Issue
4open
Volume 2, 2019
Disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer”
Article Number 28
Number of page(s) 30
Section Life Sciences - Medicine
DOI https://doi.org/10.1051/fopen/2019023
Published online 01 October 2019
  1. Calaf GM, Zepeda AB, Castillo RL, Figueroa CA, Arias C, Figueroa E, Farías JG (2015), Molecular aspects of breast cancer resistance to drugs (Review). Int J Oncol 47, 2, 437–445. https://doi.org/10.3892/ijo.2015.3055. [Google Scholar]
  2. Kimberly L (2015), Global Cancer Spending Reaches 100B, US News, Washington, DC, May, 5. https://www.usnews.com/news/blogs/data-mine/2015/05/05/global-cancer-spending-reaches-100b. [Google Scholar]
  3. National Cancer Institue (NCI) (2018), Most recent reported fiscal year budget, NCI, Bethesda, MD, December, 20. https://www.cancer.gov/about-nci/budget/fact-book/data/recent-fiscal-year. [Google Scholar]
  4. Begum M, Lewison G, Lawler M, Sullivan R (2018), Mapping the European cancer research landscape: an evidence base for national and Pan-European research and funding. Eur J Cancer 100, 2018, 75–84. https://doi.org/10.1016/j.ejca.2018.04.017. [CrossRef] [PubMed] [Google Scholar]
  5. Brücher BLDM, Jamall IS (2014), Epistemology of the origin of cancer: a new paradigm. BMC Cancer 14, 331, 1–15. https://doi.org/10.1186/1471-2407-14-331. [CrossRef] [PubMed] [Google Scholar]
  6. Brücher BLDM, Jamall IS (2014), Cell-Cell communication in tumor microenvironment, carcinogenesis and anticancer treatment. Cell Physiol Biochem 34, 213–243. https://doi.org/10.1159/000362978. [CrossRef] [PubMed] [Google Scholar]
  7. Brücher BLDM, Lyman G, van Hillegersberg R, Pollock RE, Lordick F, Yang HK, Ushijima T, Yeoh KG, Skricka T, Polkowski W, Wallner G, Verwaal V, Garofalo A, D’Ugo D, Roviello F, Steinau HU, Wallace TJ, Daumer M, Maihle N, Reid TJ III, Ducreux M, Kitagawa Y, Knuth A, Zilberstein B, Steele SR, Jamall IS (2014), Imagine a world without cancer. BMC Cancer 14, 186, 1–8. https://doi.org/10.1186/1471-2407-14-186. [CrossRef] [PubMed] [Google Scholar]
  8. Brücher BLDM, Li Y, Schnabel P, Daumer M, Wallace TJ, Kube R, Zilberstein B, Steele S, Voskuil JL, Jamall IS (2016), Genomics, microRNA, epigenetics, and proteomics for future diagnosis, treatment and monitoring response in upper GI cancers. Clin Transl Med 5, 1, 1–16. https://doi.org/10.1186/s40169-016-0093-6. [CrossRef] [PubMed] [Google Scholar]
  9. Brücher BLDM, Jamall IS (2016), Somatic mutation theory – Why it’s wrong for most cancers. Cell Physiol Biochem 38, 5, 1663–1680. https://doi.org/10.1159/000443106. [CrossRef] [PubMed] [Google Scholar]
  10. Zhu M, Lu T, Jia Y, Luo X, Gopal P, Li L, Odewole M, Renteria V, Singal AG, Jang Y, Ge K, Wang SC, Sorouri M, Parekh JR, MacConmara MP, Yopp AC, Wang T, Zhu H (2019), Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease. Cell 177, 3, 608–621.e12. https://doi.org/10.1016/j.cell.2019.03.026. [Google Scholar]
  11. Jonsson P, Bandlamudi C, Cheng ML, Srinivasan P, Chavan SS, Friedman ND, Rosen EY, Richards AL, Bouvier N, Selcuklu SD, Bielski CM, Abida W, Mandelker D, Birsoy O, Zhang L, Zehir A, Donoghue MTA, Baselga J, Offit K, Scher HI, O’Reilly EM, Stadler ZK, Schultz N, Socci ND, Viale A, Ladanyi M, Robson ME, Hyman DM, Berger MF, Solit DB, Taylor BS (2019), Tumour lineage shapes BRCA-mediated phenotypes. Nature 571, 7766, 576–579. https://doi.org/10.1038/s41586-019-1382-1. [CrossRef] [PubMed] [Google Scholar]
  12. Blokzijl F, de Ligt J, Jager M, Sasselli V, Roerink S, Sasaki N, Huch M, Boymans S, Kuijk E, Prins P, Nijman IJ, Martincorena I, Mokry M, Wiegerinck CL, Middendorp S, Sato T, Schwank G, Nieuwenhuis EE, Verstegen MM, van der Laan LJ, de Jonge J, IJzermans JN, Vries RG, van de Wetering M, Stratton MR, Clevers H, Cuppen E, van Boxtel R (2016), Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 7624, 260–264. https://doi.org/10.1038/nature19768. [CrossRef] [PubMed] [Google Scholar]
  13. Guha M (2017), Misunderstanding the bad luck of getting cancer. J Natl Cancer Inst 109, 6, 2–3. https://doi.org/10.1093/jnci/djx126. [CrossRef] [PubMed] [Google Scholar]
  14. Bennett WH (1899), Some peculiarities in the behavior of certain malignant and innocent growths. Lancet 1, 3–7. [Google Scholar]
  15. Rosenman RH (1946), Spontaneous regression of metastatic sarcoma; report of case. Am J Clin Pathol 16, 281–289. [Google Scholar]
  16. Penner DW (1953), Spontaneous regression of a case of myosarcoma. Cancer 6, 4, 776–779. [CrossRef] [PubMed] [Google Scholar]
  17. Sumner WC (1953), Spontaneous regression of melanoma. Cancer 6, 5, 1040–1043. [CrossRef] [PubMed] [Google Scholar]
  18. Levison VB (1955), Spontaneous regression of a malignant melanoma. Br Med J 1, 4911, 458–459. PMCID: PMC2061225. [CrossRef] [PubMed] [Google Scholar]
  19. Everton TC, Cole WH (1966), Spontaneous regression of cancer, W.B. Saunders, Philadelphia. [Google Scholar]
  20. McKinnell R, Deggins B, Labat D (1969), Transplantation of pluripotential nuclei from triploid frog tumors. Science 165, 3891, 394–396. https://doi.org/10.1126/science.165.3891.394. [Google Scholar]
  21. Rubin H (1980), Is somatic mutation the major mechanism of malignant transformation? J Natl Cancer Inst 64, 5, 995–1000. https://doi.org/10.1093/jnci/64.5.995. [PubMed] [Google Scholar]
  22. Fairlamb DG (1981), Spontaneous regression of metastases of renal cancer: a report of two cases including the first recorded regression following irradiation of a dominant metastasis and review of the world literature. Cancer 47, 8, 2102–2106. PMID: 7226102. [CrossRef] [PubMed] [Google Scholar]
  23. Lust JM, Carlson DL, Kowles R, Rollins-Smith L, Williams JW 3rd, McKinnell RG (1991), Allografts of tumor nuclear transplantation embryos: differentiation competence. Proc Natl Acad Sci USA 88, 15, 6883–6887. https://doi.org/10.1073/pnas.88.15.6883. [CrossRef] [Google Scholar]
  24. Tang R, Changchien CR, Wu MC, Fan CW, Liu KW, Chen JS, Chien HT, Hsieh LL (2004), Colorectal cancer without high microsatellite instability and chromosomal instability – an alternative genetic pathway to human colorectal cancer. Carcinogenesis 25, 5, 841–846. https://doi.org/10.1093/carcin/bgh074. [Google Scholar]
  25. Rosenfeld S (2013), Are the somatic mutation and tissue organization field theories of carcinogenesis incompatible? Cancer Inform 12, 221–229. https://doi.org/10.4137/CIN.S13013. [CrossRef] [PubMed] [Google Scholar]
  26. Wang RA, Li ZS, Zhang HZ, Zheng PJ, Li QL, Shi JG, Yan QG, Ye J, Wang JB, Guo Y, Huang XF, Yu YH (2013), Invasive cancers are not necessarily from preformed in situ tumours – an alternative way of carcinogenesis from misplaced stem cells. J Cell Mol Med 17, 7, 921–926. https://doi.org/10.1111/jcmm.12078. [CrossRef] [PubMed] [Google Scholar]
  27. Versteeg R (2014), Cancer: tumours outside the mutation box. Nature 506, 7489, 438–439. https://doi.org/10.1038/nature13061. [CrossRef] [PubMed] [Google Scholar]
  28. Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li Y, Lee R, Tatevossian RG, Phoenix TN, Thiruvenkatam R, White E, Tang B, Orisme W, Gupta K, Rusch M, Chen X, Li Y, Nagahawhatte P, Hedlund E, Finkelstein D, Wu G, Shurtleff S, Easton J, Boggs K, Yergeau D, Vadodaria B, Mulder HL, Becksfort J, Gupta P, Huether R, Ma J, Song G, Gajjar A, Merchant T, Boop F, Smith AA, Ding L, Lu C, Ochoa K, Zhao D, Fulton RS, Fulton LL, Mardis ER, Wilson RK, Downing JR, Green DR, Zhang J, Ellison DW, Gilbertson RJ (2014), C11orf95-RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 506, 7489, 451–455. https://doi.org/10.1038/nature13109. Erratum. In: Nature. 2014 Apr 24, 508(7497), 554. Becksford, Jared [corrected to Becksfort, Jared]. [CrossRef] [PubMed] [Google Scholar]
  29. Adjiri A (2017), DNA mutations may not be the cause of cancer. Oncol Ther 5, 1, 85–101. https://doi.org/10.1007/s40487-017-0047-1. [CrossRef] [PubMed] [Google Scholar]
  30. Cirillo N, Hassona Y, Celentano A, Lim KP, Manchella S, Parkinson EK, Prime SS (2017), Cancer-associated fibroblasts regulate keratinocyte cell-cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer. Carcinogenesis 38, 1, 76–85. https://doi.org/10.1093/carcin/bgw113. [Google Scholar]
  31. Gatenby RA, Brown J (2017), Mutations, evolution and the central role of a self-defined fitness function in the initiation and progression of cancer. Biochim Biophys Acta 1867, 2, 162–166. https://doi.org/10.1016/j.bbcan.2017.03.005. [PubMed] [Google Scholar]
  32. Liggett LA, DeGregori J (2017), Changing mutational and adaptive landscapes and the genesis of cancer. Biochim Biophys Acta 1867, 2, 84–94. https://doi.org/10.1016/j.bbcan.2017.01.005. [PubMed] [Google Scholar]
  33. Shindo K, Yu J, Suenaga M, Fesharakizadeh S, Cho C, Macgregor-Das A, Siddiqui A, Witmer PD, Tamura K, Song TJ, Navarro Almario JA, Brant A, Borges M, Ford M, Barkley T, He J, Weiss MJ, Wolfgang CL, Roberts NJ, Hruban RH, Klein AP, Goggins M (2017), Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol 35, 30, 3382–3390. https://doi.org/10.1200/JCO.2017.72.3502. [CrossRef] [PubMed] [Google Scholar]
  34. Tez M (2018), Pragmatic cancer approach time to change? 4open 1, 2, 1–2. https://doi.org/10.1051/fopen/2018002. [CrossRef] [EDP Sciences] [Google Scholar]
  35. Tomasetti C, Vogelstein B (2015), Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 6217, 78–81. https://doi.org/10.1126/science.1260825. [Google Scholar]
  36. Tomasetti C, Vogelstein B (2017), On the slope of the regression between stem cell divisions and cancer risk, and the lack of correlation between stem cell divisions and environmental factors associated cancer risk. PLoS One 12, 5, e017–5535. https://doi.org/10.1371/journal.pone.0175535. [Google Scholar]
  37. Belikov AV (2017), The number of key carcinogenic events can be predicted from cancer incidence. Sci Rep 7, 1, 12170. https://doi.org/10.1038/s41598-017-12448-7. [CrossRef] [PubMed] [Google Scholar]
  38. Beljaeva M (2017), Comment to “The number of key carcinogenic events can be predicted from cancer incidence” by Aleksey V. Belikov (updated). https://www.researchgate.net/publication/320290098_Comment_to_The_number_of_key_carcinogenic_events_can_be_predicted_from_cancer_incidence_by_Aleksey_V_Belikov. [Google Scholar]
  39. Rego S, Dagan-Rosenfeld O, Zhou W, Sailani MR, Limcaoco P, Colbert E, Avina M, Wheeler J, Craig C, Salin D, Rost H, Dunn J, McLaughlin T, Steinmetz LM, Bernstein JA, Snyder MP (2017), High frequency actionable pathogenic exome mutations in an average-risk cohort. bioRxiv, Jun 18. https://doi.org/10.1101/151225. [Google Scholar]
  40. Sarbia M, Ott N, Pühringer-Oppermann F, Brücher BL (2007), The predictive value of molecular markers (p53, EGFR, ATM, CHK2) in multimodally treated squamous cell carcinoma of the oesophagus. Br J Cancer 97, 10, 1404–1408. https://doi.org/10.1038/sj.bjc.6604037. [CrossRef] [PubMed] [Google Scholar]
  41. Maréchal A, Zou L (2013), DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 5, pii: a012716. https://doi.org/10.1101/cshperspect.a012716. [Google Scholar]
  42. Perkins GL, Slater ED, Sanders GK, Prichard JG (2003), Serum tumor markers. Am Fam Physician 68, 6, 1075–1082. PMID: 14524394. [PubMed] [Google Scholar]
