Issue
4open
Volume 6, 2023
Inorganic Nanoparticle Luminophore: Design and Application
Article Number 1
Number of page(s) 11
Section Life Sciences - Medicine
DOI https://doi.org/10.1051/fopen/2022020
Published online 10 February 2023
  1. Chan WCW, , Maxwell DJ, , Gao XH, , Bailey RE, , Han MY, , Nie SM (2002), Luminescent quantum dots for multiplexed biological detection and imaging,. Curr Opin Biotechnol 13:, 40––46. [CrossRef] [PubMed] [Google Scholar]
  2. Efros AL, , Efros AL (1982), Interband absorption of light in a semiconductor sphere,. Sov Phys Semicond 16, 7, 772–775. [Google Scholar]
  3. Borovitskaya E, Shur MS (Eds.) (2002), Quantum dots, Vol. 25, World Scientific, New Jersey, USA. [CrossRef] [Google Scholar]
  4. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998), Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016. [CrossRef] [PubMed] [Google Scholar]
  5. Bang J, Yang H, Holloway PH (2006), Enhanced and stable green emission of ZnO nanoparticles by surface segregation of Mg. Nanotechnology 17, 973–978. [CrossRef] [PubMed] [Google Scholar]
  6. Kucur E, Bucking W, Giernoth R, Nann T (2005), Determination of defect states in semiconductor nanocrystals by cyclic voltammetry. J Phys Chem B 109, 20355–20360. [CrossRef] [PubMed] [Google Scholar]
  7. Bera D, Qian L, Tseng TK, Holloway PH (2010), Quantum dots and their multimodal applications: a review. Materials 3, 4, 2260–2345. https://doi.org/10.3390/ma3042260. [CrossRef] [Google Scholar]
  8. Pillar-Little TJ, Wanninayake N, Nease L, Heidary DK, Glazer EC, Kim DY (2018), Superior photodynamic effect of carbon quantum dots through both type I and type II pathways: Detailed comparison study of top-down-synthesized and bottom-up-synthesized carbon quantum dots. Carbon 140, 616–623. https://doi.org/10.1016/j.carbon.2018.09.004. [CrossRef] [Google Scholar]
  9. Gregor PC (2010), Drummen, quantum dots – from synthesis to applications in biomedicine and life sciences. Int J Mol Sci 11, 154–163. https://doi.org/10.3390/ijms11010154. [CrossRef] [PubMed] [Google Scholar]
  10. Wang C, Jiang Z, Wei L, Chen Y, Jiao J, Eastman M, Liu H (2012), Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic applications: a wet-chemical approach. Nano Energ 1, 3, 440–447. https://doi.org/10.1016/j.nanoen.2012.02.005. [CrossRef] [Google Scholar]
  11. Bang J, Yang H, Holloway PH (2006), Enhanced and stable green emission of ZnO nanoparticles by surface segregation of Mg. Nanotechnology 17, 4, 973–978. https://doi.org/10.1088/0957-4484/17/4/022. [CrossRef] [PubMed] [Google Scholar]
  12. Yang H, Holloway PH, Cunningham G, Schanze KS (2004), CdS: Mn nanocrystals passivated by ZnS: Synthesis and luminescent properties. J Chem Phys 121, 10233–10240. [CrossRef] [PubMed] [Google Scholar]
  13. Zhu JJ, Koltypin Y, Gedanken A (2000), General sonochemical method far the preparation of nanophasic selenides: Synthesis of ZnSe nanoparticles. Chem Mater 12, 73–78. [CrossRef] [Google Scholar]
  14. Qu LH, Peng XG (2002), Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 124, 2049–2055. [CrossRef] [PubMed] [Google Scholar]
  15. Lee H, Holloway PH, Yang H (2006), Synthesis and characterization of colloidal ternary ZnCdSe semiconductor nanorods. J Chem Phys 125, 2363181–2363189. [Google Scholar]
  16. Xin SH, Wang PD, Yin A, Kim C, Dobrowolska M, Merz JL, Furdyna JK (1996), Formation of self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy. Appl Phys Lett 69, 3884–3886. [CrossRef] [Google Scholar]
  17. Leonard D, Krishnamurthy M, Reaves CM, Denbaars SP, Petroff PM (1993), Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs-surfaces. Appl Phys Lett 63, 3203–3205. [CrossRef] [Google Scholar]
