF, Baldwin KM, Cartee GD, Fontana L, Joyner MJ, Kirwan JP, Seals DR, Weiss EP (2019), The historical context and scientific legacy of John O. Holloszy. J Appl Physiol (1985) 127(2), 277–305. https://doi.org/10.1152/japplphysiol.00669.2018. PMID: 30730811. [CrossRef] [PubMed] [Google Scholar]
  55. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998), A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6), 829–839. https://doi.org/10.1016/s0092-8674(00)81410-5. PMID: 9529258. [CrossRef] [PubMed] [Google Scholar]
  56. Valero T (2014), Mitochondrial biogenesis: pharmacological approaches. Curr Pharm Des 20(35), 5507–5509. https://doi.org/10.2174/138161282035140911142118. PMID: 24606795. [CrossRef] [PubMed] [Google Scholar]
  57. Martinez-Redondo V, Pettersson AT, Ruas JL (2015), The hitchhiker’s guide to PGC-1alpha isoform structure and biological functions. Diabetologia 58(9), 1969–1977. https://doi.org/10.1007/s00125-015-3671-z. PMID: 26109214. [CrossRef] [PubMed] [Google Scholar]
  58. Scarpulla RC, Vega RB, Kelly DP (2012), Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab 23(9), 459–466. https://doi.org/10.1016/j.tem.2012.06.006. PMID: 22817841. [CrossRef] [PubMed] [Google Scholar]
  59. Wenz T (2013), Regulation of mitochondrial biogenesis and PGC-1alpha under cellular stress. Mitochondrion 13(2), 134–142. https://doi.org/10.1016/j.mito.2013.01.006. PMID: 23347985. [CrossRef] [PubMed] [Google Scholar]
  60. Komen JC, Thorburn DR (2014), Turn up the power – pharmacological activation of mitochondrial biogenesis in mouse models. Review Br J Pharmacol 171(8), 1818–1836. https://doi.org/10.1111/bph.12413. PMID: 24102298. [CrossRef] [Google Scholar]
  61. Kressler D, Schreiber SN, Knutti D, Kralli A (2002), The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J Biol Chem 277(16), 13918–13925. https://doi.org/10.1074/jbc.M201134200. PMID: 11854298. [CrossRef] [PubMed] [Google Scholar]
  62. Lin J, Handschin C, Spiegelman BM (2005), Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1(6), 361–370. https://doi.org/10.1016/j.cmet.2005.05.004. PMID: 16054085. [CrossRef] [PubMed] [Google Scholar]
  63. Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, Medeiros DM, Kovacs A, Kelly DP (2008), Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev 22(14), 1948–1961. https://doi.org/10.1101/gad.1661708. PMID: 18628400. [CrossRef] [PubMed] [Google Scholar]
  64. Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jäger S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM (2004), Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119(1), 121–135. https://doi.org/10.1016/j.cell.2004.09.013. PMID: 15454086. [CrossRef] [PubMed] [Google Scholar]
  65. Jornayvaz FR, Shulman GI (2010), Regulation of mitochondrial biogenesis. Essays Biochem 47, 69–84. https://doi.org/10.1042/bse0470069. PMID: 20533901. [CrossRef] [PubMed] [Google Scholar]
  66. Johri A, Chandra A, Beal MF (2013), PGC-1alpha, mitochondrial dysfunction, and Huntington’s disease. Free Radic Biol Med 62, 37–46. https://doi.org/10.1016/j.freeradbiomed.2013.04.016. PMID: 23602910. [CrossRef] [PubMed] [Google Scholar]
  67. Scarpulla RC (2011), Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta 1813 7, 1269–1278. https://doi.org/10.1016/j.bbamcr.2010.09.019. PMID: 20933024. [Google Scholar]
  68. Fernandez-Marcos PJ, Auwerx J (2011), Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93(4), 884S–890S. https://doi.org/10.3945/ajcn.110.001917. PMID: 21289221. [CrossRef] [PubMed] [Google Scholar]
  69. Scarpulla RC (2012), Nucleus-encoded regulators of mitochondrial function: integration of respiratory chain expression, nutrient sensing and metabolic stress. Biochim Biophys Acta 1819 9–10, 1088–1097. https://doi.org/10.1016/j.bbagrm.2011.10.011. PMID: 22080153. [Google Scholar]
  70. Hofer A, Noe N, Tischner C, Kladt N, Lellek V, Schauß A, Wenz T (2014), Defining the action spectrum of potential PGC-1alpha activators on a mitochondrial and cellular level in vivo. Hum Mol Genet 23(9), 2400–2415. https://doi.org/10.1093/hmg/ddt631. PMID: 24334768. [CrossRef] [PubMed] [Google Scholar]
  71. Galinanes M, Bullough D, Mullane KM, Hearse DJ (1992), Sustained protection by acadesine against ischemia- and reperfusion-induced injury. Studies in the transplanted rat heart. Circulation 86(2), 589–597. https://doi.org/10.1161/01.cir.86.2.589. PMID: 1638724. [CrossRef] [PubMed] [Google Scholar]
  72. Thomas A, Beuck S, Eickhoff JC, Guddat S, Krug O, Kamber M, Schänzer W, Thevis M (2010), Quantification of urinary AICAR concentrations as a matter of doping controls. Anal Bioanal Chem 396(8), 2899–2908. https://doi.org/10.1007/s00216-010-3560-8. PMID: 20225061. [CrossRef] [PubMed] [Google Scholar]
  73. Thevis M, Sigmund G, Geyer H, Schänzer W (2010), Stimulants and doping in sport. Endocrinol Metab Clin North Am 39(1), 89–105, ix. https://doi.org/10.1016/j.ecl.2009.10.011. PMID: 20122452. [CrossRef] [PubMed] [Google Scholar]
  74. Dinkova-Kostova AT, Baird L, Holmström KM, Meyer CJ, Abramov AY (2015), The spatiotemporal regulation of the Keap1-Nrf2 pathway and its importance in cellular bioenergetics. Biochem Soc Trans 43(4), 602–610. https://doi.org/10.1042/BST20150003. PMID: 26551700. [CrossRef] [PubMed] [Google Scholar]
  75. Dinkova-Kostova AT, Abramov AY (2015), The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 88(Pt B), 179–188. https://doi.org/10.1016/j.freeradbiomed.2015.04.036. PMID: 25975984. [CrossRef] [PubMed] [Google Scholar]
  76. Pall ML, Levine S (2015), Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors. Sheng Li Xue Bao 67(1), 1–18. PMID: 25672622. [PubMed] [Google Scholar]
  77. Weissig V (2020), Drug development for the therapy of mitochondrial diseases. Trends Mol Med 26(1), 40–57. https://doi.org/10.1016/j.molmed.2019.09.002. PMID: 31727544. [Google Scholar]
  78. Han X, Nonaka K, Kato H, Yamaza H, Sato H, Kifune T, Hirofuji Y, Masuda K (2019), Osteoblastic differentiation improved by bezafibrate-induced mitochondrial biogenesis in deciduous tooth-derived pulp stem cells from a child with Leigh syndrome. Biochem Biophys Rep 17, 32–37. https://doi.org/10.1016/j.bbrep.2018.11.003. PMID: 30533535. [PubMed] [Google Scholar]
  79. Lewis MR, Lewis WH (1914), Mitochondria in tissue culture. Science 39(1000), 330–333. https://doi.org/10.1126/science.39.1000.330. PMID: 17794648. [CrossRef] [PubMed] [Google Scholar]
  80. Lewis MR, Lewis WH (1915), Mitochondria (and other cytoplasmic structures) in tissue cultures. Am J Anat 17, 339–401. https://doi.org/10.1002/aja.1000170304. [CrossRef] [Google Scholar]
  81. Chan DC (2006), Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22, 79–99. https://doi.org/10.1146/annurev.cellbio.22.010305.104638. PMID: 16704336. [CrossRef] [PubMed] [Google Scholar]
