Issue
4open
Volume 6, 2023
Inorganic Nanoparticle Luminophore: Design and Application
Article Number 8
Number of page(s) 20
Section Chemistry - Applied Chemistry
DOI https://doi.org/10.1051/fopen/2023007
Published online 03 August 2023
  1. Steigerwald ML, Alivisatos AP, Gibson JM, Harris TD, Kortan R, Muller AJ, Thayer AM, Duncan TM, Douglass DC, Brus LE (1988), Surface derivatization and isolation of semiconductor cluster molecules. J. Am. Chem. Soc. 110, 3046–3050. [CrossRef] [Google Scholar]
  2. Murray CB, Norris DJ, Bawendi MG (1993), Synthesis and characterization of nearly monodisperse CdE (E = Sulfur, Selenium, Tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715. [CrossRef] [Google Scholar]
  3. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007), Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46, 4630–4660. [CrossRef] [Google Scholar]
  4. van Embden J, Jasieniak JJ (2015), The heat-up synthesis of colloidal nanocrystals. Chem. Mater. 27, 2246–2285. [CrossRef] [Google Scholar]
  5. Luo W, Li R, Liu G, Antonio MR, Chen X (2008), Evidence of trivalent europium incorporated in anatase TiO2 nanocrystals with multiple sites. J. Phys. Chem. C 112, 10370–10377. [CrossRef] [Google Scholar]
  6. Luo W, Li R, Chen X (2009), Host-sensitized luminescence of Nd3+ and Sm3+ ions incorporated in anatase titania nanocrystals J. Phys. Chem. C 113, 8772–8777. [CrossRef] [Google Scholar]
  7. Son DH, Hughes SM, Yin Y, Alivisatos AP (2004), Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012. [CrossRef] [PubMed] [Google Scholar]
  8. Robinson RD, Sadtler B, Demchenko DO, Erdonmez CK, Wang L-W, Alivisatos AP (2007), Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317, 355–358. [CrossRef] [PubMed] [Google Scholar]
  9. Sadtler B, Demchenko DO, Zheng H, Hughes SM, Merkle MG, Dahmen U, Wang L-W, Alivisatos AP (2009), Selective facet reactivity during cation exchange in cadmium sulfide nanorods. J. Am. Chem. Soc. 131, 5285–5293. [CrossRef] [PubMed] [Google Scholar]
  10. Jain PK, Amirav L, Aloni S, Alivisatos AP (2010), Nanoheterostructure cation exchange: anionic framework conservation. J. Am. Chem. Soc. 132, 9997–9999. [CrossRef] [PubMed] [Google Scholar]
  11. Beberwyck BJ, Alivisatos AP (2012), Ion exchange synthesis of III−V nanocrystals. j. Am. Chem. Soc. 134, 19977–19980. [CrossRef] [PubMed] [Google Scholar]
  12. Miszta K, Dorfs D, Genovese A, Kim MR, Manna L (2011), Cation exchange reactions in colloidal branched nanocrystals. ACS Nano 5, 7176–7183. [CrossRef] [PubMed] [Google Scholar]
  13. Li H, Zanella M, Genovese A, Povia M, Falqui A, Giannini C, Manna L (2011), Sequential cation exchange in nanocrystals: preservation of crystal phase and formation of metastable phases. Nano Lett. 11, 4964–4970. [CrossRef] [PubMed] [Google Scholar]
  14. Lesnyak V, George C, Genovese A, Prato M, Casu A, Ayyappan S, Scarpellini A, Manna L (2014), Alloyed copper chalcogenide nanoplatelets via partial cation exchange reactions. ACS Nano 8, 8407–8418. [CrossRef] [PubMed] [Google Scholar]
  15. Trizio LD, Li H, Casu A, Genovese A, Sathya A, Messina GC, Manna L (2014), Sn cation valency dependence in cation exchange reactions involving Cu2-xSe NANOCRYSTALS. J. Am. Chem. Soc. 136, 16277–16284. [CrossRef] [PubMed] [Google Scholar]