  18. Bailey RE, Smith AM, Nie S (2004), Quantum dots in biology and medicine. Phys E 25, 1–12. [CrossRef] [Google Scholar]
  19. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005), Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544. [CrossRef] [PubMed] [Google Scholar]
  20. Oostendorp M, Douma K, Hackeng TM, Post MJ, van Zandvoort MA, Backes WH (2010), Gadolinium-labeled quantum dots for molecular magnetic resonance imaging: R1 versus R2 mapping. Magn Reson Med 64, 1, 291–298. https://doi.org/10.1002/mrm.22342. [CrossRef] [PubMed] [Google Scholar]
  21. Barroso Margarida M (2011), Quantum Dots in Cell Biology. J Histochem Cytochem 59, 3, 237–251. https://doi.org/10.1369/0022155411398487. [CrossRef] [PubMed] [Google Scholar]
  22. Klostranec JM, Chan WCW (2006), Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18, 15, 1953–1964. https://doi.org/10.1002/adma.200500786. [CrossRef] [Google Scholar]
  23. Cassidy PJ, Radda GK (2005), Molecular imaging perspectives. J R Soc Interface 2, 133–144. [CrossRef] [PubMed] [Google Scholar]
  24. Levenson RM, Lynch DT, Kobayashi H, Backer JM, Backer MV (2008), Multiplexing with multispectral imaging: From mice to microscopy. ILAR J. 49, 78–88. [CrossRef] [PubMed] [Google Scholar]
  25. Sharma P, Brown S, Walter G, Santra S, Moudgil B (2006), Nanoparticles for bioimaging. Adv Colloid Interface Sci 123, 471–485. [CrossRef] [PubMed] [Google Scholar]
  26. Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Chen X (2006), Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6, 4, 669–676. [CrossRef] [PubMed] [Google Scholar]
  27. Jamiesona T, Bakhshia R, Petrovaa D, Pococka R, Imanib M, Seifalian AM (2007), Biological applications of quantum dots. Biomaterials 28, 4717–4732. [CrossRef] [PubMed] [Google Scholar]
  28. Luker GD, Luker KE (2008), Optical imaging: Current applications and future directions. J Nucl Med 49, 1–4. [CrossRef] [PubMed] [Google Scholar]
  29. Hikmet RAM, Talapin DV, Weller H (2003), Study of conduction mechanism and electroluminescence in CdSe/ZnS quantum dot composites. J Appl Phys 93, 6, 3509–3514. [CrossRef] [Google Scholar]
  30. Jaiswal JK, Goldman ER, Mattoussi H, Simon SM (2004), Use of quantum dots for live cell imaging. Nat Methods 1, 1, 73–78. [CrossRef] [PubMed] [Google Scholar]
  31. Bonilla JC, Bozkurt F, Ansari S, Sozer N, Kokini JL (2016), Applications of quantum dots in food science and biology. Trends Food Sci Technol 53, 75–89. [CrossRef] [Google Scholar]
  32. Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000), Shape control of CdSe nanocrystals. Nature 404, 6773, 59–61. [CrossRef] [PubMed] [Google Scholar]
  33. Manna L, Scher EC, Alivisatos AP (2000), Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc 122, 51, 12700–12706. [CrossRef] [Google Scholar]
  34. Le Gac S, Vermes I, van den Berg A (2006), Quantum dots based probes conjugated to annexin V for photostable apoptosis detection and imaging. Nano letters 6, 9, 1863–1869. [CrossRef] [PubMed] [Google Scholar]
  35. Bakueva L, Musikhin S, Hines MA, Chang TW, Tzolov M, Scholes GD, Sargent EH (2003), Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer. Appl Phys Lett 82, 17, 2895–2897. [CrossRef] [Google Scholar]
  36. Kim YG, Joh YS, Song JH, Baek KS, Chang SK, Sim ED (2003), Temperature-dependent photoluminescence of ZnSe/ZnS quantum dots fabricated under the Stranski-Krastanov mode. Appl Phys Lett 83, 13, 2656–2658. [CrossRef] [Google Scholar]
