Open Access
Review
Issue
4open
Volume 6, 2023
Article Number 9
Number of page(s) 9
Section Chemistry - Applied Chemistry
DOI https://doi.org/10.1051/fopen/2024002
Published online 24 September 2024
  1. DeFelice SL (1995), The nutraceutical revolution: Its impact on food industry R&D. Trends Food Sci Technol 6, 2, 59–61. [CrossRef] [Google Scholar]
  2. Fuoco D (2015), Hypothesis for changing models: current pharmaceutical paradigms, trends and approaches in drug discovery. PeerJ PrePrint e813v1. [Google Scholar]
  3. Feynman RP (1960), There’s plenty of room at the bottom. Eng Sci 23, 5, 22–36. [Google Scholar]
  4. Bangham AD (1993), Liposomes: the Babraham connection. Chem Phys Lipids 64, 1–3, 275–285. [CrossRef] [PubMed] [Google Scholar]
  5. Widder KJ, Senyei AE, Scarpelli DG (1978), Magnetic microspheres: a model system for site specific drug delivery in vivo. Proc Soc Exp Biol Med 158, 2, 141–146. [CrossRef] [Google Scholar]
  6. Kalepu S, Nekkanti V (2015), Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B 5, 5, 442–453. [CrossRef] [PubMed] [Google Scholar]
  7. Vargason AM, Anselmo AC, Mitragotri S (2021), The evolution of commercial drug delivery technologies. Nat Biomed Eng 5, 9, 951–967. [CrossRef] [PubMed] [Google Scholar]
  8. Merkus FW, Verhoef JC, Marttin E, Romeijn SG, van der Kuy PH, Hermens WA, Schipper NG (1999), Cyclodextrins in nasal drug delivery. Adv Drug Deliv Rev 36, 1, 41–57. [CrossRef] [PubMed] [Google Scholar]
  9. Kim JH, Shin JU, Kim SH, Noh JY, Kim HR, Lee J, Chu H, Jeong KY, Park KH, Kim JD, Kim HK, Jeong DH, Yong TS, Park JW, Lee KH (2018), Successful transdermal allergen delivery and allergen-specific immunotherapy using biodegradable microneedle patches. Biomaterials 150, 38–48. [CrossRef] [PubMed] [Google Scholar]
  10. Thornber CW (1979), Isosterism and molecular modification in drug design. Chem Soc Rev 8, 4, 563–580. [CrossRef] [Google Scholar]
  11. Kempf DJ, Sham HL, Marsh KC, Flentge CA, Betebenner D, Green BE, McDonald E, Vasavanonda S, Saldivar A, Wideburg NE, Kati WM, Ruiz L, Zhao C, Fino L, Patterson J, Molla A, Plattner JJ, Norbeck DW (1998), Discovery of ritonavir, a potent inhibitor of HIV protease with high oral bioavailability and clinical efficacy. J Med Chem 41, 4, 602–617. [CrossRef] [PubMed] [Google Scholar]
  12. Beaumont K, Webster R, Gardner I, Dack K (2003), Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: challenges to the discovery scientist. Curr Drug Metab 4, 6, 461–485. [CrossRef] [PubMed] [Google Scholar]
  13. Laitinen R, Löbmann K, Strachan CJ, Grohganz H, Rades T (2013), Emerging trends in the stabilization of amorphous drugs. Int J Pharm 453, 1, 65–79. [CrossRef] [PubMed] [Google Scholar]
  14. Fuchs T (2007), Case study: Cefuroxime axetil: an oral prodrug of cefuroxime, in: V.J. Stella, R.T. Borchardt, M.J. Hageman, R. Oliyai, H. Maag, J.W. Tilley (Eds.), Prodrugs. Biotechnology: pharmaceutical aspects, vol. V, Springer, New York, NY, pp. 1195–1205. https://doi.org/10.1007/978-0-387-49785-3_37. [CrossRef] [Google Scholar]
  15. Taniguchi C, Kawabata Y, Wada K, Yamada S, Onoue S (2014), Microenvironmental pH-modification to improve dissolution behavior and oral absorption for drugs with pH-dependent solubility. Expert Opin Drug Deliv 11, 4, 505–516. [CrossRef] [PubMed] [Google Scholar]