  43. Lapthorn C, Pullen FS, Chowdhry BZ, Wright P, Perkins GL, Heredia Y (2015), How useful is molecular modelling in combination with ion mobility mass spectrometry for “small molecule” ion mobility collision cross-sections? Analyst 140, 20, 6814–6823. https://doi.org/10.1039/c5an00411j. [CrossRef] [PubMed] [Google Scholar]
  44. Ling S, Hu Z, Yang Z, Yang F, Li Y, Lin P, Chen K, Dong L, Cao L, Tao Y, Hao L, Chen Q, Gong Q, Wu D, Li W, Zhao W, Tian X, Hao C, Hungate EA, Catenacci DV, Hudson RR, Li WH, Lu X, Wu CI (2015), Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. Proc Natl Acad Sci USA 112, 47, E6496–6505. https://doi.org/10.1073/pnas.1519556112. Correction: DOI: https://doi.org/10.1073/pnas.1600151113. [CrossRef] [Google Scholar]
  45. Vu V, Verster AJ, Schertzberg M, Chuluunbaatar T, Spensley M, Pajkic D, Hart GT, Moffat J, Fraser AG (2015), Natural variation in gene expression modulates the severity of mutant phenotypes. Cell 162, 2, 391–402. https://doi.org/10.1016/j.cell.2015.06.037. [Google Scholar]
  46. Yokoyama A, Kakiuchi N, Yoshizato T, Nannya Y, Suzuki H, Takeuchi Y, Shiozawa Y, Sato Y, Aoki K, Kim SK, Fujii Y, Yoshida K, Kataoka K, Nakagawa MM, Inoue Y, Hirano T, Shiraishi Y, Chiba K, Tanaka H, Sanada M, Nishikawa Y, Amanuma Y, Ohashi S, Aoyama I, Horimatsu T, Miyamoto S, Tsunoda S, Sakai Y, Narahara M, Brown JB, Sato Y, Sawada G, Mimori K, Minamiguchi S, Haga H, Seno H, Miyano S, Makishima H, Muto M, Ogawa S (2019), Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565, 7739, 312–317. https://doi.org/10.1038/s41586-018-0811-x. [CrossRef] [PubMed] [Google Scholar]
  47. Itzhaki RF, Lathe R (2018), Herpes viruses and senile dementia: first population evidence for a causal link. J Alzheimers Dis 64, 2, 363–366. https://doi.org/10.3233/JAD-180266. [CrossRef] [PubMed] [Google Scholar]
  48. Fülöp T, Itzhaki RF, Balin BJ, Miklossy J, Barron AE (2018), Role of microbes in the development of Alzheimer’s disease: state of the art – An International Symposium Presented at the 2017 IAGG Congress in San Francisco. Front Genet 9, 362. https://doi.org/10.3389/fgene.2018.00362. [CrossRef] [PubMed] [Google Scholar]
  49. Cacace R, Sleegers K, Van Broeckhoven C (2016), Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement 12, 6, 733–748. https://doi.org/10.1016/j.jalz.2016.01.012. [CrossRef] [PubMed] [Google Scholar]
  50. Conolly RB, Lutz WK (2004), Nonmonotonic dose-response relationships: mechanistic basis, kinetic modeling, and implications for risk assessment. Toxicol Sci 77, 1, 151–157. https://doi.org/10.1093/toxsci/kfh007. [CrossRef] [PubMed] [Google Scholar]
  51. LaFond RE (1978), Cancer – The Outlaw Cell, American Chemical Society, Washington, DC. [Google Scholar]
  52. Cleaver JE (1986), DNA repair and replication in xeroderma pigmentosum and related disorders. Basic Life Sci 39, 425–438. PMID: 3767846. [Google Scholar]
  53. Milota M, Jones DL, Cleaver J, Jamall JS (2011), Xeroderma pigmentosum family support group: helping families and promoting clinical initiatives. DNA Repair (Amst) 10, 7, 792–797. https://doi.org/10.1016/j.dnarep.2011.04.027. [CrossRef] [PubMed] [Google Scholar]
  54. Herman JG (1999), Hypermethylation of tumor suppressor genes in cancer. Semin Cancer Biol 9, 5, 359–367. https://doi.org/10.1006/scbi.1999.0138. [CrossRef] [PubMed] [Google Scholar]
  55. Sharma S, Kelly TK, Jones PA (2010), Epigenetics in cancer. Carcinogenesis 31, 1, 27–36. https://doi.org/10.1093/carcin/bgp220. [Google Scholar]
  56. Nakajima T, Maekita T, Oda I, Gotoda T, Yamamoto S, Umemura S, Ichinose M, Sugimura T, Ushijima T, Saito D (2006), Higher methylation levels in gastric mucosae significantly correlate with higher risk of gastric cancers. Cancer Epidemiol Biomarkers Prev 15, 11, 2317–2321. https://doi.org/10.1158/1055-9965.EPI-06-0436. [Google Scholar]
  57. Zhang BG, Hu L, Zang MD, Wang HX, Zhao W, Li JF, Su LP, Shao Z, Zhao X, Zhu ZG, Yan M, Liu B (2016), Helicobacter pylori CagA induces tumor suppressor gene hypermethylation by upregulating DNMT1 via AKT-NFκB pathway in gastric cancer development. Oncotarget 7, 9, 9788–9800. https://doi.org/10.18632/oncotarget.7125. [PubMed] [Google Scholar]
  58. Kondo T, Oka T, Sato H, Shinnou Y, Washio K, Takano M, Morito T, Takata K, Ohara N, Ouchida M, Shimizu K, Yoshino T (2009), Accumulation of aberrant CpG hypermethylation by Helicobacter pylori infection promotes development and progression of gastric MALT lymphoma. Int J Oncol 35, 3, 547–557. https://doi.org/10.3892/ijo_00000366. [Google Scholar]
  59. Moon DC, Choi CH, Lee SM, Lee JH, Kim SI, Kim DS, Lee JC (2012), Nuclear translocation of Acinetobacter baumannii transposase induces DNA methylation of CpG regions in the promoters of E-cadherin gene. PLoS One 7, 6, e38974. https://doi.org/10.1371/journal.pone.0038974. [CrossRef] [PubMed] [Google Scholar]
  60. Zhong X, Isharwal S, Naples JM, Shiff C, Veltri RW, Shao C, Bosompem KM, Sidransky D, Hoque MO (2013), Hypermethylation of genes detected in urine from Ghanaian adults with bladder pathology associated with Schistosoma haematobium infection. PLoS One 8, 3, e59089. https://doi.org/10.1371/journal.pone.0059089. [CrossRef] [PubMed] [Google Scholar]
  61. Lee SM, Lee YG, Bae JB, Choi JK, Tayama C, Hata K, Yun Y, Seong JK, Kim YJ (2014), HBx induces hypomethylation of distal intragenic CpG islands required for active expression of developmental regulators. Proc Natl Acad Sci USA 111, 26, 9555–9560. https://doi.org/10.1073/pnas.1400604111. [CrossRef] [Google Scholar]
  62. Matsusaka K, Funata S, Fukuyo M, Seto Y, Aburatani H, Fukayama M, Kaneda A (2017), Epstein-Barr virus infection induces genome-wide de novo DNA methylation in non-neoplastic gastric epithelial cells. J Pathol 242, 4, 391–399. https://doi.org/10.1002/path.4909. [Google Scholar]
  63. Yeung CL, Tsang TY, Yau PL, Kwok TT (2017), Human papillomavirus type 16 E6 suppresses microRNA-23b expression in human cervical cancer cells through DNA methylation of the host gene C9orf3. Oncotarget 8, 7, 12158–12173. https://doi.org/10.18632/oncotarget.14555. [PubMed] [Google Scholar]
  64. Frigola J, Solé X, Paz MF, Moreno V, Esteller M, Capellà G, Peinado MA (2005), Differential DNA hypermethylation and hypomethylation signatures in colorectal cancer. Hum Mol Genet 14, 2, 319–326. https://doi.org/10.1093/hmg/ddi028. [CrossRef] [PubMed] [Google Scholar]
  65. Hur K, Niwa T, Toyoda T, Tsukamoto T, Tatematsu M, Yang HK, Ushijima T (2011), Insufficient role of cell proliferation in aberrant DNA methylation induction and involvement of specific types of inflammation. Carcinogenesis 32, 1, 35–41. https://doi.org/10.1093/carcin/bgq219. [Google Scholar]
  66. Na HK, Woo JH (2014), Helicobacter pylori induces hypermethylation of CpG Islands through upregulation of DNA methyltransferase: possible involvement of reactive oxygen/nitrogen species. J Cancer Prev 19, 4, 259–264. https://doi.org/10.15430/JCP.2014.19.4.259. [CrossRef] [PubMed] [Google Scholar]
  67. Maiuri AR, Li H, Stein BD, Tennessen JM, O’Hagan HM (2018), Inflammation-induced DNA methylation of DNA polymerase gamma alters the metabolic profile of colon tumors. Cancer Metab 6, 9. https://doi.org/10.1186/s40170-018-0182-7. [CrossRef] [PubMed] [Google Scholar]
  68. Brücher BLDM, Roder JD, Fink U, Stein HJ, Busch R, Siewert JR (1998), Prognostic factors in resected primary small bowel tumors. Dig Surg 15, 1, 42–51. https://doi.org/10.1159/000018585. [CrossRef] [PubMed] [Google Scholar]
  69. Brücher BLDM, Roder JD, Busch R, Fink U, Stein HJ, Werner M, Siewert JR (2001), New aspects in prognostic factors in adenocarcinomas of the small bowel. Hepatogastroenterology 48, 39, 727–732PMID: 11462914. [Google Scholar]
  70. Brücher BLDM (2006), Maligne Dünndarmtumoren, in: JR Siewert, M Rothmund, V Schumpelick (Eds.), Praxis der Viszeralchirurgie, 2nd edn. Springer-Verlag, Berlin, pp. 611–620. [CrossRef] [Google Scholar]
  71. Brücher BLDM, Geddert H, Langner C, Höfler H, Fink U, Siewert JR, Sarbia M (2006), Hypermethylation of hMLH1, HPP1, p14ARF, p16INK4A, and APC in primary adenocarcinomas of the small bowel. Int J Cancer 119, 6, 1298–1302. https://doi.org/10.1002/ijc.21990. [CrossRef] [PubMed] [Google Scholar]
  72. Bernstein C, Bernstein H (2015), Epigenetic reduction of DNA repair in progression to gastrointestinal cancer. World J Gastrointest Oncol 7, 5, 30–46. https://doi.org/10.4251/wjgo.v7.i5.30. [CrossRef] [PubMed] [Google Scholar]
  73. Herbst A, Vdovin N, Gacesa S, Philipp A, Nagel D, Holdt LM, Op den Winkel M, Heinemann V, Stieber P, Graeven U, Reinacher-Schick A, Arnold D, Ricard I, Mansmann U, Hegewisch-Becker S, Kolligs FT (2017), Methylated free-circulating HPP1 DNA is an early response marker in patients with metastatic colorectal cancer. Int J Cancer 140, 9, 2134–2144. https://doi.org/10.1002/ijc.30625. [CrossRef] [PubMed] [Google Scholar]
  74. Ptashne M (2013), Epigenetics: core misconcept. Proc Natl Acad Sci USA 110, 18, 7101–7103. https://doi.org/10.1073/pnas.1305399110. [CrossRef] [Google Scholar]
  75. Shapiro JA (2011), Evolution: a view from the 21st century, FT Press Science, Upper Saddle River, NJ. [Google Scholar]
  76. Li K, Hong W, Jiao H, Wang GD, Rodriguez KA, Buffenstein R, Zhao Y, Nevo E, Zhao H (2015), Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax. Proc Natl Acad Sci USA 112, 38, 11905–11910. https://doi.org/10.1073/pnas.1514896112. [CrossRef] [Google Scholar]
  77. Chi N, Epstein JA (2002), Getting your Pax straight: Pax proteins in development and disease. Trends Genet 18, 1, 41–47. PMID: 11750700. [CrossRef] [PubMed] [Google Scholar]
  78. Blake JA, Ziman MR (2014), Pax genes: regulators of lineage specification and progenitor cell maintenance. Development 141, 4, 737–751. https://doi.org/10.1242/dev.091785. [Google Scholar]
  79. Navet S, Buresi A, Baratte S, Andouche A, Bonnaud-Ponticelli L, Bassaglia Y (2017), The Pax gene family: highlights from cephalopods. PLoS One 12, 3, e0172719. https://doi.org/10.1371/journal.pone.0172719. [CrossRef] [PubMed] [Google Scholar]
  80. Schedl P, Artavanis-Tsakonas S, Steward R, Gehring WJ, Mirault ME, Goldschmidt-Clermont M, Moran L, Tissières A (1978), Two hybrid plasmids with D. melanogaster DNA sequences complementary to mRNA coding for the major heat shock protein. Cell 14, 4, 921–929. https://doi.org/10.1016/0092-8674(78)90346-x. [Google Scholar]
  81. Garber RL, Kuroiwa A, Gehring WJ (1983), Genomic and cDNA clones of the homeotic locus Antennapedia in Drosophila. EMBO J 2, 11, 2027–2036. PMCID: PMC555405. [Google Scholar]
  82. McGinnis W, Levine MS, Hafen E, Kuroiwa A, Gehring WJ (1984), A conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 308, 5958, 428–433. https://doi.org/10.1038/308428a0. [CrossRef] [PubMed] [Google Scholar]
  83. Affolter M, Wüthrich K (2014), Walter Jakob Gehring: a master of developmental biology. Proc Natl Acad Sci USA 111, 35, 12574–12575. https://doi.org/10.1073/pnas.1413434111. [CrossRef] [Google Scholar]
  84. Quiring R, Walldorf U, Kloter U, Gehring WJ (1994), Homology of the eyeless gene of Drosophila to the small eye gene in mice and Aniridia in humans. Science 265, 5173, 785–789. https://doi.org/10.1126/science.7914031. [Google Scholar]
  85. Halder G, Callaerts P, Gehring WJ (1995), Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267, 5205, 1788–1792. [Google Scholar]
  86. Walther C, Gruss P (1991), Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 4, 1435–1449. PMID: 1687460. [Google Scholar]