  37. Liu YS, Sun Y, Vernier PT, Liang CH, Chong SYC, Gundersen MA (2007), pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells. J Phys Chem C 111, 7, 2872–2878. [CrossRef] [PubMed] [Google Scholar]
  38. Atchudan R, Edison TNJI, Shanmugam M, Perumal S, Somanathan T, Lee YR (2021), Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging. Phys E Low-Dimens Syst Nanostructures 126, 114417. [CrossRef] [Google Scholar]
  39. Das P, Ganguly S, Maity PP, Bose M, Mondal S, Dhara S, Das NC (2018), Waste chimney oil to nanolights: a low cost chemosensor for tracer metal detection in practical field and its polymer composite for multidimensional activity. J Photochem Photobiol B Biol 180, 56–67. [CrossRef] [Google Scholar]
  40. Murugan N, Prakash M, Jayakumar M, Sundaramurthy A, Sundramoorthy AK (2019), Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence “turn-off” sensor probe for selective detection of Cu2+. Appl Surf Sci 476, 468–480. [CrossRef] [Google Scholar]
  41. Pan D, Guo L, Zhang J, Xi C, Xue Q, Huang H, Wu M (2012), Cutting sp 2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J Mater Chem 22, 8, 3314–3318. [CrossRef] [Google Scholar]
  42. Fan Z, Li Y, Li X, Fan L, Zhou S, Fang D, Yang S (2014), Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging. Carbon 70, 149–156. [CrossRef] [Google Scholar]
  43. Ahmad P, Khandaker MU, Muhammad N, Khan G, Rehman F, Khan AS, Irshad MI (2019), Fabrication of hexagonal boron nitride quantum dots via a facile bottom-up technique. Ceramics Int 45, 17, 22765–22768. [CrossRef] [Google Scholar]
  44. Bae WK, Nam MK, Char K, Lee S (2008), Gram-scale one-pot synthesis of highly luminescent blue emitting Cd1-xZnxS/ZnS nanocrystals. Chem Mater 20, 5307–5313. [CrossRef] [Google Scholar]
  45. Battaglia D, Peng XG (2002), Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett 2, 1027–1030. [CrossRef] [Google Scholar]
  46. Bera D, Qian L, Holloway PH (2009), Semiconducting Quantum Dots for Bioimaging, Vol. 191, Informa Heathcare, New York, NY, USA. [Google Scholar]
  47. Bera D, Qian L, Sabui S, Santra S, Holloway PH (2008), Photoluminescence of ZnO quantum dots produced by a sol-gel process. Opt Mater 30, 1233–1239. [CrossRef] [Google Scholar]
  48. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005), Chemistry and properties of nanocrystals of different shapes. Chem Rev 105, 1025–1102. [CrossRef] [PubMed] [Google Scholar]
  49. Chason E, Picraux ST, Poate JM, Borland JO, Current MI, Delarubia TD, Eaglesham DJ, Holland OW, Law ME, Magee CW, Mayer JW, Melngailis J, Tasch AF (1997), Ion beams in silicon processing and characterization. J Appl Phys 81, 6513–6561. [CrossRef] [Google Scholar]
  50. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003), Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445. [CrossRef] [PubMed] [Google Scholar]
  51. Ge G, Li L, Wang D, Chen M, Zeng Z, Xiong W, Guo C (2021), Carbon dots: Synthesis, properties and biomedical applications. J Mater Chem B. [Google Scholar]
  52. Ghafary SM, Nikkhah M, Hatamie S, Hosseinkhani S (2017), Simultaneous gene delivery and tracking through preparation of photo-luminescent nanoparticles based on graphene quantum dots and chimeric peptides. Sci Rep 7, 9552. https://doi.org/10.1038/s41598-017-09890-y. [CrossRef] [PubMed] [Google Scholar]
  53. Giraud G, Schulze H, Bachmann TT, Campbell CJ, Ghazal P, Khondoker MR, Crain J (2009), Fluorescence lifetime imaging of quantum dot labeled DNA microarrays. Int J Mol Sci 10, 4, 1930–1941. [CrossRef] [PubMed] [Google Scholar]
  54. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003), Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21, 1, 47–51. [CrossRef] [PubMed] [Google Scholar]