  82. Chen H, Chan DC (2005), Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14(2), R283–R289. https://doi.org/10.1093/hmg/ddi270. PMID: 16244327. [CrossRef] [PubMed] [Google Scholar]
  83. Griffin EE, Graumann J, Chan DC (2005), The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria. J Cell Biol 170(2), 237–248. https://doi.org/10.1083/jcb.200503148. PMID: 16009724. [CrossRef] [PubMed] [Google Scholar]
  84. Choi SY, Huang P, Jenkins GM, Chan DC, Schiller J, Frohman MA (2006), A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 8(11), 1255–1262. https://doi.org/10.1038/ncb1487. PMID: 17028579. [CrossRef] [PubMed] [Google Scholar]
  85. Chan DC (2006), Dissecting mitochondrial fusion. Dev Cell 11(5), 592–594. https://doi.org/10.1016/j.devcel.2006.10.009. PMID: 17084350. [CrossRef] [PubMed] [Google Scholar]
  86. Chan DC (2006), Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7), 1241–1252. https://doi.org/10.1016/j.cell.2006.06.010. PMID: 16814712. [CrossRef] [PubMed] [Google Scholar]
  87. Chan DC (2012), Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46, 265–287. https://doi.org/10.1146/annurev-genet-110410-132529. PMID: 22934639. [CrossRef] [PubMed] [Google Scholar]
  88. Yu R, Lendahl U, Nistér M, Zhao J (2020), Regulation of mammalian mitochondrial dynamics: opportunities and challenges. Front Endocrinol (Lausanne) 11, 374. https://doi.org/10.3389/fendo.2020.00374. PMID: 32595603. [CrossRef] [PubMed] [Google Scholar]
  89. De Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F (1955), Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 60(4), 604–617. https://doi.org/10.1042/bj0600604. PMID: 13249955. [CrossRef] [PubMed] [Google Scholar]
  90. Berthet J, Appelmans F, De Duve C (1951), Tissue fractionation studies. II. The nature of the linkage between acid phosphatase and mitochondria in rat-liver tissue. Biochem J 50(2), 182–189. https://doi.org/10.1042/bj0500182. PMID: 14904390. [CrossRef] [PubMed] [Google Scholar]
  91. Appelmans F, Wattiaux R, Duve De (1955), Tissue fractionation studies. 5. The association of acid phosphatase with a special class of cytoplasmic granules in rat liver. Biochem J 59(3), 438–445. https://doi.org/10.1042/bj0590438. PMID: 14363114. [CrossRef] [PubMed] [Google Scholar]
  92. De Duve C (2005), The lysosome turns fifty. Nat Cell Biol 7(9), 847–849. https://doi.org/10.1038/ncb0905-847. PMID: 16136179. [CrossRef] [PubMed] [Google Scholar]
  93. Ashford TP, Porter KR (1962), Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 12(1), 198–202. https://doi.org/10.1083/jcb.12.1.198. PMID: 13862833. [CrossRef] [PubMed] [Google Scholar]
  94. Deter RL, De Duve C (1967), Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 33(2), 437–449. https://doi.org/10.1083/jcb.33.2.437. PMID: 4292315. [CrossRef] [PubMed] [Google Scholar]
  95. Deter RL, Baudhuin P, De Duve C (1967), Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol 35(2), C11–C16. https://doi.org/10.1083/jcb.35.2.c11. PMID: 6055998. [CrossRef] [PubMed] [Google Scholar]
  96. Camougrand N, Kissová I, Velours G, Manon S (2004), Uth1p: a yeast mitochondrial protein at the crossroads of stress, degradation and cell death. FEMS Yeast Res 5(2), 133–140. https://doi.org/10.1016/j.femsyr.2004.05.001. PMID: 15489196. [CrossRef] [PubMed] [Google Scholar]
  97. Kissova I, Deffieu M, Manon S, Camougrand N (2004), Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem 279(37), 39068–39074. https://doi.org/10.1074/jbc.M406960200. PMID: 15247238. [CrossRef] [PubMed] [Google Scholar]
  98. Lemasters JJ (2005), Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8(1), 3–5. https://doi.org/0.1089/rej.2005.8.3. PMID: 15798367. [Google Scholar]
  99. Saxton RA, Sabatini DM (2017), mTOR signaling in growth, metabolism, and disease. Cell 169(2), 361–371. https://doi.org/10.1016/j.cell.2017.03.035. PMID: 28388417. [CrossRef] [PubMed] [Google Scholar]
  100. Vezina C, Kudelski A, Sehgal SN (1975), Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28(10), 721–726. https://doi.org/10.7164/antibiotics.28.721. PMID: 1102508. [CrossRef] [PubMed] [Google Scholar]
  101. Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham RT (1995), Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270(2), 815–822. https://doi.org/10.1074/jbc.270.2.815. PMID: 7822316. [PubMed] [Google Scholar]
  102. Wiederrecht GJ, Sabers CJ, Brunn GJ, Martin MM, Dumont FJ, Abraham RT (1995), Mechanism of action of rapamycin: new insights into the regulation of G1-phase progression in eukaryotic cells. Prog Cell Cycle Res 1, 53–71. https://doi.org/10.1007/978-1-4615-1809-9_5. PMID: 9552353. [CrossRef] [PubMed] [Google Scholar]
  103. Lipton JO, Sahin M (2014), The neurology of mTOR. Neuron 84(2), 275–291. https://doi.org/10.1016/j.neuron.2014.09.034. PMID: 25374355. [CrossRef] [PubMed] [Google Scholar]
  104. Hay N, Sonenberg N (2004), Upstream and downstream of mTOR. Genes Dev 18(16), 1926–1945. https://doi.org/10.1101/gad.1212704. PMID: 15314020; PMCID: PMC7160495. [CrossRef] [PubMed] [Google Scholar]
  105. Kaufman RJ (2002), Orchestrating the unfolded protein response in health and disease. J Clin Invest 110(10), 1389–1398. https://doi.org/10.1172/JCI16886. PMID: 12438434. [CrossRef] [PubMed] [Google Scholar]
  106. Ma Y, Hendershot LM (2001), The unfolding tale of the unfolded protein response. Cell 107(7), 827–830. https://doi.org/10.1016/s0092-8674(01)00623-7. PMID: 11779459. [CrossRef] [PubMed] [Google Scholar]
  107. Gething MJ, Sambrook J (1992), Protein folding in the cell. Nature 355(6355), 33–45. https://doi.org/10.1038/355033a0. PMID: 1731198. [CrossRef] [PubMed] [Google Scholar]
  108. Srere PA, Sumegi B (1986), Organization of the mitochondrial matrix. Adv Exp Med Biol 194, 13–25. https://doi.org/10.1007/978-1-4684-5107-8_2. PMID: 3529854. [CrossRef] [PubMed] [Google Scholar]
  109. Hoogenraad N (2017), A brief history of the discovery of the mitochondrial unfolded protein response in mammalian cells. J Bioenerg Biomembr 49(4), 293–295. https://doi.org/10.1007/s10863-017-9703-2. PMID: 28429159. [CrossRef] [PubMed] [Google Scholar]
  110. Martinus RD, Garth GP, Webster TL, Cartwright P, Naylor DJ, Høj BP, Hoogenraad NJ (1996), Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur J Biochem 240(1), 98–103. https://doi.org/10.1111/j.1432-1033.1996.0098h.x. PMID: 8797841. [CrossRef] [PubMed] [Google Scholar]
  111. Rath E, Berger E, Messlik A, Nunes T, Liu B, Kim SC, Hoogenraad N, Sans M, Sartor RB, Haller D (2012), Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation. Gut 61(9), 1269–1278. https://doi.org/10.1136/gutjnl-2011-300767. PMID: 21997551. [CrossRef] [PubMed] [Google Scholar]
  112. Ryan MT, Herd SM, Sberna G, Samuel MM, Hoogenraad NJ, Høj PB (1997), The genes encoding mammalian chaperonin 60 and chaperonin 10 are linked head-to-head and share a bidirectional promoter. Gene 196(1–2), 9–17. https://doi.org/10.1016/s0378-1119(97)00111-x. PMID: 9322735. [CrossRef] [PubMed] [Google Scholar]
