Key summaries
Open Access
Issue
4open
Volume 2, 2019
Article Number 29
Number of page(s) 13
Section Life Sciences - Medicine
DOI https://doi.org/10.1051/fopen/2019024
Published online 28 October 2019
  1. De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, Askham H, Glorot X, O’Donoghue B, Visentin D, van den Driessche G, Lakshminarayanan B, Meyer C, Mackinder F, Bouton S, Ayoub K, Chopra R, King D, Karthikesalingam A, Hughes CO, Raine R, Hughes J, Sim DA, Egan C, Tufail A, Montgomery H, Hassabis D, Rees G, Back T, Khaw PT, Suleyman M, Cornebise J, Keane PA, Ronneberger O (2018), Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 24, 9, 1342–1350. https://doi.org/10.1038/s41591-018-0107-6. [CrossRef] [PubMed] [Google Scholar]
  2. Lee KJ (2018), AI device for detecting diabetic retinopathy earns swift FDA approval, American Academy of Ophthalmology, CA, USA. Available from https://www.aao.org/headline/first-ai-screen-diabetic-retinopathy-approved-by-f. Accessed January 7, 2019. [Google Scholar]
  3. Lin H, Long E, Ding X, Diao H, Chen Z, Liu R, Huang J, Cai J, Xu S, Zhang X, Wang D, Chen K, Yu T, Wu D, Zhao X, Liu Z, Wu X, Jiang Y, Yang X, Cui D, Liu W, Zheng Y, Luo L, Wang H, Chan CC (2018), Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study. PLoS Med 15, 11, 1–17. https://doi.org/10.1371/journal.pmed.1002674. [Google Scholar]
  4. Achiron A, Gur Z, Aviv U, Hilely A, Mimouni M, Karmona L, Rokach L, Kaiserman I (2017), Predicting refractive surgery outcome: Machine learning approach with big data. J Refract Surg 33, 9, 592–597. https://doi.org/10.3928/1081597X-20170616-03. [CrossRef] [PubMed] [Google Scholar]
  5. Kohnen T (1999), Kriterien zur Evaluierung und Publikation von refraktiv-chirurgischen Eingriffen (Editorial). Klin Monatsbl Augenheilkd 215, 6, 326–328. PMID: 10637793. [CrossRef] [Google Scholar]
  6. Koch DD, Kohnen T, Obstbaum SA, Rosen ES (1998), Format for reporting refractive surgical data. J Cataract Refract Surg 24, 3, 285–287. PMID: 9559453. [Google Scholar]
  7. Pokroy R, Mimouni M, Sela T, Munzer G, Kaiserman I (2016), Myopic laser in situ keratomileusis retreatment: Incidence and associations. J Cataract Refract Surg 42, 10, 1408–1414. https://doi.org/10.1016/j.jcrs.2016.07.032. [Google Scholar]
  8. Yuen LH, Chan WK, Koh J, Mehta JS, Tan DT, SingLasik Research Group (2010), A 10-year prospective audit of LASIK outcomes for myopia in 37,932 eyes at a single institution in Asia. Ophthalmology 117, 6, 1236–1244. https://doi.org/10.1016/j.ophtha.2009.10.042. [Google Scholar]
  9. Randleman JB, White AJ Jr, Lynn MJ, Hu MH, Stulting RD (2009), Incidence, outcomes, and risk factors for retreatment after wavefront-optimized ablations with PRK and LASIK. J Refract Surg 25, 3, 273–276. PMID: 19370822. [CrossRef] [PubMed] [Google Scholar]
  10. Kohnen T, Neuhann T, Knorz MC (2011), Bewertung und Qualitätssicherung refraktiv-chirurgischer Eingriffe durch die DOG und den BVA, Stand Mai 2011. Ophthalmologe 108, 869–882. https://doi.org/10.1007/s00347-011-2415-9. [CrossRef] [PubMed] [Google Scholar]
  11. Kohnen T (2000), Retreating residual refractive errors after excimer surgery of the cornea: PRK versus LASIK. J Cataract Refract Surg 26, 5, 625–626. PMID: 10831879. [Google Scholar]
  12. Kohnen T, Strenger A, Klaproth OK (2008), Basic knowledge of refractive surgery: Correction of refractive errors using modern surgical procedures. Dtsch Arztebl Int 105, 9, 163–172. https://doi.org/10.3238/arztebl.2008.0163. [PubMed] [Google Scholar]
  13. Pallikaris IG, Kymionis GD, Astyrakakis NI (2001), Corneal ectasia induced by laser in situ keratomileusis. J Cataract Refract Surg 27, 11, 1796–1802. PMID: 11709254. [Google Scholar]
  14. Moshirfar M, Welling JD, Feiz V, Holz H, Clinch TE (2007), Infectious and noninfectious keratitis after laser in situ keratomileusis Occurrence, management, and visual outcomes. J Cataract Refract Surg 33, 3, 474–483. https://doi.org/10.1016/j.jcrs.2006.11.005. [Google Scholar]
