Volume 5, 2022
Inorganic Nanoparticle Luminophore: Design and Application
Article Number 19
Number of page(s) 7
Section Chemistry - Applied Chemistry
Published online 24 November 2022
  1. Mondal S, Bera S, Mishra R, Roy S (2022), Redefining the role of microalgae in industrial wastewater remediation. Energy Nexus 6, 100088. [CrossRef] [Google Scholar]
  2. Pradeep NV, Anupama S, Navya K, Shalini HN, Idris M, Hampannavar US (2014), Biological removal of phenol from wastewaters: a mini review. Appl Water Sci 5, 105–112. [Google Scholar]
  3. Singh R, Misra V (2016), Stabilization of zero-valent iron nanoparticles: role of polymers and surfactants. Handbook of Nanoparticles 985–1007. [CrossRef] [Google Scholar]
  4. Tarekegn MM, Hiruy AM, Dekebo AH (2021), Nano Zero Valent Iron (NZVI) particles for the removal of heavy metals (Cd2+, Cu2+ and Pb2+) from aqueous solutions. RSC Adv 11, 18539–18551. [CrossRef] [PubMed] [Google Scholar]
  5. Li S, Wang W, Liang F, Zhang W (2017), Heavy metal removal using Nanoscale Zero-Valent Iron (NZVI): Theory and application. J Hazardous Mater 322, 163–171. [CrossRef] [Google Scholar]
  6. Almomani F, Bhosale R, Khraisheh M, Kumar A, Almomani T (2020), Heavy metal ions removal from industrial wastewater using Magnetic Nanoparticles (MNP). Appl Surf Sci 506, 144924. [CrossRef] [Google Scholar]
  7. Ansari A, Siddiqui VU, Akram MK, Siddiqi WA, Sajid S (2020), Removal of Pb(II) from industrial wastewater using of CuO/Alg nanocomposite. Lect Notes Civ Eng 167–175. [CrossRef] [Google Scholar]
  8. Fan M, Yuan P, Chen T, He H, Yuan A, Chen K, Zhu J, Liu D (2010), Synthesis, characterization and size control of zerovalent iron nanoparticles anchored on montmorillonite. Chin Sci Bull 55, 1092–1099. [CrossRef] [Google Scholar]
  9. Jain K, Patel AS, Pardhi VP, Flora SJS (2021), Nanotechnology in wastewater management: a new paradigm towards wastewater treatment. Molecules 26, 1797. [CrossRef] [PubMed] [Google Scholar]
  10. Stefaniuk M, Oleszczuk P, Ok YS (2016), Review on Nano Zerovalent Iron (NZVI): From synthesis to environmental applications. Chem Eng J 287, 618–632. [CrossRef] [Google Scholar]
  11. Roy S, Kargupta K, Chakraborty S, Ganguly S (2008), Preparation of polyaniline nanofibers and nanoparticles via simultaneous doping and electro-deposition. Mater Lett 62, 2535–2538. [CrossRef] [Google Scholar]
  12. Ayranci E, Conway BE (2001), Removal of phenol, phenoxide and chlorophenols from waste-waters by adsorption and electrosorption at high-area carbon felt electrodes. J Electroanal Chem 513, 100–110. [CrossRef] [Google Scholar]
  13. Zhang J, Zhuang J, Gao L, Zhang Y, Gu N, Feng J, Yang D, Zhu J, Yan X (2008), Decomposing phenol by the hidden talent of ferromagnetic nanoparticles. Chemosphere 73, 1524–1528. [CrossRef] [PubMed] [Google Scholar]
  14. Jamei MR, Khosravi MR, Anvaripour B (2013), Investigation of ultrasonic effect on synthesis of nano zero valent iron particles and comparison with conventional method. Asia-Pac J Chem Eng 8, 767–774. [CrossRef] [Google Scholar]
  15. Adusei-Gyamfi J, Acha V (2016), Carriers for Nano Zerovalent Iron (NZVI): Synthesis application and efficiency. RSC Adv 6, 91025–91044. [CrossRef] [Google Scholar]
  16. Taha MR, Ibrahim AH (2014), Characterization of Nano Zero-Valent Iron (NZVI) and its application in sono-fenton process to remove COD in palm oil mill effluent. Journal of Environmental Chemical Engineering 2, 1–8. [CrossRef] [Google Scholar]
  17. Fan J, Guo Y, Wang J, Fan M (2009), Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J Hazardous Mater 166, 904–910. [CrossRef] [Google Scholar]
  18. Elshafai M, Hamdy A, Hefny MM (2018), Zero-valent iron nanostructures: synthesis characterization and application. J Environ Biotechnol Res 7, 1, 1–10. [Google Scholar]
  19. Shimizu A, Tokumura M, Nakajima K, Kawase Y (2012), Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: roles of decomposition by the Fenton reaction and adsorption/precipitation. J Hazardous Mater 201–202, 60–67. [CrossRef] [Google Scholar]
  20. Dang TTT, Le STT, Channei D, Khanitchaidecha W, Nakaruk A (2016), Photodegradation mechanisms of phenol in the photocatalytic process. Res ChemIntermed 42, 5961–5974. [Google Scholar]
  21. Tao Y, Cheng ZL, Ting KE, Yin XJ (2013), Photocatalytic degradation of phenol using a nanocatalyst: the mechanism and kinetics. J Catalysts 2013, 1–6. [CrossRef] [Google Scholar]
  22. Xu P, Zeng G, Huang D, Liu L, Lai C, Chen M, Zhang C, Lai M, He Y (2014), Photocatalytic degradation of phenol by the heterogeneous Fe3O4 nanoparticles and oxalate complex system. RSC Adv 4, 40828–40836. [CrossRef] [Google Scholar]
  23. Nguyen TH, Vu AT, Dang VH, Wu JC-S, Le MT (2020), Photocatalytic degradation of phenol and methyl orange with titania-based photocatalysts synthesized by various methods in comparison with ZnO–graphene oxide composite. Top Catal 63, 1215–1226. [CrossRef] [Google Scholar]
  24. Reichman J (2000), Handbook of optical filters for fluorescence microscopy, Chroma Technology Corporation. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.