Issue
4open
Volume 5, 2022
Statistical Inference in Markov Processes and Copula Models
Article Number 20
Number of page(s) 9
Section Mathematics - Applied Mathematics
DOI https://doi.org/10.1051/fopen/2022022
Published online 21 December 2022
  1. García JE, González-López VA (2020), Random permutations, non-decreasing subsequences and statistical independence. Symmetry 12, 9, 1415. https://doi.org/10.3390/sym12091415. [CrossRef] [Google Scholar]
  2. García JE, González-López VA (2014), Independence tests for continuous random variables based on the longest increasing subsequence. J Multiv Anal 127, 126–146. https://doi.org/10.1016/j.jmva.2014.02.010. [CrossRef] [Google Scholar]
  3. Genest C, Rémillard B (2004), Test of independence and randomness based on the empirical copula process. Test 13, 335–369. https://doi.org/10.1007/BF02595777. [CrossRef] [Google Scholar]
  4. Hollander M, Wolfe D, Chicken E (2013), Nonparametric statistical methods, John Wiley & Sons, New York. [Google Scholar]
  5. García JE, González-López VA, Nelsen RB (2013), A new index to measure positive dependence in trivariate distributions. J Multivar Anal 115, 481–495. https://doi.org/10.1016/j.jmva.2012.11.007. [CrossRef] [Google Scholar]
  6. Nelsen RB (2006), An introduction to copulas, Springer-Verlag, New York. https://doi.org/10.1007/0-387-28678-0. [Google Scholar]
  7. Joe H (2014), Dependence modeling with copulas, Chapman and Hall/CRC, New York. https://doi.org/10.1201/b17116. [CrossRef] [Google Scholar]
  8. De Finetti B (1929), Funzione caratteristica di un fenomeno aleatorio, in: Atti del Congresso Internazionale dei Matematici: Bologna del 3 al 10 de settembre di 1928 (Comunicazioni, sezione IV (A)–V–VII), vol. 6, pp. 179–190. [Google Scholar]
  9. Hewitt E, Savage LJ (1955), Symmetric measures on Cartesian products. Trans Am Math Soc 80, 2, 470–501. https://doi.org/10.2307/1992999. [CrossRef] [Google Scholar]
  10. González-López VA, Litvinoff Justus V, A method for the elicitation of copulas (preprint) [Google Scholar]
  11. O’ Neill B (2009), Exchangeability, Correlation, and Bayes’ Effect. Int Stat Rev 77, 2, 241–250. https://doi.org/10.1111/j.1751-5823.2008.00059.x. [CrossRef] [Google Scholar]