  16. Li H, Brescia R, Povia M, Prato M, Bertoni G, Manna L, Moreels I (2013), Synthesis of uniform disk-shaped copper telluride nanocrystals and cation exchange to cadmium telluride quantum disks with stable red emission. J. Am. Chem. Soc. 135, 12270–12278. [CrossRef] [PubMed] [Google Scholar]
  17. Khan AH, Pinchetti V, Tanghe I, Dang Z, Martín-García B, Hens Z, Thourhout DV, Geiregat P, Brovelli S, Moreels I (2019), Tunable and efficient red to near-infrared photoluminescence by synergistic exploitation of core and surface silver doping of CdSe nanoplatelets. chem. Mater. 31, 1450–1459. [CrossRef] [Google Scholar]
  18. Mocatta D, Cohen G, Schattner J, Millo O, Rabani E, Banin U (2011), Heavily doped semiconductor nanocrystal quantum dots. Science 332, 77–81. [CrossRef] [PubMed] [Google Scholar]
  19. Sahu A, Kang MS, Kompch A, Notthoff C, Wills AW, Deng D, Winterer M, Frisbie CD, Norris DJ (2012), Electronic impurity doping in CdSe NANOCRYSTALS. NANO Lett. 12, 2587–2594. [CrossRef] [PubMed] [Google Scholar]
  20. Dong C, van Veggel FCJM (2009), Cation exchange in lanthanide fluoride nanoparticles. ACS Nano 3, 123–130. [CrossRef] [PubMed] [Google Scholar]
  21. Beberwyck BJ, Surendranath Y, Alivisatos AP (2013), Cation exchange: a versatile tool for nanomaterials synthesis. J. Phys. Chem. C 117, 19759–19770. [CrossRef] [Google Scholar]
  22. Rivest JB, Jain PK (2013), Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem. Soc. Rev. 42, 89–96. [CrossRef] [PubMed] [Google Scholar]
  23. Trizio LD, Manna L (2016), Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 116, 10852–10887. [CrossRef] [PubMed] [Google Scholar]
  24. Zhang J, Di Q, Liu J, Bai B, Liu J, Xu M, Liu J (2017), Heterovalent doping in colloidal semiconductor nanocrystals: cation-exchange-enabled new accesses to tuning dopant luminescence and electronic impurities. J. Phys. Chem. Lett. 8, 4943–4953. [CrossRef] [Google Scholar]
  25. Cho G, Park Y, Hong Y-K, Ha D-H (2019), Ion exchange: an advanced synthetic method for complex nanoparticles. Nano Convergence 6, 17. [CrossRef] [PubMed] [Google Scholar]
  26. Li X, Ji M, Li H, Wang H, Xu M, Rong H, Wei J, Liu J, Liu J, Chen W, Zhu C, Wang J, Zhang J (2020), Cation/anion exchange reactions toward the syntheses of upgraded nanostructures: principles and applications. Matter 2, 554–586. [CrossRef] [Google Scholar]
  27. Sooklal K, Cullum BS, Angel SM, Murphy CJ (1996), Photophysical properties of ZnS nanoclusters with spatially localized Mn2+ J. Phys. Chem. 100, 4551–4555. [CrossRef] [Google Scholar]
  28. Isarov AV, Chrysochoos J (1997), Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles: surface modification with copper (II) Ions. Langmuir 13, 3142–3149. [CrossRef] [Google Scholar]
  29. Bhargava RN, Gallagher D, Hong X, Nurmikko A (1994), Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 72, 416–419. [CrossRef] [PubMed] [Google Scholar]
  30. Bhargava RN (1996), Doped Nanocrystalline materials – physics and applications. J. Lumin. 70, 85–94. [CrossRef] [Google Scholar]
  31. Richardson FS (1982), Terbium (III) and europium (III) ions as luminescent probes and stains for biomolecular systems. Chem. Rev. 82, 541–552. [CrossRef] [Google Scholar]
