Volume 5, 2022
Proteomics, Proteolysis and Amyloid beta
Article Number 11
Number of page(s) 11
Section Life Sciences - Medicine
Published online 04 July 2022
  1. Verhamme IM, Leonard SE, Perkins RC (2019), Proteases: Pivot points in functional proteomics. Methods Mol Biol 1871, 313–392. [CrossRef] [PubMed] [Google Scholar]
  2. Puente XS, et al. (2003), Human and mouse proteases: A comparative genomic approach. Nat Rev Genet 4, 7, 544–558. [CrossRef] [PubMed] [Google Scholar]
  3. Rawlings ND, Tolle DP, Barrett AJ (2004), MEROPS: The peptidase database. Nucleic Acids Res 32, D160–D164. [Google Scholar]
  4. Davie EW, Neurath H (1955), Identification of a peptide released during autocatalytic activation of trypsinogen. J Biol Chem 212, 2, 515–529. [CrossRef] [PubMed] [Google Scholar]
  5. Thome M, et al. (1997), Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386, 6624, 517–521. [CrossRef] [PubMed] [Google Scholar]
  6. Turk B (2006), Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discovery 5, 9, 785–799. [CrossRef] [PubMed] [Google Scholar]
  7. Lopez-Otin C, Bond JS (2008), Proteases: Multifunctional enzymes in life and disease. J Biol Chem 283, 45, 30433–30437. [CrossRef] [PubMed] [Google Scholar]
  8. Freije JMP, Balbín M, Pendás AM, Sánchez LM, Puente XS, López-Otín C (2003), Matrix Metalloproteinases and Tumor Progression, in: A. Llombart-Bosch, V. Felipo (Eds.), New Trends in Cancer for the 21st Century. Advances in Experimental Medicine and Biology, Vol. 532, Springer, Boston, MA. [Google Scholar]
  9. Murphy G, Nagase H (2008), Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nat Clin Pract Rheumatol 4, 3, 128–135. [CrossRef] [PubMed] [Google Scholar]
  10. Varela I, et al. (2005), Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437, 7058, 564–568. [CrossRef] [PubMed] [Google Scholar]
  11. Nalivaeva NN, et al. (2008), Amyloid-degrading enzymes as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 5, 2, 212–224. [CrossRef] [PubMed] [Google Scholar]
  12. Dollery CM, Libby P (2006), Atherosclerosis and proteinase activation. Cardiovasc Res 69, 3, 625–635. [CrossRef] [PubMed] [Google Scholar]
  13. Chou K-C, et al. (2009), Study of inhibitors against SARS coronavirus by computational approaches. Proteases Biol Dis 8 (Viral Proteases and Antiviral Protease Inhibitor Therapy), 1–23. [Google Scholar]
  14. Weber IT, Zhang Y, Tozser J (2009), HIV-1 protease and AIDS therapy. Proteases Biol Dis 8 (Viral Proteases and Antiviral Protease Inhibitor Therapy), 25–45. [Google Scholar]
  15. Tedbury P, Harris M (2009), Hepatitis C virus. Proteases Biol. Dis. 8 (Viral Proteases and Antiviral Protease Inhibitor Therapy), 47–69. [Google Scholar]
  16. Kaspari M, Bogner E (2009), Antiviral activity of proteasome inhibitors/cytomegalovirus. Proteases Biol. Dis. 8 (Viral Proteases and Antiviral Protease Inhibitor Therapy), 71–81. [Google Scholar]
  17. Nguyen J-T, Kiso Y (2009), Rational drug design of HTLV-I protease inhibitors. Proteases Biol. Dis. 8 (Viral Proteases and Antiviral Protease Inhibitor Therapy), 83–100. [Google Scholar]
  18. U.S.F.a.D. Administration (2021), Coronavirus (COVID-19) Update: FDA authorizes first oral antiviral for treatment of COVID-19. [Google Scholar]
  19. Kaldor SW, et al. (1997), Viracept (nelfinavir mesylate, AG1343): A potent, orally bioavailable inhibitor of HIV-1 protease. J Med Chem 40, 24, 3979–3985. [CrossRef] [PubMed] [Google Scholar]
  20. Sumantha A, Larroche C, Pandey A (2006), Microbiology and industrial biotechnology of food-grade proteases: A perspective. Food Technol Biotechnol 44, 2, 211–220. [Google Scholar]
  21. Garcia Carreno F, Garcia C (1991), Proteases in food technology. Biotechnol Education 2, 4, 150. [Google Scholar]
  22. Nagodawithana T, Reed G (eds.) (1993), Enzymes in Food Processing, 3rd edn., Food Science and Technology/Academic Press, p. 480. [Google Scholar]
  23. Swaney DL, Wenger CD, Coon JJ (2010), Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J Proteome Res 9, 3, 1323–1329. [CrossRef] [PubMed] [Google Scholar]
  24. Van de Meent MHM, De Jong GJ (2007), Improvement of the liquid-chromatographic analysis of protein tryptic digests by the use of long-capillary monolithic columns with UV and MS detection. Anal Bioanal Chem 388, 1, 195–200. [CrossRef] [PubMed] [Google Scholar]
  25. Noda Y, et al. (1994), Specificity of trypsin digestion and conformational flexibility at different sites of unfolded lysozyme. Biopolymers 34, 2, 217–226. [CrossRef] [PubMed] [Google Scholar]