  16. Breda SA, Jimenez-Kairuz AF, Manzo RH, Olivera ME (2009), Solubility behavior and biopharmaceutical classification of novel high-solubility ciprofloxacin and norfloxacin pharmaceutical derivatives. Int J Pharm 371, 1, 106–113. [CrossRef] [PubMed] [Google Scholar]
  17. Myungjoo K, JaeYoul C, ByungHo S, DukKi K, JaehWi L (2009), Bioavailability enhancing activities of natural compounds from medicinal plants. J Med Plant Res 3, 1204–1211. [Google Scholar]
  18. Fernández-Lázaro D, Mielgo-Ayuso J, Córdova Martínez A, Seco-Calvo J (2020), Iron and physical activity: bioavailability enhancers, properties of black pepper (bioperine®) and potential applications. Nutrients 12, 6, 1886. [CrossRef] [PubMed] [Google Scholar]
  19. Guo YG, Singh AP (2019), Emerging strategies for enhancing buccal and sublingual administration of nutraceuticals and pharamaceuticals. J Drug Deliv Sci Technol 52, 440–451. [CrossRef] [Google Scholar]
  20. Wani MC, Horwitz SB (2014), Nature as a remarkable chemist: A personal story of the discovery and development of Taxol. Anticancer Drugs 25, 5, 482–487. [CrossRef] [PubMed] [Google Scholar]
  21. Sohail MF, Rehman M, Sarwar HS, Naveed S, Salman O, Bukhari NI, Hussain I, Webster TJ, Shahnaz G (2018), Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends. Int J Nanomed 13, 3145–3161. [CrossRef] [Google Scholar]
  22. Fuoco D, Cohen J, Rosanelli L, McKibbon K (2020), Nanostructure lipid carrier delivery system, composition and methods. US Patent US 20230094753A1. [Google Scholar]
  23. Fuoco D (2012), Classification framework and chemical biology of tetracycline-structure-based drugs. Antibiotics 1, 1, 1–13. [CrossRef] [PubMed] [Google Scholar]
  24. Liu ZX, Artmann C (2009), Relative bioavailability comparison of different coenzyme Q10 formulations with a novel delivery system. Altern Ther Health Med 15, 2, 42–46. [PubMed] [Google Scholar]
  25. Shah AV, Desai HH, Thool P, Dalrymple D, Serajuddin ATM (2018), Development of self-microemulsifying drug delivery system for oral delivery of poorly water-soluble nutraceuticals. Drug Dev Ind Pharm 44, 6, 895–901. [CrossRef] [PubMed] [Google Scholar]
  26. Tran TH, Guo Y, Song D, Bruno RS, Lu X (2014), Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J Pharm Sci 103, 3, 840–852. [CrossRef] [PubMed] [Google Scholar]
  27. Fuoco D, di Tomasso J, Boulos C, Morais JA (2015), Identifying nutritional, funtional, and qualityof life correlates with male hypogonadism in advanced cancer patients. eCancerMedicalScience 9, 569. [CrossRef] [PubMed] [Google Scholar]
  28. Fuoco D (2012), A new method for characterization of natural zeolites and organic nanostructure using atomic force microscopy. Nanomaterials 2, 1, 79–91. [CrossRef] [PubMed] [Google Scholar]
  29. Fuoco D (2015), Cytotoxicity induced by tetracyclines via protein photooxidation. Adv Toxicol 2015, 1, 787129. [CrossRef] [Google Scholar]
  30. Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, Mehrabani M, Piazza S, Gangadharappa HV, Pardakhty A, Mehrbani M, Dell’Agli M, Nematollahi MH (2021), Phytosomes as innovative delivery systems for phytochemicals: a comprehensive review of literature. Int J Nanomedicine 16, 6983–7022. [CrossRef] [Google Scholar]
  31. Park JW, Lagniton PNP, Liu Y, Xu RH (2021), mRNA vaccines for COVID-19: what, why and how. Int J Biol Sci 17, 6, 1446–1460. [CrossRef] [PubMed] [Google Scholar]