  32. Bünzli J-CG, Piguet C (2005), Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048–1077. [CrossRef] [Google Scholar]
  33. Eliseeva SV, Bünzli J-CG (2010), Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 39, 189–227. [CrossRef] [PubMed] [Google Scholar]
  34. Bünzli J-CG (2010), Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 110, 2729–2755. [CrossRef] [PubMed] [Google Scholar]
  35. Moore EG, Samuel APS, Raymond KN (2009), From antenna to assay: lessons learned in lanthanide luminescence. Acc. Chem. Res. 42, 542–552. [CrossRef] [PubMed] [Google Scholar]
  36. Binnemans K (2009), Lanthanide-based luminescent hybrid materials. Chem. Rev. 109, 4283–4374. [CrossRef] [PubMed] [Google Scholar]
  37. Hildebrandt N, Löhmannsröben H-G (2007), Quantum dot nanocrystals and supramolecular lanthanide complexes – energy transfer systems for sensitive in vitro diagnostics and high throughput screening in chemical biology. Curr. Chem. Biol. 1, 167–186. [Google Scholar]
  38. Bünzli J-CG (2013), Lighting up cells with lanthanide self-assembled helicates. Interface Focus 3, 20130032. [CrossRef] [PubMed] [Google Scholar]
  39. Bünzli J-CG, Eliseeva SV (2010), Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. J. Rare Earths 28, 824–842. [CrossRef] [Google Scholar]
  40. Thibon A, Pierre VC (2009), Principles of responsive lanthanide-based luminescent probes. Anal. Bioanal. Chem. 394, 107–120. [CrossRef] [PubMed] [Google Scholar]
  41. Alcala MA, Kwan SY, Shade CM, Lang M, Uh H, Wang M, Weber SG, Bartlett DL, Petoud S, Lee YJ (2011), Luminescence targeting and imaging using a nanoscale generation 3 dendrimer in an in vivo colorectal metastatic rat model. Nanomedicine: Nanotechnology, Biology, and Medicine 7, 249–258. [CrossRef] [Google Scholar]
  42. Foucault-Collet A, Gogick KA, White KA, Villette S, Pallier A, Collet G, Kieda C, Li T, Geib SJ, Rosi NL, Petoud S (2013), Lanthanide near infrared imaging in living cells with Yb3+ nano metal organic frameworks. PNAS 110, 17199–17204. [CrossRef] [PubMed] [Google Scholar]
  43. Chen Z, Zheng W, Huang P, Tu D, Zhou S, Huang M, Chen X (2015), Lanthanide-doped luminescent, Nanoscale 2015, 4274–4290. [CrossRef] [PubMed] [Google Scholar]
  44. Teo RD, Termini J, Gray HB (2016), Lanthanides: applications in cancer diagnosis and therapy. J. Med. Chem. 59, 6012–6024. [CrossRef] [PubMed] [Google Scholar]
  45. Debnath GH, Bhattacharya S, Adhikary A, Mukherjee P (2018), Host-sensitized sharp samarium emission from doped titanium dioxide nanoparticles as non-cytotoxic photostable reporters for live-cell imaging,. New 42, 14832–14842. [Google Scholar]
  46. Beeby A, Clarkson IM, Dickins RS, Faulkner S, Parker D, Royle L, de Sousa AS, Woods M (1999), Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states. J. Chem. Soc. Perkin Trans. 2, 493–503. [CrossRef] [Google Scholar]
  47. Bünzli J-CG (2015), On the design of highly luminescent lanthanide complexes. Coord. Chem. Rev. 293–294, 19–47. [CrossRef] [Google Scholar]
  48. Lemonnier J-F, Guénée L, Beuchat C, Wesolowski TA, Mukherjee P, Waldeck DH, Gogick KA, Petoud S, Piguet C (2011), Optimizing sensitization processes in dinuclear luminescent lanthanide oligomers: selection of rigid aromatic spacers. J. Am. Chem. Soc. 133, 16219–16234. [CrossRef] [PubMed] [Google Scholar]