  113. Ryan MT, Naylor DJ, Høj PB, Clark MS, Hoogenraad NJ (1997), The role of molecular chaperones in mitochondrial protein import and folding. Int Rev Cytol 174, 127–193. https://doi.org/10.1016/s0074-7696(08)62117-8. PMID: 9161007. [CrossRef] [PubMed] [Google Scholar]
  114. Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ (2002), A mitochondrial specific stress response in mammalian cells. EMBO J 21(17), 4411–4419. https://doi.org/10.1093/emboj/cdf445. PMID: 12198143. [CrossRef] [PubMed] [Google Scholar]
  115. Smyrnias I, Gray SP, Okonko DO, Sawyer G, Zoccarato A, Catibog N, López B, González A, Ravassa S, Díez J, Shah AM (2019), Cardioprotective effect of the mitochondrial unfolded protein response during chronic pressure overload. J Am Coll Cardiol 73(14), 1795–1806. https://doi.org/10.1016/j.jacc.2018.12.087. PMID: 30975297. [CrossRef] [PubMed] [Google Scholar]
  116. Siegelin MD, Dohi T, Raskett CM, Orlowski GM, Powers CM, Gilbert CA, Ross AH, Plescia J, Altieri DC (2011), Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. J Clin Invest 121(4), 1349–1360. https://doi.org/10.1172/JCI44855. PMID: 21364280. [CrossRef] [PubMed] [Google Scholar]
  117. Sen R, Baltimore D (1986), Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46(5), 705–716. https://doi.org/10.1016/0092-8674(86)90346-6. PMID: 3091258. [CrossRef] [PubMed] [Google Scholar]
  118. Zhang Q, Lenardo MJ, Baltimore D (2017), 30 years of NF-kappa B: a blossoming of relevance to human pathobiology. Cell 168(1–2), 37–57. https://doi.org/10.1016/j.cell.2016.12.012. PMID: 28086098. [CrossRef] [PubMed] [Google Scholar]
  119. Smale ST (2012), Dimer-specific regulatory mechanisms within the NF-kappa B family of transcription factors. Immunol Rev 246(1), 193–204. https://doi.org/10.1111/j.1600-065X.2011.01091.x. PMID: 22435556. [CrossRef] [PubMed] [Google Scholar]
  120. Siggers T, Chang AB, Teixeira A, Wong D, Williams KJ, Ahmed B, Ragoussis J, Udalova IA, Smale ST, Bulyk ML (2012), Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-kappa B family DNA binding. Nat Immunol 13(1), 95–102. https://doi.org/10.1038/ni.2151. PMID: 22101729. [CrossRef] [Google Scholar]
  121. Williams LM, Gilmore TD (2020), Looking down on NF-kappa B. Mol Cell Biol 40(15), e00104–e00120. https://doi.org/10.1128/MCB.00104-20. PMID: 32393609. [CrossRef] [PubMed] [Google Scholar]
  122. Ivanenkov YA, Balakin KV, Lavrovsky Y (2011), Small molecule inhibitors of NF-kB and JAK/STAT signal transduction pathways as promising anti-inflammatory therapeutics. Mini Rev Med Chem 11(1), 55–78. https://doi.org/10.2174/138955711793564079. PMID: 21034406. [CrossRef] [PubMed] [Google Scholar]
  123. Mattson MP, Culmsee C, Yu Z, Camandola S (2000), Roles of nuclear factor kappa B in neuronal survival and plasticity. J Neurochem 74(2), 443–456. https://doi.org/10.1046/j.1471-4159.2000.740443.x. PMID: 10646495. [Google Scholar]
  124. Albensi BC (2019), What is nuclear factor kappa B (NF-kappa B) doing in and to the mitochondrion? Front Cell Dev Biol 7, 154. https://doi.org/10.3389/fcell.2019.00154. eCollection 2019. PMID: 31448275. [CrossRef] [PubMed] [Google Scholar]
  125. Bottero V, Busuttil V, Loubat A, Magné N, Fischel JL, Milano G, Peyron JF (2001), Activation of nuclear factor kappa B through the IKK complex by the topoisomerase poisons SN38 and doxorubicin: a brake to apoptosis in HeLa human carcinoma cells. Cancer Res 61(21), 7785–7791. PMID: 11691793. [PubMed] [Google Scholar]
  126. Bottero V, Rossi F, Samson M, Mari M, Hofman P, Peyron JF (2001), I kappa B-alpha, the NF-kappa B inhibitors subunit, interacts with ANT, the mitochondrial ATP/ADP translocator. J Biol Chem 276(24), 21317–21324. https://doi.org/10.1074/jbc.M005850200. PMID: 11287411. [CrossRef] [PubMed] [Google Scholar]
  127. Cogswell PC, Kashatus DF, Keifer JA, Guttridge DC, Reuther JY, Bristow C, Roy S, Nicholson DW, Baldwin AS Jr (2003), NF-kappa B and I kappa B alpha are found in the mitochondria – evidence for regulation of mitochondrial gene expression by NF-kappa B. J Biol Chem 278(5), 2963–2968. https://doi.org/10.1074/jbc.M209995200. PMID: 12433922. [CrossRef] [PubMed] [Google Scholar]
  128. Guseva NV, Taghiyev AF, Sturm MT, Rokhlin OW, Cohen MB (2004), Tumor necrosis factor-related apoptosis-inducing ligand-mediated activation of mitochondria-associated nuclear factor-kappa B in prostatic carcinoma cell lines. Mol Cancer Res 2(10), 574–584. PMID: 15498932. [PubMed] [Google Scholar]
  129. Zamora M, Meroño C, Viñas O, Mampel T (2004), Recruitment of NF-kappa B into mitochondria is involved in adenine nucleotide translocase 1 (ANT1)-induced apoptosis. J Biol Chem 279(37), 38415–38423. https://doi.org/10.1074/jbc.M404928200. PMID: 15231833. [CrossRef] [PubMed] [Google Scholar]
  130. Moi P, Chan K, Asunis I, Cao A, Kan YW (1994), Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA 91(21), 9926–9930. https://doi.org/10.1073/pnas.91.21.9926. PMID: 7937919. [CrossRef] [PubMed] [Google Scholar]
  131. Chan K, Lu R, Chang JC, Kan YW (1996), NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc Natl Acad Sci U S A 93(24), 13943–13948. https://doi.org/10.1073/pnas.93.24.13943. PMID: 8943040. [CrossRef] [PubMed] [Google Scholar]
  132. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997), An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236(2), 313–322. https://doi.org/10.1006/bbrc.1997.6943. PMID: 9240432. [CrossRef] [PubMed] [Google Scholar]
  133. Hayes JD, Dinkova-Kostova AT (2014), The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39(4), 199–218. https://doi.org/10.1016/j.tibs.2014.02.002. PMID: 24647116. [CrossRef] [PubMed] [Google Scholar]
  134. Yamamoto M, Kensler TW, Motohashi H (2018), The KEAP1-NRF2 System: a thiol- based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev 98(3), 1169–1203. https://doi.org/10.1152/physrev.00023.2017. PMID: 29717933. [CrossRef] [PubMed] [Google Scholar]
  135. Liu L, Locascio LM, Doré S (2019), Critical role of Nrf2 in experimental ischemic stroke. Front Pharmacol 10, 153. https://doi.org/10.3389/fphar.2019.00153. PMID: 30890934. [CrossRef] [PubMed] [Google Scholar]
  136. Gureev AP, Popov VN (2019), Nrf2/ARE pathway as a therapeutic target for the treatment of parkinson diseases. Neurochem Res 44(10), 2273–2279. https://doi.org/10.1007/s11064-018-02711-2. PMID: 30617864. [CrossRef] [PubMed] [Google Scholar]
  137. Brandes MS, Gray NE (2020), NRF2 as a therapeutic target in neurodegenerative diseases. ASN Neuro 12, 1759091419899782. https://doi.org/10.1177/1759091419899782. PMID: 31964153. [CrossRef] [Google Scholar]
  138. Dinkova-Kostova AT, Abramov AY (2015), The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 88(Pt B), 179–188. https://doi.org/10.1016/j.freeradbiomed.2015.04.036. PMID: 25975984. [CrossRef] [PubMed] [Google Scholar]