  26. Harding VJ, Warneford FHS (1916), The ninhydrin reaction with amino acids and ammonium salts. J Biol Chem 25, 319–335. [CrossRef] [Google Scholar]
  27. Anson ML (1938), Estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol 22, 79–89. [CrossRef] [PubMed] [Google Scholar]
  28. Bolger R, Checovich W (1994), A new protease activity assay using fluorescence polarization. Biotechniques 17, 3, 585–589. [PubMed] [Google Scholar]
  29. Hsu YY, et al. (2007), In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair. Biochem Biophys Res Commun 3534, 939–945. [CrossRef] [PubMed] [Google Scholar]
  30. Hu K, et al. (2005), A human immunodeficiency virus type 1 protease biosensor assay using bioluminescence resonance energy transfer. J Virological Methods 128, 1–2, 93–103. [CrossRef] [Google Scholar]
  31. Konstantinidis AK, et al. (2007), Longer wavelength fluorescence resonance energy transfer depsipeptide substrates for Hepatitis C virus NS3 protease. Anal Biochem 368, 2, 156–167. [CrossRef] [PubMed] [Google Scholar]
  32. Sabariegos R, et al. (2009), Fluorescence resonance energy transfer-based assay for characterization of Hepatitis C Virus NS3-4A protease activity in live cells. Antimicrob Agents Chemother 53, 2, 728–734. [CrossRef] [PubMed] [Google Scholar]
  33. Overall CM, et al. (2004), Protease degradomics: mass spectrometry discovery of protease substrates and the CLIP-CHIP, a dedicated DNA microarray of all human proteases and inhibitors. Biologic Chem 385, 6, 493–504. [Google Scholar]
  34. Tam EM, et al. (2004), Membrane protease proteomics: Isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates. Proc Natl Acad Sci USA 101, 18, 6917–6922. [CrossRef] [PubMed] [Google Scholar]
  35. Gruninger-Leitch F, et al. (2000), Identification of beta-secretase-like activity using a mass spectrometry-based assay system. Nature Biotechnol 18, 1, 66–70. [CrossRef] [PubMed] [Google Scholar]
  36. Raorane DA, et al. (2008), Quantitative and label-free technique for measuring protease activity and inhibition using a microfluidic cantilever array. Nano Lett 8, 9, 2968–2974. [CrossRef] [PubMed] [Google Scholar]
  37. Ogawa S, McConnel HM (1967), Spin-label study of hemoglobin conformations in solution. Proc Natl Acad Sci USA 58, 1, 19–26. [CrossRef] [PubMed] [Google Scholar]
  38. Barnes JP, et al. (1999), A multifrequency electron spin resonance study of T4 lysozyme dynamics. Biophys J 76, 6, 3298–3306. [CrossRef] [PubMed] [Google Scholar]
  39. Perkins RC, et al. (1982), Equilibrium binding of spin-labeled fatty-acids to bovine serum-albumin – suitability as surrogate ligands for natural fatty-acids. Biochemistry 21, 17, 4059–4064. [CrossRef] [PubMed] [Google Scholar]
  40. Wenzel HR, et al. (1981), Spin-label studies on protein proteinase-inhibitors – complex-formation and conformational-changes of the bovine trypsin-inhibitor (Kunitz). Biophys Struct Mech 7, 4, 285. [CrossRef] [Google Scholar]
  41. Berliner LJ (1976), Spin Labeling Theory and Applications, Molecular Biology Series, Vol. 1, Academic, New York, NY. [Google Scholar]
  42. Morriset JD, Broomfield CA (1972), Comparative study of spin-labeled serine enzymes – acetylcholinesterase, trypsin, alpha-chymotrypsin, elastase, and subtilisin. J Biological Chem 247, 22, 7224–7231. [CrossRef] [Google Scholar]
  43. Bartosz G, Gaczynska M (1985), Effect of proteolysis on the electron spin resonance spectra of maleimide spin labeled erythrocyte membrane. Biochim Biophys Acta 821, 2, 175–178. [CrossRef] [PubMed] [Google Scholar]
  44. Kear JL, et al. (2011), Monitoring the autoproteolysis of HIV-1 protease by site-directed spin-labeling and electron paramagnetic resonance spectroscopy. J Biophys Chem 02, 02, 137–146. [CrossRef] [Google Scholar]
  45. Frattali VP, Steiner RF, (1968), Soybean Inhibitors I. Separation and some properties of 3 inhibitors from commercial crude soybean trypsin inhibitor. Biochemistry 7, 2, 521–530. [CrossRef] [PubMed] [Google Scholar]
  46. Umezawa H (1976), Structures and activities of protease inhibitors of microbial origin. Methods Enzymol. 45 (Proteolytic Enzymes, Pt. B), 678–695. [CrossRef] [Google Scholar]
  47. Leonard SEP, Kenis PJA, Perkins RC (2022), Rampant proteolysis at the intersection of therapy-induced hypoalbuminemia and acute pancreatitis. 4open 5, 14. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.