  49. Lemonnier J-F, Babel L, Guénée L, Mukherjee P, Waldeck DH, Eliseeva SV, Petoud S, Piguet C (2012), Perfluorinated aromatic spacers for sensitizing Europium (III) centers in dinuclear oligomers: Better than the best by chemical design? Angew. Chem. Int. Ed. 51, 11302–11305. [CrossRef] [Google Scholar]
  50. Aboshyan-Sorgho L, Nozary H, Aebischer A, Bünzli J-CG, Morgantini P-Y, Kittilstved KR, Hauser A, Eliseeva SV, Petoud S, Piguet C (2012), Optimizing millisecond time scale near-infrared emission in polynuclear chrome (III)−lanthanide (III) complexes. J. Am. Chem. Soc. 134, 12675–12684. [CrossRef] [PubMed] [Google Scholar]
  51. Manna P, Bhar M, Mukherjee P (2021), Lanthanide photoluminescence lifetimes reflect vibrational signature of local environment: lengthening duration of emission in inorganic nanoparticles. J. Luminescence 235, 118052. [CrossRef] [Google Scholar]
  52. Bol AA (2002), On the incorporation of trivalent rare earth ions in II-VI semiconductor. Nanocrystals Chem. Mater. 14, 1121–1126. [CrossRef] [Google Scholar]
  53. Chengelis DA (2005), Incorporating lanthanide cations with cadmium selenide nanocrystals: a strategy to sensitize and protect Tb(III). J. Am. Chem. Soc. 127, 16752–16753. [CrossRef] [PubMed] [Google Scholar]
  54. Chen X, Luo W, Liu Y, Liu G (2007), Recent progress on spectroscopy of lanthanide ions incorporated in semiconductor. Nanocrystals J. Rare Earths 25, 515–525. [CrossRef] [Google Scholar]
  55. Luo W, Liu Y, Chen X (2015), Lanthanide-doped, Sci. China Mat. 58, 819–850 [CrossRef] [Google Scholar]
  56. Chen D, Wang Y (2013), Impurity doping: a novel strategy for controllable synthesis of functional lanthanide nanomaterials. Nanoscale 5, 4621–4637. [CrossRef] [PubMed] [Google Scholar]
  57. Wang G, Peng Q, Li Y (2011), Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 44, 322–332. [CrossRef] [PubMed] [Google Scholar]
  58. Chen P, Zhang J, Xu B, Sang X, Chen W, Liu X, Han J, Qiu J (2014), Lanthanide doped nanoparticles as remote sensors for magnetic fields. Nanoscale 6, 11002–11006. [CrossRef] [PubMed] [Google Scholar]
  59. Pan G, Bai X, Yang D, Chen X, Jing P, Qu S, Zhang L, Zhou D, Zhu J, Xu W, Dong B, Song H (2017), Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties. Nano Lett. 17, 8005–8011. [CrossRef] [PubMed] [Google Scholar]
  60. Debnath GH, Bloom BP, Tan S, Waldeck DH (2022), Room temperature doping of Ln3+ in perovskite nanoparticles: a halide exchange mediated cation exchange approach Nanoscale 14, 6037–6051. [CrossRef] [PubMed] [Google Scholar]
  61. Kong J, Zhu H, Li R, Luo W, Chen X (2009), Carrier-mediated 1.55 mm photoluminescence from Single Er3+ center in SnO2 NANOCRYSTALS OPTICS Lettters 34, 1873–1875. [CrossRef] [PubMed] [Google Scholar]
  62. Kong J, Zheng W, Liu Y, Li R, Ma E, Zhu H, Chen X (2015), Persistent luminescence from Eu3+ in SnO2 nanoparticles Nanoscale 7, 11048–11054. [CrossRef] [PubMed] [Google Scholar]
  63. Luo W, Fu C, Li R, Liu Y, Zhu H, Chen X (2011), Er3+ -doped anatase TiO2 nanocrystals: crystal-field levels, excited-state dynamics, upconversion, and defect luminescence Small 7, 3046–3056. [CrossRef] [PubMed] [Google Scholar]