  139. Dinkova-Kostova AT, Fahey JW, Kostov RV, Kensler TW (2017), KEAP1 and done? Targeting the NRF2 pathway with sulforaphane. Trends Food Sci Technol 69(Pt B), 257–269. https://doi.org/10.1016/j.tifs.2017.02.002. PMID: 29242678. [CrossRef] [PubMed] [Google Scholar]
  140. Kang TC (2020), Nuclear factor-erythroid 2-related factor 2 (Nrf2) and mitochondrial dynamics/mitophagy in neurological diseases. Antioxidants (Basel) 9(7), 617. https://doi.org/10.3390/antiox9070617. PMID: 32679689. [CrossRef] [Google Scholar]
  141. Jeucken K, Van Hamburg JP, Tas SW (2019), Activated memory T cells produce ligands that cause Nf-Kb-dependent inflammatory activation of the endothelium: identification of novel therapeutic targets. Ann Rheum Dis 78, 285–285. https://doi.org/10.1136/annrheumdis-2019-eular.2979. [Google Scholar]
  142. Aoki T, Fukuda M, Nishimura M, Nozaki K, Narumiya S (2014), NF-kB as a critical factor for intracranial aneurysm formation and as a therapeutic target for treatment. Acta Neuropathol Commun. 31(2), 34. https://doi.org/10.1186/2051-5960-2-34. [CrossRef] [Google Scholar]
  143. Montano-Almendras C, Essaghir A, Schoemans H, Noël L, Velghe A, Varis I, Latinne D, Knoops L, Demoulin JB (2012), Phosphatidylinositol-3 kinase and NF-kB as potential therapeutic targets in myeloid malignancies associated with hypereosinophilia and PDGF receptor rearrangements. Haematologica 97(s1), 376. [Google Scholar]
  144. Ruike T, Striker GE, Zheng F, Leong DJ, Grosjean F, Majeska RJ, Iatridis JC, Vlassara H, Hardin JA, Cobelli NJ, Sun HB (2012), Nf-Kb: a potential mediator of adamts-5 activation and therapeutic target for cartilage breakdown in high age diet-induced osteoarthritis. Osteoarthr Cartil 20, S116–S117. https://doi.org/10.1016/j.joca.2012.02.141. [CrossRef] [Google Scholar]
  145. Ina K, Knsugami K, Nishiwaki T, Furuta R, Watanabe O, Suzuki T, Ando T, Goto H (2004), Suppression of endothelial Nf-kB activation may be a candidate therapeutic target in patients with ulcerative colitis. Gastroenterology 126(Wl108), A 570. [Google Scholar]
  146. Lynch DR, Farmer J, Hauser L, Blair IA, Wang QQ, Mesaros C, Snyder N, Boesch S, Chin M, Delatycki MB, Giunti P, Goldsberry A, Hoyle C, McBride MG, Nachbauer W, O’Grady M, Perlman S, Subramony SH, Wilmot GR, Zesiewicz T, Meyer C (2019), Safety, pharmacodynamics, and potential benefit of omaveloxolone in Friedreich ataxia. Ann Clin Transl Neurol 6(1), 15–26. https://doi.org/10.1002/acn3.660. PMID: 30656180. [CrossRef] [PubMed] [Google Scholar]
  147. Dang W (2014), The controversial world of sirtuins. Drug Discov Today Technol 12, e9–e17. https://doi.org/10.1016/j.ddtec.2012.08.003. PMID: 25027380. [CrossRef] [PubMed] [Google Scholar]
  148. Guarente L (1999), Diverse and dynamic functions of the sir silencing complex. Nat Genet 23(3), 281–285. https://doi.org/10.1038/15458. PMID: 10545947. [CrossRef] [PubMed] [Google Scholar]
  149. Kaeberlein M, McVey M, Guarente L (1999), The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13(19), 2570–2580. https://doi.org/10.1101/gad.13.19.2570. PMID: 10521401. [CrossRef] [PubMed] [Google Scholar]
  150. Tissenbaum HA, Guarente L (2001), Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410(6825), 227–230. https://doi.org/10.1038/35065638. PMID: 11242085. [CrossRef] [PubMed] [Google Scholar]
  151. Rogina B, Helfand SL (2004), Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101(45), 15998–16003. https://doi.org/10.1073/pnas.0404184101. PMID: 15520384. [CrossRef] [PubMed] [Google Scholar]
  152. Bonkowski MS, Sinclair DA (2016), Slowing ageing by design: the rise of NAD(+) and sirtuin-activating compounds. Nat Rev Mol Cell Biol 17(11), 679–690. https://doi.org/10.1038/nrm.2016.93. PMID: 27552971. [CrossRef] [PubMed] [Google Scholar]
  153. Dai H, Sinclair DA, Ellis JL, Steegborn C (2018), Sirtuin activators and inhibitors: promises, achievements, and challenges. Pharmacol Ther 188, 140–154. https://doi.org/10.1016/j.pharmthera.2018.03.004. PMID: 29577959. [CrossRef] [PubMed] [Google Scholar]
  154. Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Guillemin GJ (2012), Age- associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One 7(7), e42357. https://doi.org/10.1371/journal.pone.0042357. PMID: 22848760. [CrossRef] [PubMed] [Google Scholar]
  155. Massudi H, Grant R, Guillemin GJ, Braidy N (2012), NAD+ metabolism and oxidative stress: the golden nucleotide on a crown of thorns. Redox Rep 17(1), 28–46. https://doi.org/10.1179/1351000212Y.0000000001. PMID: 22340513. [CrossRef] [PubMed] [Google Scholar]
  156. Wang CH, Wei YH (2020), Roles of mitochondrial sirtuins in mitochondrial function, redox homeostasis, insulin resistance and type 2 diabetes. Int J Mol Sci 21(15), 5266. https://doi.org/10.3390/ijms21155266. PMID: 32722262. [CrossRef] [Google Scholar]
  157. Krengel U, Tornroth-Horsefield S (2015), Biochemistry. Coping with oxidative stress. Science 347(6218), 125–126. https://doi.org/10.1126/science.aaa3602. PMID: 25574006. [CrossRef] [PubMed] [Google Scholar]
  158. Weissig V, Guzman-Villanueva D (2015), Nanocarrier-based antioxidant therapy: promise or delusion? Expert Opin Drug Deliv 12(11), 1783–1790. https://doi.org/10.1517/17425247.2015.1063611. PMID: 26119920. [CrossRef] [PubMed] [Google Scholar]
  159. Loschen G, Flohé F, Chance B (1971), Respiratory Chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett 18(2), 261–264. https://doi.org/10.1016/0014-5793(71)80459-3. PMID: 11946135. [CrossRef] [PubMed] [Google Scholar]
  160. Boveris A, Oshino N, Chance B (1972), Cellular production of hydrogen-peroxide. Biochem J 128(3), 617–630. https://doi.org/10.1042/bj1280617. PMID: 4404507. [CrossRef] [PubMed] [Google Scholar]
  161. Chance B, Sies H, Boveris A (1979), Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3), 527–605. https://doi.org/10.1152/physrev.1979.59.3.527. PMID: 37532. [CrossRef] [PubMed] [Google Scholar]
  162. Linnane AW, Eastwood H (2004), Cellular redox poise modulation; the role of coenzyme Q(10), gene and metabolic regulation. Mitochondrion 4(5–6), 779–789. https://doi.org/10.1016/j.mito.2004.07.035. PMID: 16120432. [CrossRef] [PubMed] [Google Scholar]
  163. Linnane AW, Eastwood H (2006), Cellular redox regulation and prooxidant signaling systems a new perspective on the free radical theory of aging. Ann N Y Acad Sci 1067, 47–55. https://doi.org/10.1196/annals.1354.008. PMID: 16803970. [CrossRef] [PubMed] [Google Scholar]
  164. Linnane AW, Kios M, Vitetta L (2007), Healthy aging: regulation of the metabolome by cellular redox modulation and prooxidant signaling systems: the essential roles of superoxide anion and hydrogen peroxide. Biogerontology 8(5), 445–467. https://doi.org/10.1007/s10522-007-9096-4. PMID: 17415678 Review. [CrossRef] [PubMed] [Google Scholar]