  87. Gruss P, Walther C (1992), Pax in development. Cell 69, 5, 719–722. https://doi.org/10.1016/0092-8674(92)90281-g. [Google Scholar]
  88. Richardson J, Cvekl A, Wistow G (1995), Pax-6 is essential for lens-specific expression of zeta-crystallin. Proc Natl Acad Sci USA 92, 10, 4676–4680. https://doi.org/10.1073/pnas.92.10.4676. [CrossRef] [Google Scholar]
  89. Dahl E, Koseki H, Balling R (1997), Pax genes and organogenesis. Bioessays 19, 9, 755–765. https://doi.org/10.1002/bies.950190905. [CrossRef] [PubMed] [Google Scholar]
  90. Ramaesh T, Ramaesh K, Leask R, Springbett A, Riley SC, Dhillon B, West JD (2006), Increased apoptosis and abnormal wound-healing responses in the heterozygous Pax6+/- mouse cornea. Invest Ophthalmol Vis Sci 47, 5, 1911–1917. https://doi.org/10.1167/iovs.05-1028. [CrossRef] [PubMed] [Google Scholar]
  91. Xia X, Yin W, Zhang X, Yu X, Wang C, Xu S, Feng W, Yang H (2015), PAX6 overexpression is associated with the poor prognosis of invasive ductal breast cancer. Oncol Lett 10, 3, 1501–1506. https://doi.org/10.3892/ol.2015.3434. [CrossRef] [PubMed] [Google Scholar]
  92. Hellwinkel OJ, Kedia M, Isbarn H, Budäus L, Friedrich MG (2008), Methylation of the TPEF- and PAX6-promoters is increased in early bladder cancer and in normal mucosa adjacent to pT1a tumours. BJU Int 101, 6, 753–757. https://doi.org/10.1111/j.1464-410X.2007.07322.x. [CrossRef] [PubMed] [Google Scholar]
  93. Shyr CR, Tsai MY, Yeh S, Kang HY, Chang YC, Wong PL, Huang CC, Huang KE, Chang C (2010), Tumor suppressor PAX6 functions as androgen receptor co-repressor to inhibit prostate cancer growth. Prostate 70, 2, 190–199. https://doi.org/10.1002/pros.21052. [PubMed] [Google Scholar]
  94. Muratovska A, Zhou C, He S, Goodyer P, Eccles MR (2003), Paired-Box genes are frequently expressed in cancer and often required for cancer cell survival. Oncogene 22, 39, 7989–7997. https://doi.org/10.1038/sj.onc.1206766. [Google Scholar]
  95. Moelans CB, Verschuur-Maes AH, van Diest PJ (2011), Frequent promoter hypermethylation of BRCA2, CDH13, MSH6, PAX5, PAX6 and WT1 in ductal carcinoma in situ and invasive breast cancer. J Pathol 225, 2, 222–231. https://doi.org/10.1002/path.2930. [Google Scholar]
  96. Zong X, Yang H, Yu Y, Zou D, Ling Z, He X, Meng X (2011), Possible role of Pax-6 in promoting breast cancer cell proliferation and tumorigenesis. BMB Rep 44, 9, 595–600. https://doi.org/10.5483/bmbrep.2011.44.9.595. [Google Scholar]
  97. Urrutia G, Laurito S, Campoy E, Nasif D, Branham MT, Roqué M (2018), PAX6 promoter methylation correlates with MDA-MB-231 cell migration, and expression of MMP2 and MMP9. Asian Pac J Cancer Prev 19, 10, 2859–2866. https://doi.org/10.22034/APJCP.2018.19.10.2859. [PubMed] [Google Scholar]
  98. Yamashita S, Tsujino Y, Moriguchi K, Tatematsu M, Ushijima T (2006), Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2’-deoxycytidine treatment and oligonucleotide microarray. Cancer Sci 97, 1, 64–71. https://doi.org/10.1111/j.1349-7006.2006.00136.x. [CrossRef] [PubMed] [Google Scholar]
  99. Yang Q, Shao Y, Shi J, Qu Y, Wu K, Dang S, Shi B, Hou P (2014), Concomitant PIK3CA amplification and RASSF1A or PAX6 hypermethylation predict worse survival in gastric cancer. Clin Biochem 47, 1–2, 111–116. PMID: 24505629. [CrossRef] [PubMed] [Google Scholar]
  100. Liu RZ, Monckton EA, Godbout R (2012), Regulation of the FABP7 gene by PAX6 in malignant glioma cells. Biochem Biophys Res Commun 422, 3, 482–487. https://doi.org/10.1016/j.bbrc.2012.05.019. [Google Scholar]
  101. Toyota M, Ho C, Ahuja N, Jair KW, Li Q, Ohe-Toyota M, Baylin SB, Issa JP (1999), Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res 59, 10, 2307–2312. PMID: 10344734. [Google Scholar]
  102. Shih YL, Kuo CC, Yan MD, Lin YW, Hsieh CB, Hsieh TY (2016), Quantitative methylation analysis reveals distinct association between PAX6 methylation and clinical characteristics with different viral infections in hepatocellular carcinoma. Clin Epigenetics 8, 41. https://doi.org/10.1186/s13148-016-0208-3. [Google Scholar]
  103. Feng Q, Stern JE, Hawes SE, Lu H, Jiang M, Kiviat NB (2010), DNA methylation changes in normal liver tissues and hepatocellular carcinoma with different viral infection. Exp Mol Pathol 88, 2, 287–292. https://doi.org/10.1016/j.yexmp.2010.01.002. [CrossRef] [PubMed] [Google Scholar]
  104. Swisshelm K, Disteche CM, Thorvaldsen J, Nelson A, Salk D (1990), Age-related increase in methylation of ribosomal genes and inactivation of chromosome-specific rRNA gene clusters in mouse. Mutat Res 237, 3–4, 131–146. https://doi.org/10.1016/0921-8734(90)90019-n. [CrossRef] [PubMed] [Google Scholar]
  105. Liang G, Salem CE, Yu MC, Nguyen HD, Gonzales FA, Nguyen TT, Nichols PW, Jones PA (1998), DNA methylation differences associated with tumor tissues identified by genome scanning analysis. Genomics 53, 3, 260–268. https://doi.org/10.1006/geno.1998.5502. [CrossRef] [PubMed] [Google Scholar]
  106. Zhang X, Yang X, Wang J, Liang T, Gu Y, Yang D (2015), Down-regulation of PAX6 by promoter methylation is associated with poor prognosis in non-small cell lung cancer. Int J Clin Exp Pathol 8, 9, 11452–11457. PMCID: PMC4637690. [PubMed] [Google Scholar]
  107. Shubham K, Mishra R (2012), Pax6 interacts with SPARC and TGF-β in murine eyes. Mol Vis 18, 951–956. PMCID: PMC3335779. [PubMed] [Google Scholar]
  108. Engler AJ, Sen S, Sweeney HL, Discher DE (2006), Matrix elasticity directs stem cell lineage specification. Cell 126, 4, 677–689. https://doi.org/10.1016/j.cell.2006.06.044. [Google Scholar]
  109. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008), The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 4, 704–715. https://doi.org/10.1016/j.cell.2008.03.027. [Google Scholar]
  110. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008), Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3, 8, e2888. https://doi.org/10.1371/journal.pone.0002888. [CrossRef] [PubMed] [Google Scholar]
  111. Brücher BLDM, Jamall JS (2019), Transition from normal to cancerous cell by precancerous niche (PCN) induced chronic cell-matrix stress. 4open 2, 14, 1–31. https://doi.org/10.1051/fopen/2018996. [CrossRef] [EDP Sciences] [Google Scholar]
  112. Wogan GN, Hecht SS, Felton JS, Conney AH, Loeb LA (2004), Environmental and chemical carcinogenesis. Semin Cancer Biol 14, 6, 473–486. https://doi.org/10.1016/j.semcancer.2004.06.010. [CrossRef] [PubMed] [Google Scholar]
  113. Brücher BLDM, Jamall JS (2019), Prelude and premise to the special issue: disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer”. 4open 2, 6, 1–8. https://doi.org/10.1051/fopen/2019005. [CrossRef] [EDP Sciences] [Google Scholar]
  114. Warburg O (1923), Versuche an überlebendem Carcinom-Gewebe (Methoden). Biochem Zeitschr 142, 317–333. [Google Scholar]
  115. Warburg O, Posener K, Negelein E (1924), Über den Stoffwechsel der Carcinomzelle. Biochem Zeitschr 152, 309–344. [Google Scholar]
  116. Cori CA, Cori GT (1925), The carbohydrate metabolism of tumours I: The free sugar, lactic acid, and glycogen content of malignant tumors. J Biol Chem 64, 11–22. [Google Scholar]
  117. Cori CA, Cori GT (1925), The carbohydrate metabolism of tumours II: The changes in the suga, latic acid, and co-combining power of blood passing through a tumor. J Biol Chem 65, 397–405. [Google Scholar]
  118. Warburg O (1925), Über den Stoffwechsel der Carcinomzelle. Klin Wochenschr 4, 534–536. [Google Scholar]
  119. Seguin A, Lavoisier AL (1789), Premier memoire sur la respiration des animaux. Mem Acad R Sci 185, 31–51. [Google Scholar]
  120. Seguin A, Lavoisier AL (1790), Premier memoire sur la transpiration des animaux. Mem Acad R Sci 601. [Google Scholar]
  121. Seguin A, Lavoisier AL (1814), Second memoire sur la respiration. Ann Chim 9I, 518. [Google Scholar]
  122. Seguin A, Lavoisier AL (1814), Second memoire sur la transpiration des animaux. Ann Chim 90, 5. [Google Scholar]
  123. Underwood EA (1944), Lavoisier and the history of respiration. Proc R Soc Med 37, 6, 247–262. PMCID: PMC2180993. [PubMed] [Google Scholar]
  124. Gilbert DL (2002), From the breath of life to reactive oxygen species, in DL Gilbert, CA Colton (Eds.), Reactive Oxygen Species in Biological Systems. Springer, Boston, MA, USA, ISBN 978-0-306-45756-2, pp. 3–31. [CrossRef] [Google Scholar]
  125. Karamanou M, Tsoucalas G, Androutsos G (2013), Hallmarks in the study of respiratory physiology and the crucial role of Antoine-Laurent de Lavoisier (1743–1794). Am J Physiol Lung Cell Mol Physiol 305, 9, L591–594. https://doi.org/10.1152/ajplung.00142.2013. [CrossRef] [PubMed] [Google Scholar]
  126. Rubner M (1883), Ueber den Einfluss der Körpergrösse auf Stoff- und Kraftwechsel. Zeitschrift fur Biologie 19, 536–562. [Google Scholar]
  127. Rubner M (1885), Calorimetrische Untersuchungen I. Z Biol 21, 250–334. [Google Scholar]
  128. Rubner M (1885), Calorimetrische Untersuchungen II. Z Biol 21, 337–410. [Google Scholar]
  129. Rubner M (1902), Gesetze des Energieverbrauchs bei der Ernährung, F. Deuticke, Leipzig & Wien. [Google Scholar]
  130. Rubner M (1908), Das Wachstumsproblem und die Lebensdauer des Menschen und einiger Saugetiere vom energetischen Standpunkt aus betrachtet. Arch Hyg 66, 153. [Google Scholar]
  131. Rubner M (1908), Problem der Lebensdauer und seine Beziehungen zu Wachstum und zu Ernährung, R. Oldenbourg, München und Berlin. [Google Scholar]
  132. Rubner M (1908), Volksernährungsfragen, Akademische Verlagsgesellschaft, Leipzig, IV, pp. 1–143. [Google Scholar]
  133. White CR, Seymour RS (2005), Allometric scaling of mammalian metabolism. J Exp Biol 208, Pt 9, 1611–1619. [CrossRef] [PubMed] [Google Scholar]
  134. Withers PC, Cooper CE, Maloney SK, Bozinovic F, Cruz Neto AP (2016), Ecological and environmental physiology of mammals, Oxford University Press, Oxford and New York. Print ISBN – 13: 9780199642717. https://doi.org/10.1093/acprof:oso/9780199642717.001.0001. [CrossRef] [Google Scholar]
  135. Martin HG, Loevenhart AS, Bunting CH (1918), The morphological changes in the tissues of the rabbit as a result of reduced oxidation. J Exp Med 27, 3, 399–412. https://doi.org/10.1084/jem.27.3.399. [CrossRef] [PubMed] [Google Scholar]
  136. Dallwig HC, Kolls AC, Loevenhart AS (1915), The mechanism adapting the oxygen capacity of the blood to the requirements of the tissues. Am J Physiol 39, 77–108. [Google Scholar]
  137. Appleby PN, Crowe FL, Bradbury KE, Travis RC, Key TJ (2016), Mortality in vegetarians and comparable nonvegetarians in the United Kingdom. Am J Clin Nutr 103, 1, 218–230. https://doi.org/10.3945/ajcn.115.119461. [CrossRef] [PubMed] [Google Scholar]
  138. Penniecook-Sawyers JA, Jaceldo-Siegl K, Fan J, Beeson L, Knutsen S, Herring P, Fraser GE (2016), Vegetarian dietary patterns and the risk of breast cancer in a low-risk population. Br J Nutr 115, 10, 1790–1797. https://doi.org/10.1017/S0007114516000751. [CrossRef] [PubMed] [Google Scholar]
  139. Gathani T, Barnes I, Ali R, Arumugham R, Chacko R, Digumarti R, Jivarajani P, Kannan R, Loknatha D, Malhotra H, Mathew BS, INDOX Cancer Research Network Collaborators (2017), Lifelong vegetarianism and breast cancer risk: a large multicentre case control study in India. BMC Womens Health 17, 1, 6. https://doi.org/10.1186/s12905-016-0357-8. [CrossRef] [PubMed] [Google Scholar]
