Issue
4open
Volume 5, 2022
Proteomics, Proteolysis and Amyloid beta
Article Number 11
Number of page(s) 11
Section Life Sciences - Medicine
DOI https://doi.org/10.1051/fopen/2022010
Published online 04 July 2022
  1. Verhamme IM, Leonard SE, Perkins RC (2019), Proteases: Pivot points in functional proteomics. Methods Mol Biol 1871, 313–392. https://doi.org/10.1007/978-1-4939-8814-3_20. [CrossRef] [PubMed] [Google Scholar]
  2. Puente XS, et al. (2003), Human and mouse proteases: A comparative genomic approach. Nat Rev Genet 4, 7, 544–558. https://doi.org/10.1038/nrg1111. [CrossRef] [PubMed] [Google Scholar]
  3. Rawlings ND, Tolle DP, Barrett AJ (2004), MEROPS: The peptidase database. Nucleic Acids Res 32, D160–D164. https://doi.org/10.1093/nar/gkp971. [Google Scholar]
  4. Davie EW, Neurath H (1955), Identification of a peptide released during autocatalytic activation of trypsinogen. J Biol Chem 212, 2, 515–529. [CrossRef] [PubMed] [Google Scholar]
  5. Thome M, et al. (1997), Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386, 6624, 517–521. https://doi.org/10.1038/386517a0. [CrossRef] [PubMed] [Google Scholar]
  6. Turk B (2006), Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discovery 5, 9, 785–799. https://doi.org/10.1038/nrd2092. [CrossRef] [PubMed] [Google Scholar]
  7. Lopez-Otin C, Bond JS (2008), Proteases: Multifunctional enzymes in life and disease. J Biol Chem 283, 45, 30433–30437. https://doi.org/10.1074/jbc.R800035200. [CrossRef] [PubMed] [Google Scholar]
  8. Freije JMP, Balbín M, Pendás AM, Sánchez LM, Puente XS, López-Otín C (2003), Matrix Metalloproteinases and Tumor Progression, in: A. Llombart-Bosch, V. Felipo (Eds.), New Trends in Cancer for the 21st Century. Advances in Experimental Medicine and Biology, Vol. 532, Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0081-0_9. [Google Scholar]
  9. Murphy G, Nagase H (2008), Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nat Clin Pract Rheumatol 4, 3, 128–135. https://doi.org/10.1038/ncprheum0727. [CrossRef] [PubMed] [Google Scholar]
  10. Varela I, et al. (2005), Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437, 7058, 564–568. https://doi.org/10.1038/nature04019. [CrossRef] [PubMed] [Google Scholar]
  11. Nalivaeva NN, et al. (2008), Amyloid-degrading enzymes as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 5, 2, 212–224. https://doi.org/10.2174/156720508783954785. [CrossRef] [PubMed] [Google Scholar]
  12. Dollery CM, Libby P (2006), Atherosclerosis and proteinase activation. Cardiovasc Res 69, 3, 625–635. https://doi.org/10.1016/j.cardiores.2005.11.003. [CrossRef] [PubMed] [Google Scholar]
  13. Chou K-C, et al. (2009), Study of inhibitors against SARS coronavirus by computational approaches. Proteases Biol Dis 8 (Viral Proteases and Antiviral Protease Inhibitor Therapy), 1–23. https://doi.org/10.1007/978-90-481-2348-3_1. [Google Scholar]
  14. Weber IT, Zhang Y, Tozser J (2009), HIV-1 protease and AIDS therapy. Proteases Biol Dis 8 (Viral Proteases and Antiviral Protease Inhibitor Therapy), 25–45. https://doi.org/10.1007/978-90-481-2348-3_2. [Google Scholar]
  15. Tedbury P, Harris M (2009), Hepatitis C virus. Proteases Biol. Dis. 8 (Viral Proteases and Antiviral Protease Inhibitor Therapy), 47–69. https://doi.org/10.1007/978-90-481-2348-3_2. [Google Scholar]
  16. Kaspari M, Bogner E (2009), Antiviral activity of proteasome inhibitors/cytomegalovirus. Proteases Biol. Dis. 8 (Viral Proteases and Antiviral Protease Inhibitor Therapy), 71–81. https://doi.org/10.1007/978-90-481-2348-3_2. [Google Scholar]