  165. Linnane AW, Kios M, Vitetta L (2007), The essential requirement for superoxide radical and nitric oxide formation for normal physiological function and healthy aging. Mitochondrion 7(1–2), 1–5. https://doi.org/10.1016/j.mito.2006.11.009. PMID: 17317335. [CrossRef] [PubMed] [Google Scholar]
  166. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002), Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277(47), 44784–44790. https://doi.org/10.1074/jbc.M207217200. PMID: 12237311. [CrossRef] [PubMed] [Google Scholar]
  167. Nohl H, Kozlov AV, Staniek K, Gille L (2001), The multiple functions of coenzyme Q. Bioorg Chem 29(1), 1–13. https://doi.org/10.1006/bioo.2000.1193. PMID: 11300690. [CrossRef] [PubMed] [Google Scholar]
  168. Nohl H, Gille L, Staniek K (2005), Intracellular generation of reactive oxygen species by mitochondria. Biochem Pharmacol 69(5), 719–723. https://doi.org/10.1016/j.bcp.2004.12.002. PMID: 15710349. [CrossRef] [PubMed] [Google Scholar]
  169. Forman HJ, Ursini F, Maiorino M (2014), An overview of mechanisms of redox signaling. J Mol Cell Cardiol 73, 2–9. https://doi.org/10.1016/j.yjmcc.2014.01.018. PMID: 24512843. [CrossRef] [PubMed] [Google Scholar]
  170. Forman HJ, Maiorino M, Ursini F (2010), Signaling functions of reactive oxygen species. Biochemistry 49(5), 835–842. https://doi.org/10.1021/bi9020378. PMID: 20050630. [CrossRef] [PubMed] [Google Scholar]
  171. Weissig V, Guzman-Villanueva D (2015), Nanocarrier-based antioxidant therapy: promise or delusion? Expert Opin Drug Deliv 12(11), 1783–1790. https://doi.org/10.1517/17425247.2015.1063611. PMID: 26119920. [CrossRef] [PubMed] [Google Scholar]
  172. Liberman EA, Topaly VP, Tsofina LM, Jasaitis AA, Skulachev VP (1969), Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 222(5198), 1076–1078. https://doi.org/10.1038/2221076a0. PMID: 5787094. [CrossRef] [PubMed] [Google Scholar]
  173. Chen LB (1988), Mitochondrial-membrane potential in living cells. Annu Rev Cell Biol 4, 155–181. https://doi.org/10.1146/annurev.cb.04.110188.001103. PMID: 3058159. [CrossRef] [PubMed] [Google Scholar]
  174. Darzynkiewicz Z, Raganos F, Staiano-Coico L, Kapuscinski J, Melamed MR (1982), Interactions of rhodamine-123 with living cells studied by flow-cytometry. Cancer Res 42(3), 799–806. PMID: 7059978. [PubMed] [Google Scholar]
  175. Kubin RF, Fletcher AN (1982), Fluorescence quantum yields of some rhodamine dyes. J Lumin 27, 455–462. https://doi.org/10.1016/0022-2313(82)90045-X. [CrossRef] [Google Scholar]
  176. Weiss MJ, Wong JR, Ha CS, Bleday R, Salem RR, Steele GD Jr, Chen LB (1987), Dequalinium, a topical antimicrobial agent, displays anticarcinoma activity based on selective mitochondrial accumulation. Proc Natl Acad Sci U S A 84(15), 5444–5448. https://doi.org/10.1073/pnas.84.15.5444. PMID: 3474661. [CrossRef] [PubMed] [Google Scholar]
  177. Horobin RW, Trapp S, Weissig V (2007), Mitochondriotropics: a review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J Control Release 121(3), 125–136. https://doi.org/10.1016/j.jconrel.2007.05.040. PMID: 17658192. [CrossRef] [PubMed] [Google Scholar]
  178. Cocheme HM, Kelso GF, James AJ, Ross MF, Trnka J, Mahendiran T, Asin-Cayuela J, Blaikie FH, Manas ARB, Porteous CM, Adlam VJ, Smith RAJ, Murphy MP (2007), Mitochondrial targeting of quinones: therapeutic implications. Mitochondrion 7(Suppl), S94–S102. https://doi.org/10.1016/j.mito.2007.02.007. PMID: 17449335. [CrossRef] [PubMed] [Google Scholar]
  179. Filipovska A, Kelso GF, Brown SE, Beer SM, Smith RAJ, Murphy MP (2005), Synthesis and characterization of a triphenylphosphonium-conjugated peroxidase mimetic. Insights into the interaction of ebselen with mitochondria. J Biol Chem 280(25), 24113–24126. https://doi.org/10.1074/jbc.M501148200. PMID: 15831495. [CrossRef] [PubMed] [Google Scholar]
  180. Ross MF, Kelso GF, Blaikie FH, James AM, Cochemé HM, Filipovska A, Da Ros T, Hurd TR, Smith RAJ, Murphy MP (2005), Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc) 70(2), 222–230. https://doi.org/10.1007/s10541-005-0104-5. PMID: 15807662. [CrossRef] [PubMed] [Google Scholar]
  181. Smith RA, Kelso GF, James AM, Murphy MP (2004), Targeting coenzyme Q derivatives to mitochondria. Methods Enzymol 382, 45–67. https://doi.org/10.1016/S0076-6879(04)82003-2. PMID: 15047095. [CrossRef] [PubMed] [Google Scholar]
  182. Smith RA, Kelso GF, Blaikie FH, Porteous CM, Ledgerwood EC, Hughes G, James AM, Ross MF, Asin-Cayuela J, Cochemé HM, Filipovska A, Murphy MP (2003), Using mitochondria-targeted molecules to study mitochondrial radical production and its consequences. Biochem Soc Trans 31(Pt 6), 1295–1299. https://doi.org/10.1042/bst0311295. PMID: 14641046. [CrossRef] [PubMed] [Google Scholar]
  183. Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP (2001), Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276(7), 4588–4596. https://doi.org/10.1074/jbc.M009093200. PMID: 11092892. [CrossRef] [PubMed] [Google Scholar]
  184. Coulter CV, Kelso GF, Lin TK, Smith RA, Murphy MP (2000), Mitochondrially targeted antioxidants and thiol reagents. Free Radic Biol Med 28(10), 1547–1554. https://doi.org/10.1016/s0891-5849(00)00255-0. PMID: 10927180. [CrossRef] [PubMed] [Google Scholar]
  185. Smith RA, Porteous CM, Coulter CV, Murphy MP (1999), Selective targeting of an antioxidant to mitochondria. Eur J Biochem 263(3), 709–716. https://doi.org/10.1046/j.1432-1327.1999.00543.x. PMID: 10469134. [CrossRef] [PubMed] [Google Scholar]
  186. Szeto HH, Birk AV (2014), Serendipity and the discovery of novel compounds that restore mitochondrial plasticity. Clin Pharmacol Ther 96(6), 672–683. https://doi.org/10.1038/clpt.2014.174. PMID: 25188726. [CrossRef] [PubMed] [Google Scholar]
  187. Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH (2004), Cell- permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279(33), 34682–34690. https://doi.org/10.1074/jbc.M402999200. PMID: 15178689. [CrossRef] [PubMed] [Google Scholar]
  188. Szeto HH (2014), First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol 171(8), 2029–2050. https://doi.org/10.1111/bph.12461. PMID: 24117165. [CrossRef] [PubMed] [Google Scholar]
  189. Birk AV, Liu S, Soong Y, Mills W, Singh P, Warren JD, Seshan SV, Pardee JD, Szeto HH (2013), The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol 24(8), 1250–1261. https://doi.org/10.1681/ASN.2012121216. PMID: 23813215. [CrossRef] [PubMed] [Google Scholar]
  190. Birk AV, Chao WM, Bracken C, Warren JD, Szeto HH (2014), Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. Br J Pharmacol 171(8), 2017–2028. https://doi.org/10.1111/bph.12468. PMID: 24134698. [CrossRef] [PubMed] [Google Scholar]
  191. O’Rourke B (2007), Mitochondrial ion channels. Annu Rev Physiol 69, 19–49. https://doi.org/10.1146/annurev.physiol.69.031905.163804. PMID: 17059356. [CrossRef] [PubMed] [Google Scholar]