  140. Key TJ, Appleby PN, Crowe FL, Bradbury KE, Schmidt JA, Travis RC (2014), Cancer in British vegetarians: updated analyses of 4998 incident cancers in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans. Am J Clin Nutr 100, Suppl 1, 378S–385S. https://doi.org/10.3945/ajcn.113.071266. [CrossRef] [PubMed] [Google Scholar]
  141. Orlich MJ, Singh PN, Sabaté J, Fan J, Sveen L, Bennett H, Knutsen SF, Beeson WL, Jaceldo-Siegl K, Butler TL, Herring RP, Fraser GE (2015), Vegetarian dietary patterns and the risk of colorectal cancers. JAMA Intern Med 175, 5, 767–776. https://doi.org/10.1001/jamainternmed.2015.59. [CrossRef] [PubMed] [Google Scholar]
  142. Nery R (1986), Cancer: An enigma in biology and society, Croom Helm, London, UK. ISBN 0709918259. [Google Scholar]
  143. Basree MM, Shinde N, Koivisto C, Cuitino M, Kladney R, Zhang J, Stephens J, Palettas M, Zhang A, Kim HK, Acero-Bedoya S, Trimboli A, Stover DG, Ludwig T, Ganju R, Weng D, Shields P, Freudenheim J, Leone GW, Sizemore GM, Majumder S, Ramaswamy B (2019), Abrupt involution induces inflammation, estrogenic signaling, and hyperplasia linking lack of breastfeeding with increased risk of breast cancer. Breast Cancer Res 21, 1, 80. https://doi.org/10.1186/s13058-019-1163-7. [CrossRef] [PubMed] [Google Scholar]
  144. Brücher BLDM, Jamall JS (2019), Undervalued ubiquitous proteins. 4open 2, 7, 1–13. https://doi.org/10.1051/fopen/2019002. [CrossRef] [EDP Sciences] [Google Scholar]
  145. Brücher BLDM, Jamall JS (2019), Chronic inflammation evoked by pathogenic stimulus during carcinogenesis. 4open 2, 8, 1–22. https://doi.org/10.1051/fopen/2018006. [CrossRef] [EDP Sciences] [Google Scholar]
  146. Brücher BLDM, Jamall JS (2019), Precancerous niche (PCN), a product of fibrosis with remodeling by incessant chronic inflammation. 4open 2, 11, 1–21. https://doi.org/10.1051/fopen/2018009. [CrossRef] [EDP Sciences] [Google Scholar]
  147. Brücher BLDM, Jamall JS (2019), Microbiome and morbid obesity increase pathogenic stimulus diversity. 4open 2, 10, 1–16. https://doi.org/10.1051/fopen/2018007. [CrossRef] [EDP Sciences] [Google Scholar]
  148. Brücher BLDM, Jamall JS (2019), Metformin alters signaling homeostasis. 4open 2, 12, 1–17. https://doi.org/10.1051/fopen/2019006. [CrossRef] [EDP Sciences] [Google Scholar]
  149. Brücher BLDM, Jamall IS (2019), Eicosanoids in carcinogenesis. 4open 2, 9, 1–34. https://doi.org/10.1051/fopen/2018008. [CrossRef] [EDP Sciences] [Google Scholar]
  150. Brücher BLDM, Lang F, Jamall JS (2019), NF-κB signaling and crosstalk in carcinogenesis. 4open 2, 13, 1–35. https://doi.org/10.1051/fopen/2019010. [CrossRef] [EDP Sciences] [Google Scholar]
  151. Iqbal J, Al-Rashed J, Kehinde EO (2016), Detection of Trichomonas vaginalis in prostate tissue and serostatus in patients with asymptomatic benign prostatic hyperplasia. BMC Infect Dis 16, 1, 506. https://doi.org/10.1186/s12879-016-1843-1. [CrossRef] [PubMed] [Google Scholar]
  152. Kim SS, Kim JH, Han IH, Ahn MH, Ryu JS (2016), Inflammatory responses in a benign prostatic hyperplasia epithelial cell line (BPH-1) infected with Trichomonas vaginalis. Korean J Parasitol 54, 2, 123–132. https://doi.org/10.3347/kjp.2016.54.2.123. [Google Scholar]
  153. Jang KS, Han IH, Lee SJ, Yoo J, Kim YS, Sim S, Ryu JS (2019), Experimental rat prostatitis caused by Trichomonas vaginalis infection. Prostate 79, 4, 379–389. https://doi.org/10.1002/pros.23744. [CrossRef] [PubMed] [Google Scholar]
  154. Kim JH, Han IH, Kim SS, Park SJ, Min DY, Ahn MH, Ryu JS (2017), Interaction between Trichomonas vaginalis and the Prostate Epithelium. Korean J Parasitol 55, 2, 213–218. https://doi.org/10.3347/kjp.2017.55.2.213. [Google Scholar]
  155. Kim JH, Kim SS, Han IH, Sim S, Ahn MH, Ryu JS (2016), Proliferation of prostate stromal cell induced by benign prostatic hyperplasia epithelial cell stimulated with Trichomonas vaginalis via crosstalk with mast cell. Prostate 76, 15, 1431–1444. https://doi.org/10.1002/pros.23227. [CrossRef] [PubMed] [Google Scholar]
  156. Han IH, Kim JH, Jang KS, Ryu JS (2019), Inflammatory mediators of prostate epithelial cells stimulated with Trichomonas vaginalis promote proliferative and invasive properties of prostate cancer cells. Prostate 79, 10, 1133–1146. https://doi.org/10.1002/pros.23826. [CrossRef] [PubMed] [Google Scholar]
  157. Kitamura J, Uemura M, Kurozumi M, Sonobe M, Manabe T, Hiai H, Date H, Kinoshita K (2015), Chronic lung injury by constitutive expression of activation-induced cytidine deaminase leads to focal mucous cell metaplasia and cancer. PLoS One 10, 2, e0117986. https://doi.org/10.1371/journal.pone.0117986. Erratum (2015) PLoS One 10, 8, e0136807. [CrossRef] [PubMed] [Google Scholar]
  158. Briso EM, Guinea-Viniegra J, Bakiri L, Rogon Z, Petzelbauer P, Eils R, Wolf R, Rincón M, Angel P, Wagner EF (2013), Inflammation-mediated skin tumorigenesis induced by epidermal c-Fos. Genes Dev 27, 18, 1959–1973. https://doi.org/10.1101/gad.223339.113. [CrossRef] [PubMed] [Google Scholar]
  159. Dueholm M, Hjorth IMD, Dahl K, Pedersen LK, Ørtoft G (2019), Identification of endometrial cancers and atypical hyperplasia: development and validation of a simplified system for ultrasound scoring of endometrial pattern. Maturitas 123, 15–24. https://doi.org/10.1016/j.maturitas.2019.01.017. [CrossRef] [PubMed] [Google Scholar]
  160. Xiaoqun D, Xiaoli L, Jun L, Yang X (2019), The correlation between infections by human papillomavirus types 6/11 and 16/18 and mammary gland hyperplasia with glandular thickening. Cell Mol Biol (Noisy-le-grand) 65, 5, 49–53. PMID: 31304906. [CrossRef] [PubMed] [Google Scholar]
  161. Honn KV, Grossi IM, Fitzgerald LA, Umbarger LA, Diglio CA, Taylor JD (1988), Lipoxygenase products regulate IRGpIIb/IIIa receptor mediated adhesion of tumor cells to endothelial cells, subendothelial matrix and fibronectin. Proc Soc Exp Biol Med 189, 1, 130–135. https://doi.org/10.3181/00379727-189-1-rc1. [CrossRef] [PubMed] [Google Scholar]
  162. Kim HP, Lee MS, Yu J, Park JA, Jong HS, Kim TY, Lee JW, Bang YJ (2004), TGF-beta1 (transforming growth factor-beta1)-mediated adhesion of gastric carcinoma cells involves a decrease in Ras/ERKs (extracellular-signal-regulated kinases) cascade activity dependent on c-Src activity. Biochem J 379, Pt 1, 141–150. https://doi.org/10.1042/BJ20031408. [CrossRef] [PubMed] [Google Scholar]
  163. Sundquist E, Kauppila JH, Veijola J, Mroueh R, Lehenkari P, Laitinen S, Risteli J, Soini Y, Kosma VM, Sawazaki-Calone I, Macedo CC, Bloigu R, Coletta RD, Salo T (2017), Tenascin-C and fibronectin expression divide early stage tongue cancer into low- and high-risk groups. Br J Cancer 116, 5, 640–648. https://doi.org/10.1038/bjc.2016.455. [CrossRef] [PubMed] [Google Scholar]
  164. D’Ardenne AJ, Burns J, Sykes BC, Bennett MK (1983), Fibronectin and type III collagen in epithelial neoplasms of gastrointestinal tract and salivary gland. J Clin Pathol 36, 7, 756–763. https://doi.org/10.1136/jcp.36.7.756. [CrossRef] [PubMed] [Google Scholar]
  165. Qin S, Zhang B, Xiao G, Sun X, Li G, Huang G, Gao X, Li X, Wang H, Yang C, Ren H (2016), Fibronectin protects lung cancer cells against docetaxel-induced apoptosis by promoting Src and caspase-8 phosphorylation. Tumour Biol 37, 10, 13509–13520. https://doi.org/10.1007/s13277-016-5206-8. [CrossRef] [PubMed] [Google Scholar]
  166. Yousif NG (2014), Fibronectin promotes migration and invasion of ovarian cancer cells through up-regulation of FAK-PI3K/Akt pathway. Cell Biol Int 38, 1, 85–91. https://doi.org/10.1002/cbin.10184. [CrossRef] [PubMed] [Google Scholar]
  167. Mahmud H, Kasai T, Khayrani AC, Asakura M, Oo AKK, Du J, Vaidyanath A, El-Ghlban S, Mizutani A, Seno A, Murakami H, Masuda J, Seno M (2018), Targeting glioblastoma cells expressing CD44 with liposomes encapsulating doxorubicin and displaying chlorotoxin-IgG Fc fusion protein. Int J Mol Sci 19, 3, Pii: E659. https://doi.org/10.3390/ijms19030659. [Google Scholar]
  168. McFarlane S, McFarlane C, Montgomery N, Hill A, Waugh DJ (2015), CD44-mediated activation of α5β1-integrin, cortactin and paxillin signaling underpins adhesion of basal-like breast cancer cells to endothelium and fibronectin-enriched matrices. Oncotarget 6, 34, 36762–36773. https://doi.org/10.18632/oncotarget.5461. [PubMed] [Google Scholar]
  169. Han Z, Lu ZR (2017), Targeting fibronectin for cancer imaging and therapy. J Mater Chem B 5, 4, 639–654. https://doi.org/10.1039/C6TB02008A. [CrossRef] [PubMed] [Google Scholar]
  170. Wang D, Gao CQ, Chen RQ, Jin CL, Li HC, Yan HC, Wang XQ (2016), Focal adhesion kinase and paxillin promote migration and adhesion to fibronectin by swine skeletal muscle satellite cells. Oncotarget 7, 21, 30845–30854. https://doi.org/10.18632/oncotarget.9010. [PubMed] [Google Scholar]
  171. Mackinnon AC, Tretiakova M, Henderson L, Mehta RG, Yan BC, Joseph L, Krausz T, Husain AN, Reid ME, Salgia R (2011), Paxillin expression and amplification in early lung lesions of high-risk patients, lung adenocarcinoma and metastatic disease. J Clin Pathol 64, 1, 16–24. https://doi.org/10.1136/jcp.2010.075853. [CrossRef] [PubMed] [Google Scholar]
  172. Kanteti R, Batra SK, Lennon FE, Salgia R (2016), FAK and paxillin, two potential targets in pancreatic cancer. Oncotarget 7, 21, 31586–31601. https://doi.org/10.18632/oncotarget.8040. [CrossRef] [PubMed] [Google Scholar]
  173. Callaerts P, Halder G, Gehring WJ (1997), PAX-6 in development and evolution. Annu Rev Neurosci 20, 483–532. https://doi.org/10.1146/annurev.neuro.20.1.483. [CrossRef] [PubMed] [Google Scholar]
  174. Liu F, Wang L, Fu JL, Xiao Y, Gong X, Liu Y, Nie Q, Xiang JW, Yang L, Chen Z, Liu Y, Li DW (2018), Analysis of non-sumoylated and sumoylated isoforms of Pax-6, the master regulator for eye and brain development in ocular cell lines. Curr Mol Med 18, 8, 566–573. https://doi.org/10.2174/1566524019666190111153310. [CrossRef] [PubMed] [Google Scholar]
  175. Baer K, Eriksson PS, Faull RL, Rees MI, Curtis MA (2007), Sox-2 is expressed by glial and progenitor cells and Pax-6 is expressed by neuroblasts in the human subventricular zone. Exp Neurol 204, 2, 828–831. https://doi.org/10.1016/j.expneurol.2006.12.008. [CrossRef] [PubMed] [Google Scholar]
  176. Moos M, Tacke R, Scherer H, Teplow D, Früh K, Schachner M (1988), Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature 334, 6184, 701–703. https://doi.org/10.1038/334701a0. [CrossRef] [PubMed] [Google Scholar]
  177. Meech R, Kallunki P, Edelman GM, Jones FS (1999), A binding site for homeodomain and Pax proteins is necessary for L1 cell adhesion molecule gene expression by Pax-6 and bone morphogenetic proteins. Proc Natl Acad Sci USA 96, 5, 2420–2425. https://doi.org/10.1073/pnas.96.5.2420. [CrossRef] [Google Scholar]
  178. Wu DM, Zhang T, Liu YB, Deng SH, Han R, Liu T, Li J, Xu Y (2019), The PAX6-ZEB2 axis promotes metastasis and cisplatin resistance in non-small cell lung cancer through PI3K/AKT signaling. Cell Death Dis 10, 5, 349. https://doi.org/10.1038/s41419-019-1591-4. [CrossRef] [PubMed] [Google Scholar]
  179. Little EC, Kubic JD, Salgia R, Grippo PJ, Lang D (2017), Canonical and alternative transcript expression of PAX6 and CXCR4 in pancreatic cancer. Oncol Lett 13, 6, 4027–4034. https://doi.org/10.3892/ol.2017.5956. [CrossRef] [PubMed] [Google Scholar]