  17. Nguyen J-T, Kiso Y (2009), Rational drug design of HTLV-I protease inhibitors. Proteases Biol. Dis. 8 (Viral Proteases and Antiviral Protease Inhibitor Therapy), 83–100. https://doi.org/10.1007/978-90-481-2348-3_2. [Google Scholar]
  18. U.S.F.a.D. Administration (2021), Coronavirus (COVID-19) Update: FDA authorizes first oral antiviral for treatment of COVID-19. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-first-oral-antiviral-treatment-covid-19. [Google Scholar]
  19. Kaldor SW, et al. (1997), Viracept (nelfinavir mesylate, AG1343): A potent, orally bioavailable inhibitor of HIV-1 protease. J Med Chem 40, 24, 3979–3985. https://doi.org/10.1021/jm9704098. [CrossRef] [PubMed] [Google Scholar]
  20. Sumantha A, Larroche C, Pandey A (2006), Microbiology and industrial biotechnology of food-grade proteases: A perspective. Food Technol Biotechnol 44, 2, 211–220. [Google Scholar]
  21. Garcia Carreno F, Garcia C (1991), Proteases in food technology. Biotechnol Education 2, 4, 150. [Google Scholar]
  22. Nagodawithana T, Reed G (eds.) (1993), Enzymes in Food Processing, 3rd edn., Food Science and Technology/Academic Press, p. 480. [Google Scholar]
  23. Swaney DL, Wenger CD, Coon JJ (2010), Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J Proteome Res 9, 3, 1323–1329. https://doi.org/10.1021/pr900863u. [CrossRef] [PubMed] [Google Scholar]
  24. Van de Meent MHM, De Jong GJ (2007), Improvement of the liquid-chromatographic analysis of protein tryptic digests by the use of long-capillary monolithic columns with UV and MS detection. Anal Bioanal Chem 388, 1, 195–200. https://doi.org/10.1007/s00216-007-1215-1. [CrossRef] [PubMed] [Google Scholar]
  25. Noda Y, et al. (1994), Specificity of trypsin digestion and conformational flexibility at different sites of unfolded lysozyme. Biopolymers 34, 2, 217–226. https://doi.org/10.1002/bip.360340208. [CrossRef] [PubMed] [Google Scholar]
  26. Harding VJ, Warneford FHS (1916), The ninhydrin reaction with amino acids and ammonium salts. J Biol Chem 25, 319–335. [CrossRef] [Google Scholar]
  27. Anson ML (1938), Estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol 22, 79–89. https://doi.org/10.1085/jgp.22.1.79. [CrossRef] [PubMed] [Google Scholar]
  28. Bolger R, Checovich W (1994), A new protease activity assay using fluorescence polarization. Biotechniques 17, 3, 585–589. [PubMed] [Google Scholar]
  29. Hsu YY, et al. (2007), In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair. Biochem Biophys Res Commun 3534, 939–945. https://doi.org/10.1016/j.bbrc.2006.12.145. [CrossRef] [PubMed] [Google Scholar]
  30. Hu K, et al. (2005), A human immunodeficiency virus type 1 protease biosensor assay using bioluminescence resonance energy transfer. J Virological Methods 128, 1–2, 93–103. https://doi.org/10.1016/j.jviromet.2005.04.012. [CrossRef] [Google Scholar]
  31. Konstantinidis AK, et al. (2007), Longer wavelength fluorescence resonance energy transfer depsipeptide substrates for Hepatitis C virus NS3 protease. Anal Biochem 368, 2, 156–167. https://doi.org/10.1016/j.ab.2007.06.020. [CrossRef] [PubMed] [Google Scholar]
  32. Sabariegos R, et al. (2009), Fluorescence resonance energy transfer-based assay for characterization of Hepatitis C Virus NS3-4A protease activity in live cells. Antimicrob Agents Chemother 53, 2, 728–734. https://doi.org/10.1128/AAC.01029-08. [CrossRef] [PubMed] [Google Scholar]