  192. Ponnalagu D, Singh H (2020), Insights into the role of mitochondrial ion channels in inflammatory response. Front Physiol 11, 258. https://doi.org/10.3389/fphys.2020.00258. PMID: 32327997; PMCID: PMC7160495. [CrossRef] [PubMed] [Google Scholar]
  193. Schein SJ, Colombini M, Finkelstein A (1976), Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J Membr Biol 30(2), 99–120. https://doi.org/10.1007/BF01869662. PMID: 1011248. [CrossRef] [PubMed] [Google Scholar]
  194. Rostovtseva TK, Tan W, Colombini M (2005), On the role of VDAC in apoptosis: fact and fiction. J Bioenerg Biomembr 37(3), 129–142. https://doi.org/10.1007/s10863-005-6566-8. PMID: 16167170. [CrossRef] [PubMed] [Google Scholar]
  195. De Pinto V (2021), Renaissance of VDAC: new insights on a protein family at the interface between mitochondria and cytosol. Biomolecules 11(1), 107. https://doi.org/10.3390/biom11010107. PMID: 33467485. [CrossRef] [PubMed] [Google Scholar]
  196. Nicholls DG (2021), Mitochondrial proton leaks and uncoupling proteins. Biochim Biophys Acta Bioenerg 1862(7), 148428. https://doi.org/10.1016/j.bbabio.2021.148428. PMID: 33798544. [CrossRef] [PubMed] [Google Scholar]
  197. Ricquier D (2017), UCP1, the mitochondrial uncoupling protein of brown adipocyte: a personal contribution and a historical perspective. Biochimie 134, 3–8. https://doi.org/10.1016/j.biochi.2016.10.018. PMID: 27916641. [CrossRef] [PubMed] [Google Scholar]
  198. Nicholls DG, Bernson VS, Heaton GM (1978), The identification of the component in the inner membrane of brown adipose tissue mitochondria responsible for regulating energy dissipation. Exp Suppl 32, 89–93. https://doi.org/10.1007/978-3-0348-5559-4_9. PMID: 348493. [Google Scholar]
  199. Bouillaud F, Raimbault S, Ricquier D (1988), The gene for rat uncoupling protein: complete sequence, structure of primary transcript and evolutionary relationship between exons. Biochem Biophys Res Commun 157(2), 783–792. https://doi.org/10.1016/s0006-291x(88)80318-8. PMID: 3202878. [CrossRef] [PubMed] [Google Scholar]
  200. Bouillaud F, Villarroya F, Hentz H, Raimbault S, Cassard AM, Ricquier D (1988), Detection of brown adipose tissue uncoupling protein mRNA in adult patients by a human genomic probe. Clin Sci (Lond) 75(1), 21–27. https://doi.org/10.1042/cs0750021. PMID: 3165741. [CrossRef] [PubMed] [Google Scholar]
  201. Ricquier D, Bouillaud F (2000), Mitochondrial uncoupling proteins: from mitochondria to the regulation of energy balance. J Physiol 529(Pt 1), 3–10. https://doi.org/10.1111/j.1469-7793.2000.00003.x. PMID: 11080246. [CrossRef] [PubMed] [Google Scholar]
  202. Ramsden DB, Ho PWL, Ho JWM, Liu HF, So DHF, Tse HM, Chan KH, Ho SL (2012), Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction. Brain Behav 2(4), 468–478. https://doi.org/10.1002/brb3.55. PMID: 22950050. [CrossRef] [PubMed] [Google Scholar]
  203. Ho JW, Ho PWL, Liu HF, So DHF, Chan KH, Tse ZHM, Kung MHW, Ramsden DB, Ho SL (2012), UCP4 is a target effector of the NF-kappaB c-Rel prosurvival pathway against oxidative stress. Free Radic Biol Med 53(2), 383–394. https://doi.org/10.1016/j.freeradbiomed.2012.05.002. PMID: 22580300. [CrossRef] [PubMed] [Google Scholar]
  204. Ho PW, Ho JWM, Tse HM, So DHF, Yiu DCW, Liu HF, Chan KH, Kung MHW, Ramsden DB, Ho SL (2012), Uncoupling protein-4 (UCP4) increases ATP supply by interacting with mitochondrial complex II in neuroblastoma cells. PLoS One 7(2), e32810. https://doi.org/10.1371/journal.pone.0032810. PMID: 22427795. [CrossRef] [PubMed] [Google Scholar]
  205. Deluca HF, Engstrom GW (1961), Calcium uptake by rat kidney mitochondria. Proc Natl Acad Sci U S A 47(11), 1744–1750. https://doi.org/10.1073/pnas.47.11.1744. PMID: 13885269. [CrossRef] [PubMed] [Google Scholar]
  206. Hoppe UC (2010), Mitochondrial calcium channels. FEBS Lett 584(10), 1975–1981. https://doi.org/10.1016/j.febslet.2010.04.017. PMID: 20388514. [CrossRef] [PubMed] [Google Scholar]
  207. Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AJ, Mootha VK (2010), MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 467(7313), 291–296. https://doi.org/10.1038/nature09358. PMID: 20693986. [CrossRef] [PubMed] [Google Scholar]
  208. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011), Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476(7360), 341–345. https://doi.org/10.1038/nature10234. PMID: 21685886. [CrossRef] [PubMed] [Google Scholar]
  209. De Stefani D, Raffaello A, Teardo E, Szabò I, Rizzuto R (2011), A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476(7360), 336–340. https://doi.org/10.1038/nature10230. PMID: 21685888. [CrossRef] [PubMed] [Google Scholar]
  210. Wang Y, Han Y, She J, Nguyen NX, Mootha VK, Bai XC, Jiang Y (2020), Structural insights into the Ca(2+)-dependent gating of the human mitochondrial calcium uniporter. Elife 9, e60513. https://doi.org/10.7554/eLife.60513. PMID: 32762847. [CrossRef] [PubMed] [Google Scholar]
  211. Esteras N, Abramov AY (2020), Mitochondrial calcium deregulation in the mechanism of beta-amyloid and tau pathology. Cells 9(9), 2135. https://doi.org/10.3390/cells9092135. PMID: 32967303; PMCID: PMC7564294. [CrossRef] [Google Scholar]
  212. Inoue I, Nagase H, Kishi K, Higuti T (1991), ATP-sensitive K+ channel in the inner membrane. Nature 352(6332), 244–247. https://doi.org/10.1038/352244a0. PMID: 1857420. [CrossRef] [PubMed] [Google Scholar]
  213. Siemen D, Loupatatzis C, Borecky J, Gulbins E, Lang F (1999), Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem Biophys Res Commun 257(2), 549–554. https://doi.org/10.1006/bbrc.1999.0496. PMID: 10198249. [CrossRef] [PubMed] [Google Scholar]
  214. Lamping KA, Gross GJ (1985), Improved recovery of myocardial segment function following a short coronary occlusion in dogs by nicorandil, a potential new antianginal agent, and nifedipine. J Cardiovasc Pharmacol 7(1), 158–166. https://doi.org/10.1097/00005344-198501000-00026. PMID: 2580137. [CrossRef] [PubMed] [Google Scholar]
  215. Rotko D, Kunz WS, Szewczyk A, Kulawiak B (2020), Signaling pathways targeting mitochondrial potassium channels. Int J Biochem Cell Biol 125, 105792. https://doi.org/10.1016/j.biocel.2020.105792. PMID: 32574707. [CrossRef] [PubMed] [Google Scholar]
  216. Hausenloy DJ, Schulz R, Girao H, Kwak BR, De Stefani D, Rizzuto R, Bernardi P, Di Lisa F (2020), Mitochondrial ion channels as targets for cardioprotection. J Cell Mol Med 24(13), 7102–7114. https://doi.org/10.1111/jcmm.15341. PMID: 32490600. [CrossRef] [PubMed] [Google Scholar]
  217. Wrzosek A, Augustynek B, Żochowska M, Szewczyk A (2020), Mitochondrial potassium channels as druggable targets. Biomolecules 10(8), 1200. https://doi.org/10.3390/biom10081200. PMID: 32824877. [CrossRef] [Google Scholar]
  218. Wong JM, De Souza R, Kendall CWC, Emam A, Jenkins DJA (2006), Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40(3), 235–243. https://doi.org/10.1097/00004836-200603000-00015. PMID: 16633129. [CrossRef] [PubMed] [Google Scholar]