  180. Esparza-López J, Alvarado-Muñoz JF, Escobar-Arriaga E, Ulloa-Aguirre A, de Jesús Ibarra-SánchezM (2019), Metformin reverses mesenchymal phenotype of primary breast cancer cells through STAT3/NF-κB pathways. BMC Cancer 19, 1, 728. https://doi.org/10.1186/s12885-019-5945-1. [CrossRef] [PubMed] [Google Scholar]
  181. Laurentino TS, Soares RDS, Marie SKN, Oba-Shinjo SM (2019), LOXL3 function beyond amino oxidase and role in pathologies, including cancer. Int J Mol Sci 20, 14, pii: E3587. https://doi.org/10.3390/ijms20143587. [Google Scholar]
  182. Huang M, Liu Z, Baugh L, DeFuria J, Maione A, Smith A, Kashpur O, Black Iii LD, Georgakoudi I, Whitfield ML, Garlick J (2019), Lysyl oxidase enzymes mediate TGF-β1-induced fibrotic phenotypes in human skin-like tissues. Lab Invest 99, 4, 514–527. https://doi.org/10.1038/s41374-018-0159-8. [CrossRef] [PubMed] [Google Scholar]
  183. Kraft-Sheleg O, Zaffryar-Eilot S, Genin O, Yaseen W, Soueid-Baumgarten S, Kessler O, Smolkin T, Akiri G, Neufeld G, Cinnamon Y, Hasson P (2016), Localized LoxL3-dependent fibronectin oxidation regulates myofiber stretch and integrin-mediated adhesion. Dev Cell 36, 5, 550–561. https://doi.org/10.1016/j.devcel.2016.02.009. [CrossRef] [PubMed] [Google Scholar]
  184. Peinado H, Iglesias-de DelCarmen, la Cruz M, Olmeda D, Csiszar K, Fong KS, Vega S, Nieto MA, Cano A, Portillo F (2005), A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J 24, 19, 3446–3458. https://doi.org/10.1038/sj.emboj.7600781. [Google Scholar]
  185. Santamaría PG, Floristán A, Fontanals-Cirera B, Vázquez-Naharro A, Santos V, Morales S, Yuste L, Peinado H, García-Gómez A, Portillo F, Hernando E, Cano A (2018), Lysyl oxidase-like 3 is required for melanoma cell survival by maintaining genomic stability. Cell Death Differ 25, 5, 935–950. https://doi.org/10.1038/s41418-017-0030-2. [CrossRef] [PubMed] [Google Scholar]
  186. Kasashima H, Yashiro M, Okuno T, Miki Y, Kitayama K, Masuda G, Kinoshita H, Morisaki T, Fukuoka T, Hasegawa T, Sakurai K, Toyokawa T, Kubo N, Tanaka H, Muguruma K, Hirakawa K, Ohira M (2018), Significance of the lysyl oxidase members lysyl oxidase like 1, 3, and 4 in gastric cancer. Digestion 98, 4, 238–248. https://doi.org/10.1159/000489558. [Google Scholar]
  187. Lee JE, Kim Y (2006), A tissue-specific variant of the human lysyl oxidase-like protein 3 (LOXL3) functions as an amine oxidase with substrate specificity. J Biol Chem 281, 49, 37282–37290. https://doi.org/10.1074/jbc.M600977200. [CrossRef] [PubMed] [Google Scholar]
  188. Zhang Y, Jiao H, Wu Y, Sun X (2019), P120-catenin regulates pulmonary fibrosis and TGF-β induced lung fibroblast differentiation. Life Sci 230, 35–44. https://doi.org/10.1016/j.lfs.2019.05.052. [CrossRef] [PubMed] [Google Scholar]
  189. Kourtidis A, Ngok SP, Anastasiadis PZ (2013), p120 catenin: an essential regulator of cadherin stability, adhesion-induced signaling, and cancer progression. Prog Mol Biol Transl Sci 116, 409–432. https://doi.org/10.1016/B978-0-12-394311-8.00018-2. [CrossRef] [PubMed] [Google Scholar]
  190. Iyer KV, Piscitello-Gómez R, Paijmans J, Jülicher F, Eaton S (2019), Epithelial viscoelasticity is regulated by mechanosensitive E-cadherin turnover. Curr Biol 29, 4, 578–591.e5. https://doi.org/10.1016/j.cub.2019.01.021. [CrossRef] [PubMed] [Google Scholar]
  191. Stefanatos RK, Bauer C, Vidal M (2013), p120 catenin is required for the stress response in Drosophila. PLoS One 8, 12, e83942. https://doi.org/10.1371/journal.pone.0083942. [CrossRef] [PubMed] [Google Scholar]
  192. Venhuizen JH, Sommer S, Span PN, Friedl P, Zegers MM (2019), Differential expression of p120-catenin 1 and 3 isoforms in epithelial tissues. Sci Rep 9, 1, 90. https://doi.org/10.1038/s41598-018-36889-w. [CrossRef] [PubMed] [Google Scholar]
  193. Zhang Y, Zhao Y, Jiang G, Zhang X, Zhao H, Wu J, Xu K, Wang E (2014), Impact of p120-catenin isoforms 1A and 3A on epithelial mesenchymal transition of lung cancer cells expressing E-cadherin in different subcellular locations. PLoS One 9, 2, e88064. https://doi.org/10.1371/journal.pone.0088064. [CrossRef] [PubMed] [Google Scholar]
  194. Sha Y, Haensel D, Gutierrez G, Du H, Dai X, Nie Q (2019), Intermediate cell states in epithelial-to-mesenchymal transition. Phys Biol 16, 2, 021001. https://doi.org/10.1088/1478-3975/aaf928. [Google Scholar]
  195. Pei D, Shu X, Gassama-Diagne A, Thiery JP (2019), Mesenchymal-epithelial transition in development and reprogramming. Nat Cell Biol 21, 1, 44–53. https://doi.org/10.1038/s41556-018-0195-z. [CrossRef] [PubMed] [Google Scholar]
  196. Bronfman M, Inestrosa NC, Leighton F (1979), Fatty acid oxidation by human liver peroxisomes. Biochem Biophys Res Commun 88, 3, 1030–1036. PMID: 465070. [Google Scholar]
  197. Tolbert NE, Essner E (1981), Microbodies: peroxisomes and glyoxisomes. J Cell Biol 91, 3 Pt 2, 271s–283s. https://doi.org/10.1083/jcb.91.3.271s. [CrossRef] [PubMed] [Google Scholar]
  198. Gerbling H, Gerhardt B (1987), Activation of fatty acids by non-glyoxysomal peroxisomes. Planta 171, 3, 386–392. https://doi.org/10.1007/BF00398684. [CrossRef] [PubMed] [Google Scholar]
  199. Berg JM, Tymoczko JL, Stryer L (2002), Section 22.4, fatty acids are synthesized and degraded by different pathways. Biochemistry, 5th edn., WH Freeman, New York. Available from https://www.ncbi.nlm.nih.gov/books/NBK22554/. [Google Scholar]
  200. Meyer D, Herrfurth C, Brodhun F, Feussner I (2013), Degradation of lipoxygenase-derived oxylipins by glyoxysomes from sunflower and cucumber cotyledons. BMC Plant Biol 13, 177. https://doi.org/10.1186/1471-2229-13-177. [CrossRef] [PubMed] [Google Scholar]
  201. Houten SM, Violante S, Ventura FV, Wanders RJ (2016), The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Annu Rev Physiol 78, 23–44. https://doi.org/10.1146/annurev-physiol-021115-105045. [Google Scholar]
  202. Qiu X, Meesapyodsuk D (2009), Biosynthesis of unusual fatty acids in microorganisms and their production in plants, in: ChT Hou, JF Shaw (Eds.), Biocatalysis and Agricultural Biotechnology, CRC Press. ISBN 9781420077032, 133–142. [CrossRef] [Google Scholar]
  203. Klempova T, Mihalik D, Certik M (2013), Characterization of membrane-bound fatty acid desaturases. Gen Physiol Biophys 32, 4, 445–458. https://doi.org/10.4149/gpb_2013051. [Google Scholar]
  204. Sperling P, Ternes P, Zank TK, Heinz E (2003), The evolution of desaturases. Prostaglandins Leukot Essent Fatty Acids 68, 2, 73–95. PMID: 12538072. [CrossRef] [PubMed] [Google Scholar]
  205. Hashimoto K, Yoshizawa AC, Okuda S, Kuma K, Goto S, Kanehisa M (2008), The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J Lipid Res 49, 1, 183–191. https://doi.org/10.1194/jlr.M700377-JLR200. [CrossRef] [PubMed] [Google Scholar]
  206. Enoch HG, Catalá A, Strittmatter P (1976), Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J Biol Chem 251, 16, 5095–5103, PMID: 8453. [PubMed] [Google Scholar]
  207. Shanklin J, Cahoon EB (1998), Desaturation and related modifications of fatty acids1. Annu Rev Plant Physiol Plant Mol Biol 49, 1, 611–641. https://doi.org/10.1146/annurev.arplant.49.1.611. [CrossRef] [PubMed] [Google Scholar]
  208. Castro LF, Wilson JM, Gonçalves O, Galante-Oliveira S, Rocha E, Cunha I (2011), The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates. BMC Evol Biol 11, 132, 1–14. https://doi.org/10.1186/1471-2148-11-132. [CrossRef] [PubMed] [Google Scholar]
  209. Wada H, Gombos Z, Murata N (1990), Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347, 6289, 200–203. https://doi.org/10.1038/347200a0. [CrossRef] [PubMed] [Google Scholar]
  210. Kodama H, Hamada T, Horiguchi G, Nishimura M, Iba K (1994), Genetic enhancement of cold tolerance by expression of a gene for chloroplast [omega]-3 fatty acid desaturase in transgenic tobacco. Plant Physiol 105, 2, 601–605. https://doi.org/10.1104/pp.105.2.601. [Google Scholar]
  211. Strittmatter P, Enoch HG (1978), Purification of stearyl-CoA desaturase from liver. Methods Enzymol 52, 188–193. PMID: 27698. [CrossRef] [PubMed] [Google Scholar]
  212. Kasturi R, Joshi VC (1982), Hormonal regulation of stearoyl coenzyme A desaturase activity and lipogenesis during adipose conversion of 3T3-L1 cells. J Biol Chem 257, 20, 12224–12230. PMID: 6181064. [PubMed] [Google Scholar]
  213. Ntambi JM, Buhrow SA, Kaestner KH, Christy RJ, Sibley E, Kelly TJ Jr, Lane MD (1988), Differentiation-induced gene expression in 3T3-L1 preadipocytes. Characterization of a differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem 263, 33, 17291–17300. PMID: 2903162. [PubMed] [Google Scholar]
  214. Ntambi JM (1992), Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver. J Biol Chem 267, 15, 10925–10930. [PubMed] [Google Scholar]
  215. Hofacer R, Magrisso IJ, Jandacek R, Rider T, Tso P, Benoit SC, McNamara RK (2012), Omega-3 fatty acid deficiency increases stearoyl-CoA desaturase expression and activity indices in rat liver: positive association with non-fasting plasma triglyceride levels. Prostaglandins Leukot Essent Fatty Acids 86, 1–2, 71–77. https://doi.org/10.1016/j.plefa.2011.10.003. [CrossRef] [PubMed] [Google Scholar]
  216. Jastrzebska B, Debinski A, Filipek S, Palczewski K (2011), Role of membrane integrity on G protein-coupled receptors: Rhodopsin stability and function. Prog Lipid Res 50, 3, 267–277. https://doi.org/10.1016/j.plipres.2011.03.002. [CrossRef] [PubMed] [Google Scholar]
  217. Miyazaki M, Dobrzyn A, Sampath H, Lee SH, Man WC, Chu K, Peters JM, Gonzalez FJ, Ntambi JM (2004), Reduced adiposity and liver steatosis by stearoyl-CoA desaturase deficiency are independent of peroxisome proliferator-activated receptor-alpha. J Biol Chem 279, 33, 35017–35024. https://doi.org/10.1074/jbc.M405327200. [CrossRef] [PubMed] [Google Scholar]
  218. Brown JM, Chung S, Sawyer JK, Degirolamo C, Alger HM, Nguyen TM, Zhu X, Duong MN, Brown AL, Lord C, Shah R, Davis MA, Kelley K, Wilson MD, Madenspacher J, Fessler MB, Parks JS, Rudel LL (2010), Combined therapy of dietary fish oil and stearoyl-CoA desaturase 1 inhibition prevents the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol 30, 1, 24–30. https://doi.org/10.1161/ATVBAHA.109.198036. [CrossRef] [PubMed] [Google Scholar]
  219. Jiang G, Li Z, Liu F, Ellsworth K, Dallas-Yang Q, Wu M, Ronan J, Esau C, Murphy C, Szalkowski D, Bergeron R, Doebber T, Zhang BB (2005), Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase-1. J Clin Invest 115, 4, 1030–1038. https://doi.org/10.1172/JCI23962. Erratum (2005) J Clin Invest 115, 8, 2297. [CrossRef] [PubMed] [Google Scholar]
  220. Miyazaki M, Sampath H, Liu X, Flowers MT, Chu K, Dobrzyn A, Ntambi JM (2009), Stearoyl-CoA desaturase-1 deficiency attenuates obesity and insulin resistance in leptin-resistant obese mice. Biochem Biophys Res Commun 380, 4, 818–822. https://doi.org/10.1016/j.bbrc.2009.01.183. [Google Scholar]
  221. Liu X, Miyazaki M, Flowers MT, Sampath H, Zhao M, Chu K, Paton CM, Joo DS, Ntambi JM (2010), Loss of Stearoyl-CoA desaturase-1 attenuates adipocyte inflammation: effects of adipocyte-derived oleate. Arterioscler Thromb Vasc Biol 30, 1, 31–38. https://doi.org/10.1161/ATVBAHA.109.195636. Erratum (2010) Arterioscler Thromb Vasc Biol 30, 10, e177. [CrossRef] [PubMed] [Google Scholar]