  33. Overall CM, et al. (2004), Protease degradomics: mass spectrometry discovery of protease substrates and the CLIP-CHIP, a dedicated DNA microarray of all human proteases and inhibitors. Biologic Chem 385, 6, 493–504. https://doi.org/10.1515/BC.2004.058. [Google Scholar]
  34. Tam EM, et al. (2004), Membrane protease proteomics: Isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates. Proc Natl Acad Sci USA 101, 18, 6917–6922. https://doi.org/10.1073/pnas.0305862101. [CrossRef] [PubMed] [Google Scholar]
  35. Gruninger-Leitch F, et al. (2000), Identification of beta-secretase-like activity using a mass spectrometry-based assay system. Nature Biotechnol 18, 1, 66–70. https://doi.org/10.1038/71944. [CrossRef] [PubMed] [Google Scholar]
  36. Raorane DA, et al. (2008), Quantitative and label-free technique for measuring protease activity and inhibition using a microfluidic cantilever array. Nano Lett 8, 9, 2968–2974. https://doi.org/10.1021/nl8019455. [CrossRef] [PubMed] [Google Scholar]
  37. Ogawa S, McConnel HM (1967), Spin-label study of hemoglobin conformations in solution. Proc Natl Acad Sci USA 58, 1, 19–26. https://doi.org/10.1073/pnas.58.1.19. [CrossRef] [PubMed] [Google Scholar]
  38. Barnes JP, et al. (1999), A multifrequency electron spin resonance study of T4 lysozyme dynamics. Biophys J 76, 6, 3298–3306. https://doi.org/10.1016/S0006-3495(99)77482-5. [CrossRef] [PubMed] [Google Scholar]
  39. Perkins RC, et al. (1982), Equilibrium binding of spin-labeled fatty-acids to bovine serum-albumin – suitability as surrogate ligands for natural fatty-acids. Biochemistry 21, 17, 4059–4064. https://doi.org/10.1021/bi00260a023. [CrossRef] [PubMed] [Google Scholar]
  40. Wenzel HR, et al. (1981), Spin-label studies on protein proteinase-inhibitors – complex-formation and conformational-changes of the bovine trypsin-inhibitor (Kunitz). Biophys Struct Mech 7, 4, 285. https://doi.org/10.1007/BF02425416. [CrossRef] [Google Scholar]
  41. Berliner LJ (1976), Spin Labeling Theory and Applications, Molecular Biology Series, Vol. 1, Academic, New York, NY. [Google Scholar]
  42. Morriset JD, Broomfield CA (1972), Comparative study of spin-labeled serine enzymes – acetylcholinesterase, trypsin, alpha-chymotrypsin, elastase, and subtilisin. J Biological Chem 247, 22, 7224–7231. [CrossRef] [Google Scholar]
  43. Bartosz G, Gaczynska M (1985), Effect of proteolysis on the electron spin resonance spectra of maleimide spin labeled erythrocyte membrane. Biochim Biophys Acta 821, 2, 175–178. https://doi.org/10.1016/0005-2736(85)90086-0. [CrossRef] [PubMed] [Google Scholar]
  44. Kear JL, et al. (2011), Monitoring the autoproteolysis of HIV-1 protease by site-directed spin-labeling and electron paramagnetic resonance spectroscopy. J Biophys Chem 02, 02, 137–146. https://doi.org/10.4236/jbpc.2011.22017. [CrossRef] [Google Scholar]
  45. Frattali VP, Steiner RF, (1968), Soybean Inhibitors I. Separation and some properties of 3 inhibitors from commercial crude soybean trypsin inhibitor. Biochemistry 7, 2, 521–530. https://doi.org/10.1021/bi00842a006. [CrossRef] [PubMed] [Google Scholar]
  46. Umezawa H (1976), Structures and activities of protease inhibitors of microbial origin. Methods Enzymol. 45 (Proteolytic Enzymes, Pt. B), 678–695. https://doi.org/10.1016/s0076-6879(76)45058-9. [CrossRef] [Google Scholar]
  47. Leonard SEP, Kenis PJA, Perkins RC (2022), Rampant proteolysis at the intersection of therapy-induced hypoalbuminemia and acute pancreatitis. 4open 5, 14. [CrossRef] [EDP Sciences] [Google Scholar]