  219. Weissig V, Edeas M (2021), Recent developments in mitochondrial medicine (Part 1). Fopen 4, 1–13. [Google Scholar]
  220. Sagan L (1967), On origin of mitosing cells. J Theor Biol 14(3), 255–274. https://doi.org/10.1016/0022-5193(67)90079-3. PMID: 11541392. [Google Scholar]
  221. Franco-Obregon A, Gilbert JA (2017), The microbiome-mitochondrion connection: common ancestries, common mechanisms, common goals. mSystems 2(3), e00018-17. https://doi.org/10.1128/mSystems.00018-17. PMID: 28497122. [CrossRef] [PubMed] [Google Scholar]
  222. Clark A, Mach N (2017), The crosstalk between the gut microbiota and mitochondria during exercise. Front Physiol 8, 319. https://doi.org/10.3389/fphys.2017.00319. PMID: 28579962. [CrossRef] [PubMed] [Google Scholar]
  223. Saint-Georges-Chaumet Y, Edeas M (2016), Microbiota-mitochondria inter-talk: consequence for microbiota-host interaction. Pathog Dis 74(1), ftv096. https://doi.org/10.1093/femspd/ftv096. PMID: 26500226. [CrossRef] [PubMed] [Google Scholar]
  224. Dache ZA, Otandault A, Tanos R, Pastor B, Meddeb R, Sanchez C, Arena G, Lasorsa L, Bennett A, Grange T, Messaoudi SE, Mazard T, Prevostel C, Thierry AR (2020), Blood contains circulating cell-free respiratory competent mitochondria. FASEB J 34(3), 3616–3630. https://doi.org/10.1096/fj.201901917RR. PMID: 31957088. [CrossRef] [PubMed] [Google Scholar]
  225. Missiroli S, Genovese I, Perrone M, Vezzani B, Vitto VAM, Giorgi C (2020), The role of mitochondria in inflammation: from cancer to neurodegenerative disorders. J Clin Med 9(3), 740. https://doi.org/10.3390/jcm9030740. [CrossRef] [Google Scholar]
  226. Jackson DN, Theiss AL (2020), Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes 11(3), 285–304. https://doi.org/10.1080/19490976.2019.1592421. PMID: 30913966. [CrossRef] [PubMed] [Google Scholar]
  227. Mottawea W, Chiang CK, Mühlbauer M, Starr AE, Butcher J, Abujamel T, Deeke SA, Brandel A, Zhou H, Shokralla S, Hajibabaei M, Singleton R, Benchimol EI, Jobin C, Mack DR, Figeys D, Stintzi A (2016), Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn’s disease. Nat Commun 7, 13419. https://doi.org/10.1038/ncomms13419. PMID: 27876802. [CrossRef] [PubMed] [Google Scholar]
  228. Sergi D, Naumovski N, Heilbronn LK, Abeywardena M, O’Callaghan N, Lionetti L, Luscombe-Marsh N (2019), Mitochondrial (Dys)function and insulin resistance: from pathophysiological molecular mechanisms to the impact of diet. Front Physiol 10, 532. https://doi.org/10.3389/fphys.2019.00532. PMID: 31130874. [CrossRef] [PubMed] [Google Scholar]
  229. Vezza T, Abad-Jiménez Z, Marti-Cabrera M, Rocha M, Víctor VM (2020), Microbiota-mitochondria inter-talk: a potential therapeutic strategy in obesity and type 2 diabetes. Antioxidants (Basel) 9(9), 848. https://doi.org/10.3390/antiox9090848. PMID: 32927712. [CrossRef] [Google Scholar]
  230. Anderson G (2019), Endometriosis pathoetiology and pathophysiology: roles of vitamin A, estrogen, immunity, adipocytes, gut microbiome and melatonergic pathway on mitochondria regulation. Biomol Concepts 10(1), 133–149. https://doi.org/10.1515/bmc-2019-0017. PMID: 31339848. [CrossRef] [PubMed] [Google Scholar]
  231. Ata B, Yildiz S, Turkgeldi E, Brocal VP, Dinleyici EC, Moya A, Urman B (2019), The endobiota study: comparison of vaginal, cervical and gut microbiota between women with stage 3/4 endometriosis and healthy controls. Sci Rep 9(1), 2204. https://doi.org/10.1038/s41598-019-39700-6. PMID: 30778155. [CrossRef] [PubMed] [Google Scholar]
  232. Durand PY, Nicco C, Serteyn D, Attaf D, Edeas M (2018), Microbiota quality and mitochondrial activity link with occurrence of muscle cramps in hemodialysis patients using citrate dialysate: a pilot study. Blood Purif 46(4), 301–308. https://doi.org/10.1159/000490612. PMID: 30048977. [CrossRef] [PubMed] [Google Scholar]
  233. Simoes-Silva L, Araujo R, Pestana M, Soares-Silva I, Sampaio-Maia B (2018), The microbiome in chronic kidney disease patients undergoing hemodialysis and peritoneal dialysis. Pharmacol Res 130, 143–151. https://doi.org/10.1016/j.phrs.2018.02.011. PMID: 29444477. [CrossRef] [PubMed] [Google Scholar]
  234. Paule A, Frezza D, Edeas M (2018), Microbiota and phage therapy: future challenges in medicine. Med Sci (Basel) 6(4), 86. https://doi.org/10.3390/medsci6040086. PMID: 30301167. [Google Scholar]
  235. Al Amir Dache Z, Otandault A, Tanos R, Pastor B, Meddeb R, Sanchez C, Arena G, Lasorsa L, Bennett A, Grange T, El Messaoudi S, Mazard T, Prevostel C, Thierry AR (2020), Blood contains circulating cell-free respiratory competent mitochondria. FASEB J 34(3), 3616–3630. https://doi.org/10.1096/fj.201901917RR. PMID: 31957088. [Google Scholar]
  236. Song X, Hu W, Yu H, Wang H, Zhao Y, Korngold R, Zhao Y (2020), Existence of circulating mitochondria in human and animal peripheral blood. Int J Mol Sci 21(6), 2122. https://doi.org/10.3390/ijms21062122. PMID: 32204530. [CrossRef] [Google Scholar]
  237. Stier A (2021), Human blood contains circulating cell-free mitochondria, but are they really functional? Am J Physiol Endocrinol Metab 320(5), E859–E863. https://doi.org/10.1152/ajpendo.00054.2021. PMID: 33719587. [CrossRef] [PubMed] [Google Scholar]
  238. Yu H, Hu W, Song X, Zhao Y (2020), Immune modulation of platelet-derived mitochondria on memory CD4(+) T cells in humans. Int J Mol Sci 21(17), 6295. https://doi.org/10.3390/ijms21176295. PMID: 32878069. [CrossRef] [Google Scholar]
  239. Bluestone JA, Herold K, Eisenbarth G (2010), Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464(7293), 1293–1300. https://doi.org/10.1038/nature08933. PMID: 20432533. [CrossRef] [PubMed] [Google Scholar]
  240. Miliotis S, Nicolalde B, Ortega M, Yepez J, Caicedo A (2019), Forms of extracellular mitochondria and their impact in health. Mitochondrion 48, 16–30. https://doi.org/10.1016/j.mito.2019.02.002. PMID: 30771504. [CrossRef] [PubMed] [Google Scholar]
  241. Lindqvist D, Wolkowitz OM, Picard M, Ohlsson L, Bersani FS, Fernström J, Westrin A, Hough CM, Lin J, Reus VI, Epel ES, Mellon SH (2018), Circulating cell-free mitochondrial DNA, but not leukocyte mitochondrial DNA copy number, is elevated in major depressive disorder. Neuropsychopharmacology 43(7), 1557–1564. https://doi.org/10.1038/s41386-017-0001-9. PMID: 29453441. [CrossRef] [PubMed] [Google Scholar]
  242. Storci G, Bonifazi F, Garagnani P, Olivieri F, Bonafè M (2021), The role of extracellular DNA in COVID-19: clues from inflamm-aging. Ageing Res Rev 66, 101234. https://doi.org/10.1016/j.arr.2020.101234. PMID: 33321254. [CrossRef] [PubMed] [Google Scholar]
  243. Tiku V, Tan MW, Dikic I (2020), Mitochondrial functions in infection and immunity: (Trends in Cell Biology 30, 263-275, 2020). Trends Cell Biol 30(9), 748. https://doi.org/10.1016/j.tcb.2020.07.001. PMID: 32703641 Free PMC article. No abstract available. [CrossRef] [PubMed] [Google Scholar]