  55. Martin CR, Mitchell DT (1998), Nanomaterials in analytical chemistry. Anal Chem 70, A322–A327. [Google Scholar]
  56. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005), Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4, 435–446. [CrossRef] [PubMed] [Google Scholar]
  57. Nakamura S, Kitamura K, Umeya H, Jia A, Kobayashi M, Yoshikawa A, Shimotomai M, Nakamura S, Takahashi K (1998), Bright electroluminescence from CdS quantum dot LED structures. Electron Lett 34, 2435–2436. [CrossRef] [Google Scholar]
  58. Qian HF, Li L, Ren JC (2005), One-step and rapid synthesis of high quality alloyed quantum dots (CdSe-CdS) in aqueous phase by microwave irradiation with controllable temperature. Mater Res Bull 40, 1726–1736. [CrossRef] [Google Scholar]
  59. Qu LH, Peng ZA, Peng XG (2001), Alternative routes toward high quality CdSe nanocrystals. Nano Lett 1, 333–337. [CrossRef] [Google Scholar]
  60. Sapsford KE, Pons T, Medintz IL, Mattoussi H (2006), Biosensing with luminescent semiconductor quantum dots. Sensors 6, 925–953. [CrossRef] [Google Scholar]
  61. Sashchiuk A, Lifshitz E, Reisfeld R, Saraidarov T, Zelner M, Willenz A (2002), Optical and conductivity properties of PbS nanocrystals in amorphous zirconia sol-gel films. J Sol-Gel Sci Technol 24, 31–38. [CrossRef] [Google Scholar]
  62. Jin S, Hu Y, Gu Z, Liu L, Wu H-C (2011), Application of quantum dots in biological imaging. J Nanomater 2011, 834139, 13. https://doi.org/10.1155/2011/834139. [Google Scholar]
  63. Spanhel L, Anderson MA (1991), Semiconductor clusters in the sol-gel process-quantized aggregation, gelation, and crystal-growth in concentrated ZnO colloids. J Am Chem Soc 113, 2826–2833. [CrossRef] [Google Scholar]
  64. Swihart MT (2003), Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8, 127–133. [CrossRef] [Google Scholar]
  65. Wang LC, Chen LY, Luo T, Qian YT (2006), A hydrothermal method to prepare the spherical ZnS and flower-like CdS microcrystallites. Mater Lett 60, 3627–3630. [CrossRef] [Google Scholar]
  66. Wang Y, Herron N (1991), Nanometer-sized semiconductor clusters–materials synthesis, quantum size effects, and photophysical properties. J Phys Chem 95, 525–532. [CrossRef] [Google Scholar]
  67. Xie Y, Qian YT, Wang WZ, Zhang SY, Zhang YH (1996), A benzene-thermal synthetic route to nanocrystalline GaN. Science 272, 1926–1927. [CrossRef] [PubMed] [Google Scholar]
  68. Yang HQ, Yin WY, Zhao H, Yang RL, Song YZ (2008), A complexant-assisted hydrothermal procedure for growing well-dispersed InP nanocrystals. J Phys Chem Solids 69, 1017–1022. [CrossRef] [Google Scholar]
  69. Yuan F, Li S, Fan Z, Meng X, Fan L, Yang S (2016), Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today 11, 5, 565–586. [CrossRef] [Google Scholar]
  70. Zhu J, Koltypin Y, Gedanken A (2000), General sonochemical method for the preparation of nanophasic selenides: synthesis of ZnSe nanoparticles. Chem Mater 12, 1, 73–78. [CrossRef] [Google Scholar]
  71. Ekimov AI, Efros AL, Onushchenko AA (1985), Quantum size effect in semiconductor microcrystals. Solid State Commun 56, 11, 921–924. [CrossRef] [Google Scholar]
  72. Rossetti R, Nakahara S, Brus LE (1983), Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J Chem Phys 79, 2, 1086–1088. [CrossRef] [Google Scholar]
  73. Norris DJ, Nirmal M, Murray CB, Sacra A, Bawendi MG (1993), Size dependent optical spectroscopy of II–VI semiconductor nanocrystallites (quantum dots). Z-Phys D 26, 1, 355–357. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.