Issue |
4open
Volume 5, 2022
Inorganic Nanoparticle Luminophore: Design and Application
|
|
---|---|---|
Article Number | 19 | |
Number of page(s) | 7 | |
Section | Chemistry - Applied Chemistry | |
DOI | https://doi.org/10.1051/fopen/2022021 | |
Published online | 24 November 2022 |
- Mondal S, Bera S, Mishra R, Roy S (2022), Redefining the role of microalgae in industrial wastewater remediation. Energy Nexus 6, 100088. https://doi.org/10.1016/j.nexus.2022.100088. [CrossRef] [Google Scholar]
- Pradeep NV, Anupama S, Navya K, Shalini HN, Idris M, Hampannavar US (2014), Biological removal of phenol from wastewaters: a mini review. Appl Water Sci 5, 105–112. https://doi.org/10.1007/s13201-014-0176-8. [Google Scholar]
- Singh R, Misra V (2016), Stabilization of zero-valent iron nanoparticles: role of polymers and surfactants. Handbook of Nanoparticles 985–1007. https://doi.org/10.1007/978-3-319-15338-4_44. [CrossRef] [Google Scholar]
- Tarekegn MM, Hiruy AM, Dekebo AH (2021), Nano Zero Valent Iron (NZVI) particles for the removal of heavy metals (Cd2+, Cu2+ and Pb2+) from aqueous solutions. RSC Adv 11, 18539–18551. https://doi.org/10.1039/d1ra01427g. [CrossRef] [PubMed] [Google Scholar]
- Li S, Wang W, Liang F, Zhang W (2017), Heavy metal removal using Nanoscale Zero-Valent Iron (NZVI): Theory and application. J Hazardous Mater 322, 163–171. https://doi.org/10.1016/j.jhazmat.2016.01.032. [CrossRef] [Google Scholar]
- Almomani F, Bhosale R, Khraisheh M, Kumar A, Almomani T (2020), Heavy metal ions removal from industrial wastewater using Magnetic Nanoparticles (MNP). Appl Surf Sci 506, 144924. https://doi.org/10.1016/j.apsusc.2019.144924. [CrossRef] [Google Scholar]
- Ansari A, Siddiqui VU, Akram MK, Siddiqi WA, Sajid S (2020), Removal of Pb(II) from industrial wastewater using of CuO/Alg nanocomposite. Lect Notes Civ Eng 167–175. https://doi.org/10.1007/978-981-15-2545-2_16. [CrossRef] [Google Scholar]
- Fan M, Yuan P, Chen T, He H, Yuan A, Chen K, Zhu J, Liu D (2010), Synthesis, characterization and size control of zerovalent iron nanoparticles anchored on montmorillonite. Chin Sci Bull 55, 1092–1099. https://doi.org/10.1007/s11434-010-0062-1. [CrossRef] [Google Scholar]
- Jain K, Patel AS, Pardhi VP, Flora SJS (2021), Nanotechnology in wastewater management: a new paradigm towards wastewater treatment. Molecules 26, 1797. https://doi.org/10.3390/molecules26061797. [CrossRef] [PubMed] [Google Scholar]
- Stefaniuk M, Oleszczuk P, Ok YS (2016), Review on Nano Zerovalent Iron (NZVI): From synthesis to environmental applications. Chem Eng J 287, 618–632. https://doi.org/10.1016/j.cej.2015.11.046. [CrossRef] [Google Scholar]
- Roy S, Kargupta K, Chakraborty S, Ganguly S (2008), Preparation of polyaniline nanofibers and nanoparticles via simultaneous doping and electro-deposition. Mater Lett 62, 2535–2538. https://doi.org/10.1016/j.matlet.2007.12.066. [CrossRef] [Google Scholar]
- Ayranci E, Conway BE (2001), Removal of phenol, phenoxide and chlorophenols from waste-waters by adsorption and electrosorption at high-area carbon felt electrodes. J Electroanal Chem 513, 100–110. https://doi.org/10.1016/s0022-0728(01)00529-0. [CrossRef] [Google Scholar]
- Zhang J, Zhuang J, Gao L, Zhang Y, Gu N, Feng J, Yang D, Zhu J, Yan X (2008), Decomposing phenol by the hidden talent of ferromagnetic nanoparticles. Chemosphere 73, 1524–1528. https://doi.org/10.1016/j.chemosphere.2008.05.050. [CrossRef] [PubMed] [Google Scholar]
- Jamei MR, Khosravi MR, Anvaripour B (2013), Investigation of ultrasonic effect on synthesis of nano zero valent iron particles and comparison with conventional method. Asia-Pac J Chem Eng 8, 767–774. https://doi.org/10.1002/apj.1720. [CrossRef] [Google Scholar]
- Adusei-Gyamfi J, Acha V (2016), Carriers for Nano Zerovalent Iron (NZVI): Synthesis application and efficiency. RSC Adv 6, 91025–91044. https://doi.org/10.1039/c6ra16657a. [CrossRef] [Google Scholar]
- Taha MR, Ibrahim AH (2014), Characterization of Nano Zero-Valent Iron (NZVI) and its application in sono-fenton process to remove COD in palm oil mill effluent. Journal of Environmental Chemical Engineering 2, 1–8. https://doi.org/10.1016/j.jece.2013.11.021. [CrossRef] [Google Scholar]
- Fan J, Guo Y, Wang J, Fan M (2009), Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J Hazardous Mater 166, 904–910. https://doi.org/10.1016/j.jhazmat.2008.11.091. [CrossRef] [Google Scholar]
- Elshafai M, Hamdy A, Hefny MM (2018), Zero-valent iron nanostructures: synthesis characterization and application. J Environ Biotechnol Res 7, 1, 1–10. [Google Scholar]
- Shimizu A, Tokumura M, Nakajima K, Kawase Y (2012), Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: roles of decomposition by the Fenton reaction and adsorption/precipitation. J Hazardous Mater 201–202, 60–67. https://doi.org/10.1016/j.jhazmat.2011.11.009. [CrossRef] [Google Scholar]
- Dang TTT, Le STT, Channei D, Khanitchaidecha W, Nakaruk A (2016), Photodegradation mechanisms of phenol in the photocatalytic process. Res ChemIntermed 42, 5961–5974. https://doi.org/10.1007/s11164-015-2417-3. [Google Scholar]
- Tao Y, Cheng ZL, Ting KE, Yin XJ (2013), Photocatalytic degradation of phenol using a nanocatalyst: the mechanism and kinetics. J Catalysts 2013, 1–6. https://doi.org/10.1155/2013/364275. [CrossRef] [Google Scholar]
- Xu P, Zeng G, Huang D, Liu L, Lai C, Chen M, Zhang C, Lai M, He Y (2014), Photocatalytic degradation of phenol by the heterogeneous Fe3O4 nanoparticles and oxalate complex system. RSC Adv 4, 40828–40836. https://doi.org/10.1039/c4ra05996d. [CrossRef] [Google Scholar]
- Nguyen TH, Vu AT, Dang VH, Wu JC-S, Le MT (2020), Photocatalytic degradation of phenol and methyl orange with titania-based photocatalysts synthesized by various methods in comparison with ZnO–graphene oxide composite. Top Catal 63, 1215–1226. https://doi.org/10.1007/s11244-020-01361-5. [CrossRef] [Google Scholar]
- Reichman J (2000), Handbook of optical filters for fluorescence microscopy, Chroma Technology Corporation. [Google Scholar]