  64. Chen L, Zhang J, Lu S, Ren X, Wang X (2005), On the energy transfer from nanocrystalline ZnS to Tb3+ ions confined in reverse micelles Chem. Phys. Lett. 409, 144–148. [CrossRef] [Google Scholar]
  65. Jing-hua N, Rui-nian H, Wen-lian L, Ming-tao L, Tian-zhi Y (2006), Electroluminescent properties of a device based on terbium-doped ZnS nanocrystals. J. Phys. D: Appl. Phys. 39, 2357–2360. [CrossRef] [Google Scholar]
  66. Planelles-Aragó J, Julián-López B, Cordoncillo E, Escribano P, Pellé F, Viana B, Sanchez C (2008), Lanthanide doped ZnS quantum dots dispersed in silica glasses: an easy one pot sol-gel synthesis for obtaining novel photonic materials. J. Mater. Chem. 18, 5193–5199. [CrossRef] [Google Scholar]
  67. Ehrhart G, Capoen B, Robbe O, Beclin F, Boy P, Turrell S, Bouazaoui M (2008), Energy transfer between semiconductor nanoparticles (ZnS or CdS) and Eu3+ ions in sol-gel derived ZrO2 thin films Optical Materials 30, 1595–1602. [CrossRef] [Google Scholar]
  68. Dong L, Liu Y, Zhuo Y, Chu Y (2010), General Route to the Fabrication of ZnS and M-Doped (M = Cd2+, Mn2+, Co2+, Ni2+, and Eu3+) ZnS Nanoclews and a Study of Their Properties Eur. J. Inorg. Chem. 2010, 2504–2513. [CrossRef] [Google Scholar]
  69. Hou S, Yuen Y, Mao H, Wang J, Zhu Z (2009), Photoluminescence properties of the Eu3+-doped ZnS nanocrystals and the crystal-field analysis J. Phys. D: Appl. Phys. 42, 215105 (5 pp). [Google Scholar]
  70. Qu SC, Zhou WH, Liu FQ, Chen NF, Wang ZG, Pan HY, Yu DP (2002), Photoluminescence Properties of Eu3+-Doped ZnS Nanocrystals Prepared in a Water/Methanol Solution Appl. Phys. Lett. 80, 3605–3607. [CrossRef] [Google Scholar]
  71. Sun XL, Zhang GL, Tang GQ, Chen WJ (1999), The site symmetry of Eu3+ in ZnS:Eu nanoparticle Chin. Chem. Lett. 10, 807–810. [Google Scholar]
  72. Sun L, Yan C, Liu C, Liao C, Li D, Yu J (1998), Study of the optical properties of Eu3+-doped ZnS nanocrystals J. Alloys Compounds 275–277, 234–237. [CrossRef] [Google Scholar]
  73. Wang L, Xu X, Yuan X (2010), Preparation and photoluminescent properties of doped nanoparticles of ZnS by solid-state reaction. J. Lumin. 130, 137–140. [CrossRef] [Google Scholar]
  74. Yang H, Yu L, Shen L, Wang L (2004), Preparation and luminescent properties of Eu3+-doped zinc sulfide nanocrystals Mater. Lett. 58, 1172–1175. [CrossRef] [Google Scholar]
  75. Planelles-Aragó J, Cordoncillo E, Ferreira RAS, Carlos LD, Escribano P (2011), Synthesis, Characterization and optical studies on lanthanide-doped CdS quantum dots: new insights on CdS/lanthanide energy transfer mechanisms. J. Mater. Chem. 21, 1162–1170. [CrossRef] [Google Scholar]
  76. Dethlefsen JR, Mikhailovsky AA, Burks PT, Døssing A, Ford PC (2012), Lanthanide modification of CdSe/ZnS core/shell quantum dots. J. Phys. Chem. C 116, 23713–23720. [CrossRef] [Google Scholar]
  77. Martín-Rodríguez R, Geitenbeek R, Meijerink A (2013), Incorporation and luminescence of Yb3+ in CdSe nanocrystals J. Am. Chem. Soc. 135, 13668–13671. [CrossRef] [PubMed] [Google Scholar]
  78. Mukherjee P, Shade CM, Yingling AM, Lamont DN, Waldeck DH, Petoud S (2011), Lanthanide sensitization in II-VI semiconductor materials: a case study with terbium (III) and europium (III) in zinc sulfide nanoparticles. J. Phys. Chem. A 115, 4031–4041. [CrossRef] [PubMed] [Google Scholar]