  222. Mauvoisin D, Charfi C, Lounis AM, Rassart E, Mounier C (2013), Decreasing stearoyl-CoA desaturase-1 expression inhibits β-catenin signaling in breast cancer cells. Cancer Sci 104, 1, 36–42. https://doi.org/10.1111/cas.12032. [CrossRef] [PubMed] [Google Scholar]
  223. Imamura K, Tomita N, Kawakita Y, Ito Y, Ono K, Nii N, Miyazaki T, Yonemori K, Tawada M, Sumi H, Satoh Y, Yamamoto Y, Miyahisa I, Sasaki M, Satomi Y, Hirayama M, Nishigaki R, Maezaki H (2017), Discovery of novel and potent Stearoyl Coenzyme A Desaturase 1 (SCD1) inhibitors as anticancer agents. Bioorg Med Chem 25, 14, 3768–3779. https://doi.org/10.1016/j.bmc.2017.05.016. [CrossRef] [PubMed] [Google Scholar]
  224. Dobrzyn P, Dobrzyn A, Miyazaki M, Cohen P, Asilmaz E, Hardie DG, Friedman JM, Ntambi JM (2004), Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proc Natl Acad Sci USA 101, 17, 6409–6414. https://doi.org/10.1073/pnas.0401627101. [CrossRef] [Google Scholar]
  225. Scaglia N, Chisholm JW, Igal RA (2009), Inhibition of stearoylCoA desaturase-1 inactivates acetyl-CoA carboxylase and impairs proliferation in cancer cells: role of AMPK. PLoS One 4, 8, e6812. https://doi.org/10.1371/journal.pone.0006812. [CrossRef] [PubMed] [Google Scholar]
  226. Waters KM, Ntambi JM (1994), Insulin and dietary fructose induce stearoyl-CoA desaturase 1 gene expression of diabetic mice. J Biol Chem 269, 44, 27773–27777. PMID: 7961698. [PubMed] [Google Scholar]
  227. Miller CW, Waters KM, Ntambi JM (1997), Regulation of hepatic stearoyl-CoA desaturase gene 1 by vitamin A. Biochem Biophys Res Commun 231, 1, 206–210. https://doi.org/10.1006/bbrc.1997.6070. [Google Scholar]
  228. Waters KM, Miller CW, Ntambi JM (1997), Localization of a negative thyroid hormone-response region in hepatic stearoyl-CoA desaturase gene 1. Biochem Biophys Res Commun 233, 3, 838–843. https://doi.org/10.1006/bbrc.1997.6550. [Google Scholar]
  229. Biddinger SB, Miyazaki M, Boucher J, Ntambi JM, Kahn CR (2006), Leptin suppresses stearoyl-CoA desaturase 1 by mechanisms independent of insulin and sterol regulatory element-binding protein-1c. Diabetes 55, 7, 2032–2041. https://doi.org/10.2337/db05-0742. [CrossRef] [PubMed] [Google Scholar]
  230. Mauvoisin D, Rocque G, Arfa O, Radenne A, Boissier P, Mounier C (2007), Role of the PI3-kinase/mTor pathway in the regulation of the stearoyl CoA desaturase (SCD1) gene expression by insulin in liver. J Cell Commun Signal 1, 2, 113–125. https://doi.org/10.1007/s12079-007-0011-1. [CrossRef] [PubMed] [Google Scholar]
  231. Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Vander Heiden MG, MacKeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD (2010), Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39, 2, 171–183. https://doi.org/10.1016/j.molcel.2010.06.022. [CrossRef] [PubMed] [Google Scholar]
  232. Luyimbazi D, Akcakanat A, McAuliffe PF, Zhang L, Singh G, Gonzalez-Angulo AM, Chen H, Do KA, Zheng Y, Hung MC, Mills GB, Meric-Bernstam F (2010), Rapamycin regulates stearoyl CoA desaturase 1 expression in breast cancer. Mol Cancer Ther 9, 10, 2770–2784. https://doi.org/10.1158/1535-7163.MCT-09-0980. [Google Scholar]
  233. Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, Guertin DA, Madden KL, Carpenter AE, Finck BN, Sabatini DM (2011), mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146, 3, 408–420. https://doi.org/10.1016/j.cell.2011.06.034. [Google Scholar]
  234. Zhang J, Song F, Zhao X, Jiang H, Wu X, Wang B, Zhou M, Tian M, Shi B, Wang H, Jia Y, Wang H, Pan X, Li Z (2017), EGFR modulates monounsaturated fatty acid synthesis through phosphorylation of SCD1 in lung cancer. Mol Cancer 16, 1, 127. https://doi.org/10.1186/s12943-017-0704-x. [CrossRef] [PubMed] [Google Scholar]
  235. Nashed M, Chisholm JW, Igal RA (2012), Stearoyl-CoA desaturase activity modulates the activation of epidermal growth factor receptor in human lung cancer cells. Exp Biol Med (Maywood) 237, 9, 1007–1017https://doi.org/10.1258/ebm.2012.012126. [CrossRef] [PubMed] [Google Scholar]
  236. She K, Fang S, Du W, Fan X, He J, Pan H, Huang L, He P, Huang J (2019), SCD1 is required for EGFR-targeting cancer therapy of lung cancer via re-activation of EGFR/PI3K/AKT signals. Cancer Cell Int 19, 103. https://doi.org/10.1186/s12935-019-0809-y. [CrossRef] [PubMed] [Google Scholar]
  237. Li J, Condello S, Thomes-Pepin J, Ma X, Xia Y, Hurley TD, Matei D, Cheng JX (2017), Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell 20, 3, 303–314, e5. https://doi.org/10.1016/j.stem.2016.11.004. [Google Scholar]
  238. Lu H, Lei X, Zhang Q (2015), Moderate activation of IKK2-NF-kB in unstressed adult mouse liver induces cytoprotective genes and lipogenesis without apparent signs of inflammation or fibrosis. BMC Gastroenterol 15, 94. https://doi.org/10.1186/s12876-015-0325-z. [CrossRef] [PubMed] [Google Scholar]
  239. Zhang Q, Yu S, Lam MMT, Poon TCW, Sun L, Jiao Y, Wong AST, Lee LTO (2019), Angiotensin II promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress. J Exp Clin Cancer Res 38, 1, 116. https://doi.org/10.1186/s13046-019-1127-x. [CrossRef] [PubMed] [Google Scholar]
  240. Roongta UV, Pabalan JG, Wang X, Ryseck RP, Fargnoli J, Henley BJ, Yang WP, Zhu J, Madireddi MT, Lawrence RM, Wong TW, Rupnow BA (2011), Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy. Mol Cancer Res 9, 11, 1551–1561. https://doi.org/10.1158/1541-7786.MCR-11-0126. [CrossRef] [PubMed] [Google Scholar]
  241. Huang J, Fan XX, He J, Pan H, Li RZ, Huang L, Jiang Z, Yao XJ, Liu L, Leung EL, He JX (2016), SCD1 is associated with tumor promotion, late stage and poor survival in lung adenocarcinoma. Oncotarget 7, 26, 39970–39979. https://doi.org/10.18632/oncotarget.9461. [PubMed] [Google Scholar]
  242. Liu G, Feng S, Jia L, Wang C, Fu Y, Luo Y (2018), Lung fibroblasts promote metastatic colonization through upregulation of stearoyl-CoA desaturase 1 in tumor cells. Oncogene 37, 11, 1519–1533. https://doi.org/10.1038/s41388-017-0062-6. [Google Scholar]
  243. Scaglia N, Caviglia JM, Igal RA (2005), High stearoyl-CoA desaturase protein and activity levels in simian virus 40 transformed-human lung fibroblasts. Biochim Biophys Acta 1687, 1–3, 141–151. https://doi.org/10.1016/j.bbalip.2004.11.015. [CrossRef] [PubMed] [Google Scholar]
  244. Holder AM, Gonzalez-Angulo AM, Chen H, Akcakanat A, Do KA, Fraser Symmans W, Pusztai L, Hortobagyi GN, Mills GB, Meric-Bernstam F (2013), High stearoyl-CoA desaturase 1 expression is associated with shorter survival in breast cancer patients. Breast Cancer Res Treat 137, 1, 319–327. https://doi.org/10.1007/s10549-012-2354-4. [CrossRef] [PubMed] [Google Scholar]
  245. Ide Y, Waki M, Hayasaka T, Nishio T, Morita Y, Tanaka H, Sasaki T, Koizumi K, Matsunuma R, Hosokawa Y, Ogura H, Shiiya N, Setou M (2013), Human breast cancer tissues contain abundant phosphatidylcholine(36:1) with high stearoyl-CoA desaturase-1 expression. PLoS One 8, 4, e61204. https://doi.org/10.1371/journal.pone.0061204. Correction: PLoS One 8, 9. DOI: https://doi.org/10.1371/annotation/63c5359c-b1d2-44d8-944f-7bde0d6ec946. [CrossRef] [PubMed] [Google Scholar]
  246. Pampalakis G, Politi AL, Papanastasiou A, Sotiropoulou G (2015), Distinct cholesterogenic and lipidogenic gene expression patterns in ovarian cancer – a new pool of biomarkers. Genes Cancer 6, 11–12, 472–479. https://doi.org/10.18632/genesandcancer.87. [PubMed] [Google Scholar]
  247. von Roemeling CA, Marlow LA, Pinkerton AB, Crist A, Miller J, Tun HW, Smallridge RC, Copland JA (2015), Aberrant lipid metabolism in anaplastic thyroid carcinoma reveals stearoyl CoA desaturase 1 as a novel therapeutic target. J Clin Endocrinol Metab 100, 5, E697–709. https://doi.org/10.1210/jc.2014-2764. [CrossRef] [PubMed] [Google Scholar]
  248. Li J, Ding SF, Habib NA, Fermor BF, Wood CB, Gilmour RS (1994), Partial characterization of a cDNA for human stearoyl-CoA desaturase and changes in its mRNA expression in some normal and malignant tissues. Int J Cancer 57, 3, 348–352. https://doi.org/10.1002/ijc.2910570310. [CrossRef] [PubMed] [Google Scholar]
  249. Mason P, Liang B, Li L, Fremgen T, Murphy E, Quinn A, Madden SL, Biemann HP, Wang B, Cohen A, Komarnitsky S, Jancsics K, Hirth B, Cooper CG, Lee E, Wilson S, Krumbholz R, Schmid S, Xiang Y, Booker M, Lillie J, Carter K (2012), SCD1 inhibition causes cancer cell death by depleting mono-unsaturated fatty acids. PLoS One 7, 3, e33823. https://doi.org/10.1371/journal.pone.0033823. [CrossRef] [PubMed] [Google Scholar]
  250. Vargas T, Moreno-Rubio J, Herranz J, Cejas P, Molina S, González-Vallinas M, Mendiola M, Burgos E, Aguayo C, Custodio AB, Machado I, Ramos D, Gironella M, Espinosa-Salinas I, Ramos R, Martín-Hernández R, Risueño A, De Las RivasJ, Reglero G, Yaya R, Fernández-Martos C, Aparicio J, Maurel J, Feliu J, Ramírez de Molina A (2015), ColoLipidGene: signature of lipid metabolism-related genes to predict prognosis in stage-II colon cancer patients. Oncotarget 6, 9, 7348–7363. https://doi.org/10.18632/oncotarget.3130. [CrossRef] [PubMed] [Google Scholar]
  251. Falvella FS, Pascale RM, Gariboldi M, Manenti G, De Miglio MR, Simile MM, Dragani TA, Feo F (2002), Stearoyl-CoA desaturase 1 (Scd1) gene overexpression is associated with genetic predisposition to hepatocarcinogenesis in mice and rats. Carcinogenesis 23, 11, 1933–1936. https://doi.org/10.1093/carcin/23.11.1933. [Google Scholar]
  252. Yahagi N, Shimano H, Hasegawa K, Ohashi K, Matsuzaka T, Najima Y, Sekiya M, Tomita S, Okazaki H, Tamura Y, Iizuka Y, Nagai R, Ishibashi S, Kadowaki T, Makuuchi M, Ohnishi S, Osuga J, Yamada N (2005), Coordinate activation of lipogenic enzymes in hepatocellular carcinoma. Eur J Cancer 41, 9, 1316–1322. https://doi.org/10.1016/j.ejca.2004.12.037. [CrossRef] [PubMed] [Google Scholar]
  253. Scaglia N, Igal RA (2008), Inhibition of Stearoyl-CoA Desaturase 1 expression in human lung adenocarcinoma cells impairs tumorigenesis. Int J Oncol 33, 4, 839–850. PMID: 18813799. [Google Scholar]
  254. Hess D, Chisholm JW, Igal RA (2019), Inhibition of stearoylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells. PLoS One 5, 6, e11394. https://doi.org/10.1371/journal.pone.0011394. [Google Scholar]
  255. Noto A, Raffa S, De Vitis C, Roscilli G, Malpicci D, Coluccia P, Di Napoli A, Ricci A, Giovagnoli MR, Aurisicchio L, Torrisi MR, Ciliberto G, Mancini R (2013), Stearoyl-CoA desaturase-1 is a key factor for lung cancer-initiating cells. Cell Death Dis 4, e947, 1–11. https://doi.org/10.1038/cddis.2013.444. [Google Scholar]
  256. Wang J, Xu Y, Zhu L, Zou Y, Kong W, Dong B, Huang J, Chen Y, Xue W, Huang Y, Zhang J (2016), High expression of Stearoyl-CoA Desaturase 1 predicts poor prognosis in patients with clear-cell renal cell carcinoma. PLoS One 11, 11, e0166231. https://doi.org/10.1371/journal.pone.0166231. [CrossRef] [PubMed] [Google Scholar]
  257. Fritz V, Benfodda Z, Gv Rodier, Henriquet C, Fo Iborra, Avancès C, Allory Y, de la Taille A, Sp Culine, Blancou H, Cristol JP, Fo Michel, Sardet C, Fajas L (2010), Abrogation of de novo lipogenesis by Stearoyl-CoA Desaturase 1 Inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice. Mol Cancer Ther 9, 6, 1740–1754. https://doi.org/10.1158/1535-7163.mct-09-1064. [Google Scholar]