  244. Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X, Wen F, Huang X, Ning G, Wang W (2020), Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV- 2) receptor ACE2 in different populations. Cell Discov 6, 11. https://doi.org/10.1038/s41421-020- 0147-1. PMID: 32133153. [CrossRef] [PubMed] [Google Scholar]
  245. Singh KK, Chaubey G, Chen JY, Suravajhala P (2020), Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am J Physiol Cell Physiol 319(2), C258–C267. https://doi.org/10.1152/ajpcell.00224.2020. PMID: 32510973. [CrossRef] [PubMed] [Google Scholar]
  246. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S (2020), SARS-CoV- 2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2), 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052. PMID: 32142651. [CrossRef] [PubMed] [Google Scholar]
  247. Nakahira K, Kyung SY, Rogers AJ, Gazourian L, Youn S, Massaro AF, Quintana C, Osorio JC, Wang Z, Zhao Y, Lawler LA, Christie JD, Meyer NJ, Mc Causland FR, Waikar SS, Waxman AB, Chung RT, Bueno R, Rosas IO, Fredenburgh LE, Baron RM, Christiani DC, Hunninghake GM, Choi AMK (2013), Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLoS Med 10(12), e1001577. https://doi.org/10.1371/journal.pmed.1001577. PMID: 24391478. [CrossRef] [PubMed] [Google Scholar]
  248. Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I, Kritas SK (2020), Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents 34(2), 327–331. https://doi.org/10.23812/CONTI-E. PMID: 32171193. [PubMed] [Google Scholar]
  249. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C (2020), Cytokine storm in COVID-19: the current evidence and treatment strategies. Front Immunol 11, 1708. https://doi.org/10.3389/fimmu.2020.01708. PMID: 32754163. [CrossRef] [PubMed] [Google Scholar]
  250. Shenoy S (2020), Coronavirus (Covid-19) sepsis: revisiting mitochondrial dysfunction in pathogenesis, aging, inflammation, and mortality. Inflamm Res 69(11), 1077–1085. https://doi.org/10.1007/s00011-020-01389-z. PMID: 32767095. [CrossRef] [PubMed] [Google Scholar]
  251. Fernandez-Ayala DJM, Navas P, López-Lluch G (2020), Age-related mitochondrial dysfunction as a key factor in COVID-19 disease. Exp Gerontol 142, 111147. https://doi.org/10.1016/j.exger.2020.111147. PMID: 33171276. [CrossRef] [PubMed] [Google Scholar]
  252. Ganji R, Reddy PH (2020), Impact of COVID-19 on mitochondrial-based immunity in aging and age-related diseases. Front Aging Neurosci 12, 614650. https://doi.org/10.3389/fnagi.2020.614650. PMID: 33510633. [Google Scholar]
  253. Tang N, Li D, Wang X, Sun Z (2020), Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 18(4), 844–847. https://doi.org/10.1111/jth.14768. PMID: 32073213. [CrossRef] [PubMed] [Google Scholar]
  254. Edeas M, Saleh J, Peyssonnaux C (2020), Iron: innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis 97, 303–305. https://doi.org/10.1016/j.ijid.2020.05.110. PMID: 32497811. [CrossRef] [PubMed] [Google Scholar]
  255. Vignesh R, Swathirajan CR, Tun ZH, Rameshkumar MR, Solomon SS, Balakrishnan P (2020), Could perturbation of gut microbiota possibly exacerbate the severity of COVID-19 via cytokine storm? Front Immunol 11, 607734. https://doi.org/10.3389/fimmu.2020.607734. PMID: 33569053. [Google Scholar]
  256. Fanos V, Pintus MC, Pintus R, Marcialis MA (2020), Lung microbiota in the acute respiratory disease: from coronavirus to metabolomics. J Pediatr Neonatal Individ Med 9(1), e090139. https://doi.org/10.7363/090139. [Google Scholar]
  257. Brown GC, Nicholls DG, Cooper CE (Eds.) (1999), Mitochondria and cell death, Princeton University Press. ISBN: 0-691-05026-0. [Google Scholar]
  258. Zhou R, Yazdi AS, Menu P, Tschopp J (2011), A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329), 221–225. https://doi.org/10.1038/nature09663. PMID: 21124315. [CrossRef] [PubMed] [Google Scholar]
  259. Murphy MP (2018), Newly made mitochondrial DNA drives inflammation. Nature 560(7717), 176–177. https://doi.org/10.1038/d41586-018-05764-z. PMID: 30076376. [CrossRef] [PubMed] [Google Scholar]
  260. Zhong Z, Liang S, Sanchez-Lopez E, He F, Shalapour S, Lin XJ, Wong J, Ding S, Seki E, Schnabl B, Hevener AL, Greenberg HB, Kisseleva T, Karin M (2018), New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560(7717), 198–203. https://doi.org/10.1038/s41586-018-0372-z. PMID: 30046112. [CrossRef] [PubMed] [Google Scholar]
  261. Dhir A, Dhir S, Borowski LS, Jimenez L, Teitell M, Rötig A, Crow YJ, Rice GI, Duffy D, Tamby C, Nojima T, Munnich A, Schiff M, Ribeiro de Almeida C, Rehwinkel J, Dziembowski A, Szczesny RJ, Proudfoot NJ (2018), Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature 560(7717), 238–242. https://doi.org/10.1038/s41586-018-0363-0. PMID: 30046113. [CrossRef] [PubMed] [Google Scholar]
  262. Kuhn R (2004), Eugen Bleuler’s concepts of psychopathology. Hist Psychiatry 15(59 Pt 3), 361–366. https://doi.org/10.1177/0957154X04044603. PMID: 15386868. [CrossRef] [PubMed] [Google Scholar]
  263. Turner T (2007), Chlorpromazine: unlocking psychosis. BMJ 334(Suppl 1), s7. https://doi.org/10.1136/bmj.39034.609074.94. PMID: 17204765. [CrossRef] [PubMed] [Google Scholar]
  264. Ben-Shachar D (2002), Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. J Neurochem 83(6), 1241–1251. https://doi.org/10.1046/j.1471-4159.2002.01263.x. PMID: 12472879. [CrossRef] [PubMed] [Google Scholar]
  265. Bergman O, Ben-Shachar D (2016), Mitochondrial oxidative phosphorylation system (OXPHOS) deficits in schizophrenia: possible interactions with cellular processes. Can J Psychiatry 61(8), 457–469. https://doi.org/10.1177/0706743716648290. PMID: 27412728. [CrossRef] [PubMed] [Google Scholar]
  266. Machado AK, Pan AY, Morgana da Silva T, Duong A, Andreazza AC (2016), Upstream pathways controlling mitochondrial function in major psychosis: a focus on bipolar disorder. Can J Psychiatry 61(8), 446–456. https://doi.org/10.1177/0706743716648297. PMID: 27310240. [CrossRef] [PubMed] [Google Scholar]
  267. Kolar D, Kleteckova L, Brozka H, Vales K (2021), Mini-review: brain energy metabolism and its role in animal models of depression, bipolar disorder, schizophrenia and autism. Neurosci Lett 760, 136003. https://doi.org/10.1016/j.neulet.2021.136003. [CrossRef] [PubMed] [Google Scholar]
  268. Anglin R (2016), Mitochondrial dysfunction in psychiatric illness. Can J Psychiatry 61(8), 444–445. https://doi.org/10.1177/0706743716646361. PMID: 27412727. [CrossRef] [PubMed] [Google Scholar]
  269. Bar-Yosef T, Hussein W, Yitzhaki O, Damri O, Givon L, Marom C, Gurman V, Levine J, Bersudsky Y, Agam G, Ben-Shachar D (2020), Mitochondrial function parameters as a tool for tailored drug treatment of an individual with psychosis: a proof of concept study. Sci Rep 10(1), 12258. https://doi.org/10.1038/s41598-020-69207-4. PMID: 32703977. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.