  79. Debnath GH, Chakraborty A, Ghatak A, Mandal M, Mukherjee P (2015), Controlled terbium (III) luminescence in zinc sulfide nanoparticles: an assessment of competitive photophysical processes. J. Phys. Chem. C 119, 24132–24141. [CrossRef] [Google Scholar]
  80. Manna P, Chakraborty A, Debnath GH, Mukherjee P (2017), How important is the host (semiconductor nanoparticles) identity and absolute band gap in host-sensitized dopant photoluminescence? J. Phys. Chem. Lett. 8, 2794–2798. [CrossRef] [Google Scholar]
  81. Debnath GH, Mukherjee P, Waldeck DH (2020), Optimizing the key variables to generate host sensitized lanthanide doped semiconductor nanoparticle luminophores. J. Phys. Chem. C 124, 26495–26517. [CrossRef] [Google Scholar]
  82. Bloom BP, Zhao L-B, Wang Y, Waldeck DH, Liu R, Zhang P, Beratan DN (2013), Ligand-induced changes in the characteristic size-dependent electronic energies of CdSe nanocrystals. J. Phys. Chem. C 117, 22401–22411. [CrossRef] [Google Scholar]
  83. Hines DA, Kamat PV (2013), Quantum dot surface chemistry: ligand effects and electron transfer reactions. J. Phys. Chem. C 117, 14418–14426. [CrossRef] [Google Scholar]
  84. Hines DA, Kamat PV (2014), Recent advances in quantum dot surface chemistry. ACS Appl. Mater. Interfaces 6, 3041–3057. [CrossRef] [PubMed] [Google Scholar]
  85. Wu M, Mukherjee P, Lamont DN, Waldeck DH (2010), Electron transfer and fluorescence quenching of nanoparticle assemblies. J. Phys. Chem. C 114, 5751–5759. [CrossRef] [Google Scholar]
  86. Chakraborty A, Debnath GH, Ahir M, Bhattacharya S, Upadhyay P, Adhikary A, Mukherjee P (2016), Towards the realization of luminescence from visible emitting trivalent lanthanides (Sm, Eu, Tb, Dy) in polar zinc sulfide nanoparticles: evaluation of in vitro cytotoxicity. RSC Adv. 6, 43304–43315. [CrossRef] [Google Scholar]
  87. Mukherjee P, Sloan RF, Shade CM, Waldeck DH, Petoud S (2013), A postsynthetic modification of II−VI semiconductor nanoparticles to create Tb3+ and Eu3+ luminophores J. Phys. Chem. C 117, 14451–14460. [CrossRef] [PubMed] [Google Scholar]
  88. Petoud S, Muller G, Moore EG, Xu J, Sokolnicki J, Riehl JP, Le UN, Cohen SM, Raymond KN (2007), Brilliant Sm, Eu, Tb, and Dy chiral lanthanide complexes with strong circularly polarized luminescence. J. Am. Chem. Soc. 129, 77–83. [CrossRef] [PubMed] [Google Scholar]
  89. Sudarsan V, van Veggel FCJM, Herring RA, Raudsepp M (2005), Surface Eu3+ ions are different than “bulk” Eu3+ ions in crystalline doped LaF3 nanoparticles J. Mater. Chem. 15, 1332–1342. [CrossRef] [Google Scholar]
  90. Debnath GH, Rudra S, Bhattacharyya A, Guchhait N, Mukherjee P (2019), Host sensitized lanthanide photoluminescence from post-synthetically modified semiconductor nanoparticles depends on reactant identity. J. Colloid Interface Sci. 540, 448–465. [CrossRef] [Google Scholar]
  91. Mehrer H (2007), Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes, Springer, Berlin, [Google Scholar]
  92. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004), Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711–714. [CrossRef] [PubMed] [Google Scholar]
  93. Becker WG, Bard AJ (1983), Photoluminescence and Photoinduced Oxygen Adsorption of Colloidal Zinc Sulfide Dispersions. J. Phys. Chem. 87, 4888–4893. [CrossRef] [Google Scholar]