  258. Pisanu ME, Maugeri-Saccà M, Fattore L, Bruschini S, De Vitis C, Tabbì E, Bellei B, Migliano E, Kovacs D, Camera E, Picardo M, Jakopin Z, Cippitelli C, Bartolazzi A, Raffa S, Torrisi MR, Fulciniti F, Ascierto PA, Ciliberto G, Mancini R (2018), Inhibition of Stearoyl-CoA desaturase 1 reverts BRAF and MEK inhibition-induced selection of cancer stem cells in BRAF-mutated melanoma. J Exp Clin Cancer Res 37, 1, 318. https://doi.org/10.1186/s13046-018-0989-7. [CrossRef] [PubMed] [Google Scholar]
  259. Nicolaides N (1974), Skin lipids: their biochemical uniqueness. Science 186, 4, 19–26. PMID: 4607408. [Google Scholar]
  260. Ge L, Gordon JS, Hsuan C, Stenn K, Prouty SM (2003), Identification of the delta-6 desaturase of human sebaceous glands: expression and enzyme activity. J Invest Dermatol 120, 5, 707–714. https://doi.org/10.1046/j.1523-1747.2003.12123.x. Erratum (2003) J Invest Dermatol 121, 2, 434. [CrossRef] [PubMed] [Google Scholar]
  261. Snaebjornsson MT, Schulze A (2019), Tumours use a metabolic twist to make lipids. Nature 566, 7744, 333–334. https://doi.org/10.1038/d41586-019-00352-1. [CrossRef] [PubMed] [Google Scholar]
  262. Jeffcoat R, Brawn PR, James AT (1976), The effect of soluble rat liver proteins on the activity of microsomal stearoyl-CoA and linoleoyl-CoA desaturase. Biochim Biophys Acta 431, 1, 33–44. PMID: 5153. [CrossRef] [PubMed] [Google Scholar]
  263. Marquardt A, Stöhr H, White K, Weber BH (2000), cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics 66, 2, 175–183. https://doi.org/10.1006/geno.2000.6196. [CrossRef] [PubMed] [Google Scholar]
  264. Tang C, Cho HP, Nakamura MT, Clarke SD (2003), Regulation of human delta-6 desaturase gene transcription: identification of a functional direct repeat-1 element. J Lipid Res 44, 4, 686–695. https://doi.org/10.1194/jlr.M200195-JLR200. [CrossRef] [PubMed] [Google Scholar]
  265. Vriens K, Christen S, Parik S, Broekaert D, Yoshinaga K, Talebi A, Dehairs J, Escalona-Noguero C, Schmieder R, Cornfield T, Charlton C, Romero-Pérez L, Rossi M, Rinaldi G, Orth MF, Boon R, Kerstens A, Kwan SY, Faubert B, Méndez-Lucas A, Kopitz CC, Chen T, Fernandez-Garcia J, Duarte JAG, Schmitz AA, Steigemann P, Najimi M, Hägebarth A, Van Ginderachter JA, Sokal E, Gotoh N, Wong KK, Verfaillie C, Derua R, Munck S, Yuneva M, Beretta L, DeBerardinis RJ, Swinnen JV, Hodson L, Cassiman D, Verslype C, Christian S, Grünewald S, Grünewald TGP, Fendt SM (2019), Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature 566, 7744, 403–406. https://doi.org/10.1038/s41586-019-0904-1. [CrossRef] [PubMed] [Google Scholar]
  266. Lee CK, Jeong SH, Jang C, Bae H, Kim YH, Park I, Kim SK, Koh GY (2019), Tumor metastasis to lymph nodes requires YAP-dependent metabolic pathway. Science 363, 6427, 644–649. https://doi.org/10.1126/science.aav0173. [Google Scholar]
  267. Park YY, Sohn BH, Johnson RL, Kang MH, Kim SB, Shim JJ, Mangala LS, Kim JH, Yoo JE, Rodriguez-Aguayo C, Pradeep S, Hwang JE, Jang HJ, Lee HS, Rupaimoole R, Lopez-Berestein G, Jeong W, Park IS, Park YN, Sood AK, Mills GB, Lee JS (2016), Yes-associated protein 1 and transcriptional coactivator with PDZ-binding motif activate the mammalian target of rapamycin complex 1 pathway by regulating amino acid transporters in hepatocellular carcinoma. Hepatology 63, 1, 159–172. https://doi.org/10.1002/hep.28223. [CrossRef] [PubMed] [Google Scholar]
  268. Li H, He F, Zhao X, Zhang Y, Chu X, Hua C, Qu Y, Duan Y, Ming L (2017), YAP inhibits the apoptosis and migration of human rectal cancer cells via suppression of JNK-Drp1-mitochondrial fission-HtrA2/omi pathways. Cell Physiol Biochem 44, 5, 2073–2089. https://doi.org/10.1159/000485946. [CrossRef] [PubMed] [Google Scholar]
  269. Zhang X, Abdelrahman A, Vollmar B, Zechner D (2018), The ambivalent function of YAP in apoptosis and cancer. Int J Mol Sci 19, 12, pii: E3770. https://doi.org/10.3390/ijms19123770 [Google Scholar]
  270. Roedig P, Ginn HM, Pakendorf T, Sutton G, Harlos K, Walter TS, Meyer J, Fischer P, Duman R, Vartiainen I, Reime B, Warmer M, Brewster AS, Young ID, Michels-Clark T, Sauter NK, Kotecha A, Kelly J, Rowlands DJ, Sikorsky M, Nelson S, Damiani DS, Alonso-Mori R, Ren J, Fry EE, David C, Stuart DI, Wagner A, Meents A (2017), High-speed fixed-target serial virus crystallography. Nat Methods 14, 805–810. https://doi.org/10.1038/nmeth.4335. [CrossRef] [PubMed] [Google Scholar]
  271. Peng T, Thorn K, Schroeder T, Wang L, Theis FJ, Marr C, Navab N (2017), A BaSiC tool for background and shading correction of optical microscopy images. Nat Commun 8, 14836. https://doi.org/10.1038/ncomms14836. [CrossRef] [PubMed] [Google Scholar]
  272. Gaglia JL, Harisinghani M, Aganj I, Wojtkiewicz GR, Hedgire S, Benoist C, Mathis D, Weissleder R (2015), Noninvasive mapping of pancreatic inflammation in recent-onset type-1 diabetes patients. Proc Natl Acad Sci USA 112, 7, 2139–2144. https://doi.org/10.1073/pnas.1424993112. [CrossRef] [Google Scholar]
  273. Balogh LP (2015), Caging cancer. Nanomedicine 11, 4, 867–869. https://doi.org/10.1016/j.nano.2015.02.005. [CrossRef] [PubMed] [Google Scholar]
  274. Eliscovich C, Shenoy SM, Singer RH (2017), Imaging mRNA and protein interactions within neurons. Proc Natl Acad Sci USA 114, 10, E1875–E1884. https://doi.org/10.1073/pnas.1621440114. [CrossRef] [Google Scholar]
  275. Luo JL, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL, Cheresh DA, Karin M (2007), Nuclear cytokine-activated IKKα controls prostate cancer metastasis by repressing Maspin. Nature 446, 7136, 690–694. https://doi.org/10.1038/nature05656. [CrossRef] [PubMed] [Google Scholar]
  276. Affara NI, Coussens LM (2007), IKKalpha at the crossroads of inflammation and metastasis. Cell 129, 1, 25–26. https://doi.org/10.1016/j.cell.2007.03.029. [Google Scholar]
  277. Blanke ML, VanDongen AMJ (2009), Activation mechanisms of the NMDA receptor, in: AM Van Dongen (Ed.), Biology of the NMDA Receptor, CRC Press/Taylor & Francis, Boca Raton, FL, Chapter 13. Available from https://www.ncbi.nlm.nih.gov/books/NBK5274/. [Google Scholar]
  278. Marquard J, Otter S, Welters A, Stirban A, Fischer A, Eglinger J, Herebian D, Kletke O, Klemen MS, Stožer A, Wnendt S, Piemonti L, Köhler M, Ferrer J, Thorens B, Schliess F, Rupnik MS, Heise T, Berggren PO, Klöcker N, Meissner T, Mayatepek E, Eberhard D, Kragl M, Lammert E (2015), Characterization of pancreatic NMDA receptors as possible drug targets for diabetes treatment. Nat Med 21, 4, 363–372. https://doi.org/10.1038/nm.3822. [CrossRef] [PubMed] [Google Scholar]
  279. Leanza L, Managò A, Zoratti M, Gulbins E, Szabo I (2016), Pharmacological targeting of ion channels for cancer therapy: in vivo evidences. Biochim Biophys Acta 1863, 6 Pt B, 1385–1397. https://doi.org/10.1016/j.bbamcr.2015.11.032. [CrossRef] [PubMed] [Google Scholar]
  280. Aboel Dahab A, El-Hag D, Moutamed GM, Aboel Dahab S, Abuknesha R, Smith NW (2016), Pharmacokinetic variations in cancer patients with liver dysfunction: applications and challenges of pharmacometabolomics. Cancer Chemother Pharmacol 78, 3, 465–489. https://doi.org/10.1007/s00280-016-3028-4. [CrossRef] [PubMed] [Google Scholar]
  281. Burt A (2003), Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci 270, 1518, 921–928. https://doi.org/10.1098/rspb.2002.2319. [CrossRef] [PubMed] [Google Scholar]
  282. Gantz VM, Bier E (2015), Genome editing. The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations. Science 348, 6233, 442–444. https://doi.org/10.1126/science.aaa5945. [Google Scholar]
  283. Champer JR, Reeves R, Oh SY, Liu C, Liu J, Clark AG, Messer PW (2017), Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genet 13, 7, e1006796. https://doi.org/10.1371/journal.pgen.1006796. [Google Scholar]
  284. Bull JJ, Malik HS (2017), The gene drive bubble: New realities. PLoS Genet 13, 7, e1006850. https://doi.org/10.1371/journal.pgen.1006850. [Google Scholar]
  285. Smith DF, Faber LE, Toft DO (1990), Purification of unactivated progesterone receptor and identification of novel receptor-associated proteins. J Biol Chem 265, 7, 3996–4003. PMID: 2303491. [PubMed] [Google Scholar]
  286. Baughman G, Wiederrecht GJ, Campbell NF, Martin MM, Bourgeois S (1995), FKBP51, a novel T-cell-specific immunophilin capable of calcineurin inhibition. Mol Cell Biol 15, 8, 4395–4402. https://doi.org/10.1128/MCB.15.8.4395. [Google Scholar]
  287. Maki N, Sekiguchi F, Nishimaki J, Miwa K, Hayano T, Takahashi N, Suzuki M (1990), Complementary DNA encoding the human T-cell FK506-binding protein, a peptidylprolyl cis-trans isomerase distinct from cyclophilin. Proc Natl Acad Sci USA 87, 14, 5440–5443. https://doi.org/10.1073/pnas.87.14.5440. [CrossRef] [Google Scholar]
  288. Wiederrecht G, Hung S, Chan HK, Marcy A, Martin M, Calaycay J, Boulton D, Sigal N, Kincaid RL, Siekierka JJ (1992), Characterization of high molecular weight FK-506 binding activities reveals a novel FK-506-binding protein as well as a protein complex. J Biol Chem 267, 30, 21753–21760. [PubMed] [Google Scholar]
  289. Ebong IO, Beilsten-Edmands V, Patel NA, Morgner N, Robinson CV (2016), The interchange of immunophilins leads to parallel pathways and different intermediates in the assembly of Hsp90 glucocorticoid receptor complexes. Cell Discov 2, 16002. https://doi.org/10.1038/celldisc.2016.2. eCollection 2016. https://doi.org/10.1038/celldisc.2016.2. [CrossRef] [PubMed] [Google Scholar]
  290. Fries GR, Gassen NC, Rein T (2017), The FKBP51 glucocorticoid receptor co-chaperone: Regulation, function, and implications in health and disease. Int J Mol Sci 18, 12, pii: E2614. https://doi.org/10.3390/ijms18122614. [Google Scholar]
  291. Gassen NC, Hartmann J, Zschocke J, Stepan J, Hafner K, Zellner A, Kirmeier T, Kollmannsberger L, Wagner KV, Dedic N, Balsevich G, Deussing JM, Kloiber S, Lucae S, Holsboer F, Eder M, Uhr M, Ising M, Schmidt MV, Rein T (2014), Association of FKBP51 with priming of autophagy pathways and mediation of antidepressant treatment response: evidence in cells, mice, and humans. PLoS Med 11, 11, e1001755. https://doi.org/10.1371/journal.pmed.1001755. [CrossRef] [PubMed] [Google Scholar]
  292. Balsevich G, Häusl AS, Meyer CW, Karamihalev S, Feng X, Pöhlmann ML, Dournes C, Uribe-Marino A, Santarelli S, Labermaier C, Hafner K, Mao T, Breitsamer M, Theodoropoulou M, Namendorf C, Uhr M, Paez-Pereda M, Winter G, Hausch F, Chen A, Tschöp MH, Rein T, Gassen NC, Schmidt MV (2017), Stress-responsive FKBP51 regulates AKT2-AS160 signaling and metabolic function. Nat Commun 8, 1, 1725. https://doi.org/10.1038/s41467-017-01783-y. [CrossRef] [PubMed] [Google Scholar]
  293. Kotliarova S, Pastorino S, Kovell LC, Kotliarov Y, Song H, Zhang W, Bailey R, Maric D, Zenklusen JC, Lee J, Fine HA (2008), Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res 68, 16, 6643–6651. https://doi.org/10.1158/0008-5472.CAN-08-0850. [Google Scholar]
  294. Gassen NC, Hartmann J, Zannas AS, Kretzschmar A, Zschocke J, Maccarrone G, Hafner K, Zellner A, Kollmannsberger LK, Wagner KV, Mehta D, Kloiber S, Turck CW, Lucae S, Chrousos GP, Holsboer F, Binder EB, Ising M, Schmidt MV, Rein T (2016), FKBP51 inhibits GSK3β and augments the effects of distinct psychotropic medications. Mol Psychiatry 21, 2, 277–289. https://doi.org/10.1038/mp.2015.38. [CrossRef] [PubMed] [Google Scholar]
  295. Trackman PC, Bais MV (2018), Measurement of lysyl oxidase activity from small tissue samples and cell cultures. Methods Cell Biol 143, 147–156. https://doi.org/10.1016/bs.mcb.2017.08.009. [Google Scholar]