  32. Alberts DS, Garcia DJ (1997), Safety aspects of pegylated liposomal doxorubicin in patients with cancer. Drugs 54, 4, 30–35. [CrossRef] [PubMed] [Google Scholar]
  33. Werner ME, Cummings ND, Sethi M, et al. (2013), Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int J Radiat Oncol Biol Phys 86, 3, 463–468. [CrossRef] [PubMed] [Google Scholar]
  34. Wang X, Ishida T, Kiwada H (2007), Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J Control Release 119, 2, 236–244. [CrossRef] [PubMed] [Google Scholar]
  35. Povsic TJ, Lawrence MG, Lincoff AM, Mehran R, Rusconi CP, Zelenkofske SL, Huang Z, Sailstad J, Armstrong PW, Steg PG, Bode C, Becker RC, Alexander JH, Adkinson NF, Levinson AI (2016), Pre-existing anti-PEG antibodies are associated with severe immediate allergic reactions to pegnivacogin, a PEGylated aptamer. J Allergy Clin Immunol 138, 6, 1712–1715. [CrossRef] [PubMed] [Google Scholar]
  36. Duarte I, Temtem M, Gil M, Gaspar F (2011), Overcoming poor bioavailability through amorphous solid dispersions. Ind Pharm 30, 4–6. [Google Scholar]
  37. Barone JA, Moskovitz BL, Guarnieri J, Hassell AE, Colaizzi JL, Bierman RH, Jessen L (1998), Enhanced bioavailability of itraconazole in hydroxypropyl-beta-cyclodextrin solution versus capsules in healthy volunteers. Antimicrob Agents Chemother 42, 7, 1862–1865. [CrossRef] [PubMed] [Google Scholar]
  38. Huang S, Huang Z, Fu Z, Shi Y, Dai Q, Tang S, Gu Y, Xu Y, Chen J, Wu X, Ren F (2020), A novel drug delivery carrier comprised of nimodipine drug solution and a nanoemulsion: preparation, characterization, in vitro, and in vivo studies. Int J Nanomedicine 15, 1161–1172. [CrossRef] [Google Scholar]
  39. Uchino T, Yasuno N, Yanagihara Y, Suzuki H (2007), Solid dispersion of spironolactone with porous silica prepared by the solvent method. Pharmazie 62, 8, 599–603. [PubMed] [Google Scholar]
  40. Beg S, Swain S, Rizwan M, Irfanuddin M, Shobha Malini D (2011), Bioavailability enhancement strategies: basics, formulation approaches and regulatory considerations. Curr Drug Deliv 8, 6, 691–702. [CrossRef] [PubMed] [Google Scholar]
  41. Im K, Ravi A, Kumar D, Kuttan R, Maliakel B (2012), An enhanced bioavailable formulation of curcumin using fenugreek-derived soluble dietary fibre. J Funct Foods 4, 1, 348–357. [CrossRef] [Google Scholar]
  42. Shi L, Zhou J, Guo J, Gladden I, Kong L (2021), Starch inclusion complex for the encapsulation and controlled release of bioactive guest compounds. Carbohydr Polym 274, 118596. [CrossRef] [PubMed] [Google Scholar]
  43. Zhou Y, Li H, Yang YW (2015), Controlled drug delivery systems based on calixarenes. Chin Chem Lett 26, 7, 825–828. [CrossRef] [Google Scholar]
  44. Fuoco D, Cohen J (2020), Process for the purification of whey protein isolate and formulation thereof, Patent CA3086093A1. [Google Scholar]
  45. Souto EB (Ed.) (2012), Patenting nanomedicines: legal aspects, intellectual property and grant opportunities, Springer Science & Business Media, New York City. [CrossRef] [Google Scholar]
  46. Al-Marzouqi AH, Elw HM, Shehadi I, Adem A (2009), Physicochemical properties of antifungal drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J Pharm Biomed Anal 49, 2, 227–233. [CrossRef] [PubMed] [Google Scholar]
  47. Carrier RL, Miller LA, Ahmed I (2007), The utility of cyclodextrins for enhancing oral bioavailability. J Control Release 123, 2, 78–99. [CrossRef] [PubMed] [Google Scholar]