  94. Dunstan DE, Hagfeldt A, Almgren M, Siegbahn HOG, Mukhtar E (1990), Importance of surface reactions in the photochemistry of ZnS colloids. J. Phys. Chem. 94, 6197–6804. [Google Scholar]
  95. Denzler D, Olschewski M, Sattler K (1998), Luminescence studies of localized gap states in colloidal ZnS nanocrystals. J. Appl. Phys. 84, 2841–2845. [CrossRef] [Google Scholar]
  96. Dorenbos P, van der Kolk E (2006), Location of lanthanide impurity levels in the III–V semiconductor GaN. Appl. Phys. Lett. 89, 061122-1–061122-3. [CrossRef] [Google Scholar]
  97. Dorenbos P (2009), Lanthanide charge transfer energies and related luminescence, charge carrier trapping, and redox phenomena. J. Alloys Compd. 488, 568–573. [CrossRef] [Google Scholar]
  98. Chakraborty A, Debnath GH, Saha NR, Chattopadhyay D, Waldeck DH, Mukherjee P (2016), Identifying the correct host−guest combination to sensitize trivalent lanthanide (guest) luminescence: titanium dioxide nanoparticles as a model host system. J. Phys. Chem. C 120, 23870–23882. [CrossRef] [Google Scholar]
  99. Carnall WT, Fields PR, Rajnak K (1968), Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ J. Chem. Phys. 49, 4424–4442. [CrossRef] [Google Scholar]
  100. Carnall WT, Fields PR, Rajnak K (1968), Electronic energy levels of the trivalent lanthanide aquo ions. III. Tb3+ J. Chem. Phys. 49, 4447–4449. [CrossRef] [Google Scholar]
  101. Carnall WT, Fields PR, Rajnak K (1968), Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+ J. Chem. Phys. 49, 4450–4455. [CrossRef] [Google Scholar]
  102. Rudra S, Debnath GH, Mukherjee P (2018), Role of reactant concentration and identity of added cation in controlling emission from post-synthetically modified terbium incorporated zinc sulfide nanoparticles: an avenue for the detection of lead(II) cations. RSC Adv. 8, 18093–18108. [CrossRef] [Google Scholar]
  103. Zhong X, Feng Y, Knoll W, Han M (2003), Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc. 125, 13559–13563. [CrossRef] [PubMed] [Google Scholar]
  104. Zhong X, Liu S, Zhang Z, Li L, Wei Z, Knoll W (2004), Synthesis of high-quality CdS, ZnS, and ZnxCd1-xS nanocrystals using metal salts and elemental sulfur. J. Mater. Chem. 14, 2790–2794. [CrossRef] [Google Scholar]
  105. Rudra S, Bhar M, Mukherjee P (2019), Structural evolution controls photoluminescence of post-synthetically modified doped semiconductor nanoparticles. J. Phys. Chem. C 123, 29445–29460. [CrossRef] [Google Scholar]
  106. Pala IR, Brock SL (2012), ZnS nanoparticle gels for remediation of Pb2+ and Hg2+ polluted water ACS Appl. Mater. Interfaces 4, 2160–2167. [CrossRef] [PubMed] [Google Scholar]
  107. Kurnia F, Hart JN (2015), Band-gap control of zinc sulfide: towards an efficient visible-light-sensitive photocatalyst. ChemPhysChem 16, 2397–2402. [CrossRef] [PubMed] [Google Scholar]
  108. Bhar M, Rudra S, Mukherjee P (2020), What role can surface capping ligand play to control dopant emission in semiconductor nanoparticles? J. Phys. Chem. C 124, 6588–6597. [CrossRef] [Google Scholar]
  109. Xu S, Wang C, Zhang H, Wang Z, Yang B, Cui Y (2011), pH-Sensitive photoluminescence for aqueous thiol-capped CdTe nanocrystals. Nanotechnology 22, 315703-1–315703-12. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.