Logical Entropy
Open Access
Editorial
Issue
4open
Volume 5, 2022
Logical Entropy
Article Number E1
Number of page(s) 2
DOI https://doi.org/10.1051/fopen/2022005
Published online 17 March 2022
  1. Wehrl A (1978), General properties of entropy. Rev Mod Phys 50, 221. https://doi.org/10.1103/RevModPhys.50.221. [CrossRef] [Google Scholar]
  2. Tsallis C (1988), Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52, 479. [CrossRef] [Google Scholar]
  3. Rényi A (1961), On Measures of Entropy and Information, in: J. Neyman (Ed.), Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, University of California Press, pp. 547–561. [Google Scholar]
  4. Crupi V (2019), Measures of biological diversity: Overview and unified framework. in: E. Casetta, J. Marques da Silva, D. Vecchi (Eds.), From Assessing to Conserving Biodiversity: Conceptual and Practical Challenges, Springer, Cham, pp. 123–136. https://doi.org/10.1007/978-3-030-10991-2_6. [CrossRef] [Google Scholar]
  5. Ellerman D (2018), Logical entropy: introduction to classical and quantum logical information theory. Entropy 20, 679. https://www.mdpi.com/1099-4300/20/9/679. [CrossRef] [Google Scholar]
  6. Ellerman D (2022), Introduction to logical entropy and its relationship to Shannon entropy. 4open 5, 1. https://doi.org/10.1051/fopen/2021004. [CrossRef] [EDP Sciences] [Google Scholar]
  7. Tamir B, De Paiva IL, Schwartzman-Nowik Z, Cohen E (2022), Quantum logical entropy: fundamentals and general properties. 4open 5, 2. https://doi.org/10.1051/fopen/2021005. [CrossRef] [EDP Sciences] [Google Scholar]
  8. Sunko DK (2022), Entropy of pure states: not all wave functions are born equal. 4open 5, 3. https://doi.org/10.1051/fopen/2021006. [CrossRef] [EDP Sciences] [Google Scholar]
  9. Manfredi G (2022), Logical entropy and negative probabilities in quantum mechanics. 4open 5, 8. https://doi.org/10.1051/fopen/2022004. [Google Scholar]