  48. Pouton CW (2000), Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and “self-microemulsifying” drug delivery systems. Eur J Pharm Sci 11, S93–S98. [CrossRef] [PubMed] [Google Scholar]
  49. Conniot J, Silva MJ, Fernandes J, Liana CS, Gaspar R, Brocchini S, Florino HF, Barata TS (2014), Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 105, 1–28. [Google Scholar]
  50. Soni SK, Deseale SS, Bronich KT (2016), Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 240, 109–126. [CrossRef] [PubMed] [Google Scholar]
  51. Gao W, Zhang Y, Zhang Q, Zhang L (2016), Nanoparticle-hydrogel: a hybrid biomaterial system for localized drug delivery. Ann Biomed Eng 44, 2049–2061. [CrossRef] [PubMed] [Google Scholar]
  52. Polyak F, Boudovitch D (2023), Complexes comprising a carbohydrate and processes for their preparation, U.S. Patent Application No. 17/784,468. [Google Scholar]
  53. Huang G, Huang H (2018), Application of hyaluronic acid as carriers in drug delivery. Drug Deliv 25, 1, 766–772. [CrossRef] [PubMed] [Google Scholar]
  54. Balakrishnan P, Lee BJ, Oh DH, Kim JO, Lee YI, Kim DD, Jee JP, Lee YB, Woo JS, Yong CS, Choi HG (2009), Enhanced oral bioavailability of Coenzyme Q10 by self-emulsifying drug delivery systems. Int J Pharm 374, 1, 66–72. [CrossRef] [PubMed] [Google Scholar]
  55. Cho HJ (2020), Recent progresses in the development of hyaluronic acid-based nanosystems for tumor-targeted drug delivery and cancer imaging. J Pharm Investig 50, 2, 115–129. [CrossRef] [Google Scholar]
  56. Zhong W, Pang L, Feng H, Dong H, Wang S, Cong H, Shen Y, Bing Y (2020), Recent advantage of hyaluronic acid for anti-cancer application: a review of “3S” transition approach. Carbohydr Polym 238, 116204. [CrossRef] [PubMed] [Google Scholar]
  57. Arshad R, Gulshad L, Haq IU, Farooq MA, Al-Farga A, Siddique R, Manzoor MF, Karrar E (2021), Nanotechnology: a novel tool to enhance the bioavailability of micronutrients. Food Sci Nutr 9, 6, 3354–3361. [CrossRef] [PubMed] [Google Scholar]
  58. Wang S, Su R, Nie S, Sun M, Zhang J, Wu D, Moustaid-Moussa N (2014), Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem 25, 4, 363–376. [CrossRef] [PubMed] [Google Scholar]
  59. Polyakov NE, Kispert LD (2015), Water soluble biocompatible vesicles based on polysaccharides and oligosaccharides inclusion complexes for carotenoid delivery. Carbohydr Polym 128, 207–219. [CrossRef] [PubMed] [Google Scholar]
  60. Panyue W, Wendong K, Dirisala A, Toh K, Tanaka M, Li J (2023), Stealth and pseudo-stealth nanocarriers. Adv Drug Deliv Rev 198, 114895. [CrossRef] [PubMed] [Google Scholar]
  61. Salmaso S, Caliceti P (2013), Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv 2013, 1, 374252. [CrossRef] [Google Scholar]
  62. Schöttler S, Becker G, Winzen S, Steinbach T, Mohr K, Landfester K, Mailänder V, Wurm FR (2016), Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat Nanotechnol 11, 4, 372–377. [CrossRef] [PubMed] [Google Scholar]
  63. Li M, Jiang S, Simon J, Pablick D, Frey M-L (2021), Brush conformation of polyethylene glycol determines the stealth effect of nanocarriers in the low protein adsorption regime. Nano Letters 21, 1591–1598. [CrossRef] [PubMed] [Google Scholar]
  64. Fuoco D, Poletti A, Forini N (2008), 3D Surface of natural zeolites investigate using high resolution microscopy. ICP – Rivista della Industria Chimica Italiana 35, 100–105. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.