  296. Csiszar K (2001), Lysyl oxidases: a novel multifunctional amine oxidase family. Prog Nucleic Acid Res Mol Biol 70, 1–32. PMID: 11642359. [CrossRef] [PubMed] [Google Scholar]
  297. Yamauchi M, Taga Y, Hattori S, Shiiba M, Terajima M (2018), Analysis of collagen and elastin cross-links. Methods Cell Biol 143, 115–132. https://doi.org/10.1016/bs.mcb.2017.08.006. [Google Scholar]
  298. Salvador F, Martin A, López-Menéndez C, Moreno-Bueno G, Santos V, Vázquez-Naharro A, Santamaria PG, Morales S, Dubus PR, Muinelo-Romay L, López-López R, Tung JC, Weaver VM, Portillo F, Cano A (2017), Lysyl oxidase-like protein LOXL2 promotes lung metastasis of breast cancer. Cancer Res 77, 21, 5846–5859. https://doi.org/10.1158/0008-5472.CAN-16-3152. [Google Scholar]
  299. Martin A, Salvador F, Moreno-Bueno G, Floristán A, Ruiz-Herguido C, Cuevas EP, Morales S, Santos V, Csiszar K, Dubus P, Haigh JJ, Bigas A, Portillo F, Cano A (2015), Lysyl oxidase-like 2 represses Notch1 expression in the skin to promote squamous cell carcinoma progression. EMBO J 34, 8, 1090–1109. https://doi.org/10.15252/embj.201489975. [Google Scholar]
  300. Wei Y, Kim TJ, Peng DH, Duan D, Gibbons DL, Yamauchi M, Jackson JR, Le Saux CJ, Calhoun C, Peters J, Derynck R, Backes BJ, Chapman HA (2017), Fibroblast-specific inhibition of TGF-β1 signaling attenuates lung and tumor fibrosis. J Clin Invest 127, 10, 3675–3688. https://doi.org/10.1172/JCI94624. [CrossRef] [PubMed] [Google Scholar]
  301. Ikenaga N, Peng ZW, Vaid KA, Liu SB, Yoshida S, Sverdlov DY, Mikels-Vigdal A, Smith V, Schuppan D, Popov YV (2017), Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal. Gut 66, 9, 1697–1708. https://doi.org/10.1136/gutjnl-2016-312473. [CrossRef] [PubMed] [Google Scholar]
  302. De La Cruz MS, Buchanan EM (2017), Uterine fibroids: diagnosis and treatment. Am Fam Physician 95, 2, 100–107. PMID: 28084714. [PubMed] [Google Scholar]
  303. Desai VB, Wright JD, Gross CP, Lin H, Boscoe FP, Hutchison LM, Schwartz PE, Xu X (2019), Prevalence, characteristics, and risk factors of occult uterine cancer in presumed benign hysterectomy. Am J Obstet Gynecol 221, 1, 39.e1–39.e14. https://doi.org/10.1016/j.ajog.2019.02.051. [Google Scholar]
  304. Shen Z, Li S, Sheng B, Shen Q, Sun LZ, Zhu H, Zhu X (2018), The role of atorvastatin in suppressing tumor growth of uterine fibroids. J Transl Med 16, 1, 53. https://doi.org/10.1186/s12967-018-1430-x. [CrossRef] [PubMed] [Google Scholar]
  305. Murphy JE, Wo JYL, Ferrone C, Jiang W, Yeap BY, Blaszkowsky LS (2017), TGF-B1 inhibition with losartan in combination with FOLFIRINOX (F-NOX) in locally advanced pancreatic cancer (LAPC): Preliminary feasibility and R0 resection rates from a prospective phase II study. J Clin Oncol 35, 4 SUPPL, 386–386. https://ascopubs.org/doi/abs/10.1200/JCO.2017.35.4_suppl.386. [Google Scholar]
  306. Kumar V, Boucher Y, Liu H, Ferreira D, Hooker J, Catana C, Hoover AJ, Ritter T, Jain RK, Guimaraes AR (2016), Noninvasive assessment of losartan-induced increase in functional microvasculature and drug delivery in pancreatic ductal adenocarcinoma. Transl Oncol 9, 5, 431–437. https://doi.org/10.1016/j.tranon.2016.07.004. [Google Scholar]
  307. Raghu G, Brown KK, Collard HR, Cottin V, Gibson KF, Kaner RJ, Lederer DJ, Martinez FJ, Noble PW, Song JW, Wells AU, Whelan TP, Wuyts W, Moreau E, Patterson SD, Smith V, Bayly S, Chien JW, Gong Q, Zhang JJ, O’Riordan TG (2017), Efficacy of simtuzumab versus placebo in patients with idiopathic pulmonary fibrosis: a randomised, double-blind, controlled, phase 2 trial. Lancet Respir Med 5, 1, 22–32. https://doi.org/10.1016/S2213-2600(16)30421-0. [Google Scholar]
  308. Lv GQ, Zou HY, Liao LD, Cao HH, Zeng FM, Wu BL, Xie JJ, Fang WK, Xu LY, Li EM (2014), Identification of a novel lysyl oxidase-like 2 alternative splicing isoform, LOXL2 Δe13, in esophageal squamous cell carcinoma. Biochem Cell Biol 92, 5, 379–389. https://doi.org/10.1139/bcb-2014-0046. [CrossRef] [PubMed] [Google Scholar]
  309. Drews HJ, Yenkoyan K, Lourhmati A, Buadze M, Kabisch D, Verleysdonk S, Petschak S, Beer-Hammer S, Davtyan T, Frey WH 2nd, Gleiter CH, Schwab M, Danielyan L (2019), Intranasal losartan decreases perivascular beta amyloid, inflammation, and the decline of neurogenesis in hypertensive rats. Neurotherapeutics 16, 3, 725–740. https://doi.org/10.1007/s13311-019-00723-6. [Google Scholar]
  310. Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, Tiriac H, Collisson EA, Connor F, Van Dyke T, Kozlov S, Martin P, Tseng TW, Dawson DW, Donahue TR, Masamune A, Shimosegawa T, Apte MV, Wilson JS, Ng B, Lau SL, Gunton JE, Wahl GM, Hunter T, Drebin JA, O’Dwyer PJ, Liddle C, Tuveson DA, Downes M, Evans RM (2014), Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159, 1, 80–93. https://doi.org/10.1016/j.cell.2014.08.007. [Google Scholar]
  311. Uzawa K, Marshall MK, Katz EP, Tanzawa H, Yeowell HN, Yamauchi M (1998), Altered posttranslational modifications of collagen in keloid. Biochem Biophys Res Commun 249, 3, 652–655. https://doi.org/10.1006/bbrc.1998.8955. [Google Scholar]
  312. Minabe M, Kodama T, Kogou T, Tamura T, Hori T, Watanabe Y, Miyata T (1989), Different cross-linked types of collagen implanted in rat palatal gingiva. J Periodontol 60, 1, 35–43. https://doi.org/10.1902/jop.1989.60.1.35. [CrossRef] [PubMed] [Google Scholar]
  313. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, Rasmussen KE, Jones LP, Assefnia S, Chandrasekharan S, Backlund MG, Yin Y, Khramtsov AI, Bastein R, Quackenbush J, Glazer RI, Brown PH, Green JE, Kopelovich L, Furth PA, Palazzo JP, Olopade OI, Bernard PS, Churchill GA, Van Dyke T, Perou CM (2007), Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8, 5, R76. https://doi.org/10.1186/gb-2007-8-5-r76. [Google Scholar]
  314. Janssens J (2016), The paradigms in breast cancer prevention, in: J Russo (Ed.), Trends in Breast Cancer Prevention, Springer, Cham. Online ISBN 978-3-319-27135-4. [Google Scholar]
  315. Huang C, Liu H, Gong X, Wen B, Chen D, Liu J, Hu F (2016), Analysis of different components in the peritumoral tissue microenvironment of colorectal cancer: A potential prospect in tumorigenesis. Mol Med Rep 14, 2555–2565. https://doi.org/10.3892/mmr.2016.5584; Corrigendum: https://doi.org/10.3892/mmr.2016.5882. [CrossRef] [PubMed] [Google Scholar]
  316. Li L, Zhang W, Shi WY, Ma KT, Zhao L, Wang Y, Zhang L, Li XZ, Zhu H, Zhang ZS, Liu WD, Si JQ (2015), The enhancement of Cx45 expression and function in renal interlobar artery of spontaneously hypertensive rats at different age. Kidney Blood Press Res 40, 52–65. https://doi.org/10.1159/000368482. [CrossRef] [PubMed] [Google Scholar]
  317. Frigge T, Hafke B, Witte T, Krenzer B, Streubühr C, Samad Syed A, Mikšić Trontl V, Avigo I, Zhou P, Ligges M, von der Linde D, Bovensiepen U, Horn-von Hoegen M, Wippermann S, Lücke A, Sanna S, Gerstmann U, Schmidt WG (2017), Optically excited structural transition in atomic wires on surfaces at the quantum limit. Nature 544, 7649, 207–211. https://doi.org/10.1038/nature21432. [CrossRef] [PubMed] [Google Scholar]
  318. Chiavazzo E, Covino R, Coifman RR, Gear CW, Georgiou AS, Hummer G, Kevrekidis IG (2017), Intrinsic map dynamics exploration for uncharted effective free-energy landscapes. Proc Natl Acad Sci USA 114, 28, E5494–E5503. https://doi.org/10.1073/pnas.1621481114. [CrossRef] [Google Scholar]
  319. Baudrimont A, Voegeli S, Viloria EC, Stritt F, Lenon M, Wada T, Jaquet V, Becskei A (2017), Multiplexed gene control reveals rapid mRNA turnover. Sci Adv 3, 7, e1700006. https://doi.org/10.1126/sciadv.1700006. [CrossRef] [PubMed] [Google Scholar]
  320. Jaffe AE, Tao R, Norris AL, Kealhofer M, Nellore A, Shin JH, Kim D, Jia Y, Hyde TM, Kleinman JE, Straub RE, Leek JT, Weinberger DR (2017), qSVA framework for RNA quality correction in differential expression analysis. Proc Natl Acad Sci USA 114, 27, 7130–7135. https://doi.org/10.1073/pnas.1617384114. [CrossRef] [Google Scholar]
  321. Buehring GC, Shen HM, Jensen HM, Jin DL, Hudes M, Block G (2015), Exposure to bovine leukemia virus is associated with breast cancer: a case-control study. PLoS One 10, 9, e0134304. https://doi.org/10.1371/journal.pone.0134304. [CrossRef] [PubMed] [Google Scholar]
  322. Sattler C, Moritz F, Chen S, Steer B, Kutschke D, Irmler M, Beckers J, Eickelberg O, Schmitt-Kopplin P, Adler H, Stoeger T (2017), Nanoparticle exposure reactivates latent herpesvirus and restores a signature of acute infection. Part Fibre Toxicol 141, 2. https://doi.org/10.1186/s12989-016-0181-1. [CrossRef] [PubMed] [Google Scholar]
  323. Farkašová H, Hron T, Pačes J, Hulva P, Benda P, Gifford RJ, Elleder D (2017), Discovery of an endogenous Deltaretrovirus in the genome of long-fingered bats (Chiroptera: Miniopteridae). Proc Natl Acad Sci USA 114, 12, 3145–3150. https://doi.org/10.1073/pnas.1621224114. [CrossRef] [Google Scholar]
  324. Jiang JX, Liu Q, Zhao B, Zhang HH, Sang HM, Djaleel SM, Zhang GX, Xu SF (2017), Risk factors for intestinal metaplasia in a southeastern Chinese population: an analysis of 28,745 cases. J Cancer Res Clin Oncol 143, 3, 409–418. https://doi.org/10.1007/s00432-016-2299-9. [CrossRef] [PubMed] [Google Scholar]
  325. Hwang YJ, Kim N, Lee HS, Lee JB, Choi YJ, Yoon H, Shin CM, Park YS, Lee DH (2018), Reversibility of atrophic gastritis and intestinal metaplasia after Helicobacter pylori eradication – a prospective study for up to 10 years. Aliment Pharmacol Ther 47, 3, 380–390. https://doi.org/10.1111/apt.14424. [Google Scholar]
  326. Carrel A, du Noüy PL (1921), Cicatrization of wounds: XI. Latent period. J Exp Med 34, 4, 339–348. https://doi.org/10.1084/jem.34.4.339. [CrossRef] [PubMed] [Google Scholar]
  327. Carrel A (1921), Cicatrization of wounds: XII. Factors initiating regeneration. J Exp Med 34, 5, 425–434. https://doi.org/10.1084/jem.34.5.425. [CrossRef] [PubMed] [Google Scholar]
  328. Carrel A, Ebeling AH (1921), Age and multiplication of fibroblasts. J Exp Med 34, 6, 599–623. https://doi.org/10.1084/jem.34.6.599. [CrossRef] [PubMed] [Google Scholar]
  329. Fiolet T, Srour B, Sellem L, Kesse-Guyot E, Allès B, Méjean C, Deschasaux M, Fassier P, Latino-Martel P, Beslay M, Hercberg S, Lavalette C, Monteiro CA, Julia C, Touvier M (2018), Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort. BMJ 360, k322. https://doi.org/10.1136/bmj.k322. [Google Scholar]
  330. Chien CC, Chen HH, Lai SF, Hwu Y, Petibois C, Yang CS, Chu Y, Margaritondo G (2012), X-ray imaging of tumor growth in live mice by detecting gold-nanoparticle-loaded cells. Sci Rep 2, 610. https://doi.org/10.1038/srep00610. [CrossRef] [PubMed] [Google Scholar]
  331. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002), Molecular biology of the cell, 1st edn., Garland Science, New York. ISBN 10: 0-8153-3218-1. [Google Scholar]
  332. Barakat RR, Markam M, Randall ME (2009), Principles and practice of gynecologic oncology, 5th edn., Lippincott Williams & Wilkins. ISBN 9780781778459. [Google Scholar]
  333. Hoffmann JG, Goltz HL, Reinhard MA, Warner SG (1943), Quantitative determination of the growth of a transplantable mouse adenocarcinoma. Cancer Res 3, 4, 237–242. [Google Scholar]
  334. Brücher BLDM (2018), Science belongs to no one – and to everyone. 4open 1, E1, 1–11. https://doi.org/10.1051/fopen/2017501. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.