  15. Hersh PS, Fry KL, Bishop DS (2003), Incidence and associations of retreatment after LASIK. Ophthalmology 110, 4, 748–754. https://doi.org/10.1016/S0161-6420(02)01981-4. [Google Scholar]
  16. Siedlecki J, Luft N, Kook D, Wertheimer C, Mayer WJ, Bechmann M, Wiltfang R, Priglinger SG, Sekundo W, Dirisamer M (2017), Enhancement after myopic small incision lenticule extraction (SMILE) using surface ablation. J Refract Surg 33, 8, 513–518. https://doi.org/10.3928/1081597X-20170602-01. [CrossRef] [PubMed] [Google Scholar]
  17. Kruh JN, Garrett KA, Huntington B, Robinson S, Melki SA (2017), Risk factors for retreatment following myopic LASIK with femtosecond laser and custom ablation for the treatment of myopia. Semin Ophthalmol 32, 3, 316–320. https://doi.org/10.3109/08820538.2015.1088552. [Google Scholar]
  18. Mimouni M, Vainer I, Shapira Y, Levartovsky S, Sela T, Munzer G, Kaiserman I (2016), Factors predicting the need for retreatment after laser refractive surgery. Cornea 35, 5, 607–612. https://doi.org/10.1097/ICO.0000000000000795. [CrossRef] [PubMed] [Google Scholar]
  19. Valdez-García JE, Hernandez-Camarena JC, Martínez-Muñoz R (2016), 3-year follow-up after Lasik: Assessing the risk factors for retreatment. Int Ophthalmol 36, 1, 91–96. https://doi.org/10.1007/s10792-015-0084-4. [CrossRef] [PubMed] [Google Scholar]
  20. See B, Tan M, Chia SE, Gan WH, Low R, Nah G (2014), Photorefractive keratectomy in young Asian aviators with low-moderate myopia. Aviat Space Environ Med 85, 1, 25–29. PMID: 24479255. [CrossRef] [PubMed] [Google Scholar]
  21. Gazieva L, Beer MH, Nielsen K, Hjortdal J (2011), A retrospective comparison of efficacy and safety of 680 consecutive lasik treatments for high myopia performed with two generations of flying-spot excimer lasers. Acta Ophthalmol 89, 8, 729–733. https://doi.org/10.1111/j.1755-3768.2009.01830.x. [CrossRef] [PubMed] [Google Scholar]
  22. Yuen LH, Chan WK, Koh J, Mehta JS, Tan DT (2010), A 10-year prospective audit of LASIK outcomes for myopia in 37,932 eyes at a single institution in Asia. Ophthalmology 117, 6, 1236–1244.e1. https://doi.org/10.1016/j.ophtha.2009.10.042. [Google Scholar]
  23. Shojaei A, Mohammad-Rabei H, Eslani M, Elahi B, Noorizadeh F (2009), Long-term evaluation of complications and results of photorefractive keratectomy in myopia: An 8-year follow-up. Cornea 28, 3, 304–310. https://doi.org/10.1097/ICO.0b013e3181896767. [CrossRef] [PubMed] [Google Scholar]
  24. Bragheeth MA, Fares U, Dua HS (2008), Re-treatment after laser in situ keratomileusis for correction of myopia and myopic astigmatism. Br J Ophthalmol 92, 11, 1506–1510. https://doi.org/10.1136/bjo.2008.143636. [CrossRef] [PubMed] [Google Scholar]
  25. Alió JL, Muftuoglu O, Ortiz D, Pérez-Santonja JJ, Artola A, Ayala MJ, Garcia MJ, de Luna GC (2008), Ten-year follow-up of laser in situ keratomileusis for high myopia. Am J Ophthalmol 145, 1, 55–64. https://doi.org/10.1016/j.ajo.2007.08.035. [CrossRef] [PubMed] [Google Scholar]
  26. Alio JL, Galal A, Artola A, Ayala MJ, Merayo J (2006), Hyperopic LASIK retreatments with the Technolas laser. J Refract Surg 22, 6, 596–603. PMID: 16805124. [CrossRef] [PubMed] [Google Scholar]
  27. McCaffrey JD (2013), Neural network training using particle swarm optimization, Dec 18, 2013, Visual Studio Magazine. https://visualstudiomagazine.com/Articles/2013/12/01/Neural-Network-Training-Using-Particle-Swarm-Optimization.aspx?Page=1&p=1. Accessed January 7, 2019. [Google Scholar]
  28. Courbariaux M, Bengio Y, David JP (2015), Binaryconnect: Training deep neural networks with binary weights during propagations, Advances in Neural Information Processing Systems, 28, 3124–3131. https://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations.pdf. [Google Scholar]
  29. Langari R, Won JS (2005), Intelligent energy management agent for a parallel hybrid vehicle-part I: System architecture and design of the driving situation identification process. IEEE Trans Veh Technol 54, 3, 925–934. https://trid.trb.org/view/762206. [Google Scholar]
  30. Poulos M, Rangoussi M, Alexandris N, Evangelou A (2002), Person identification from the EEG using nonlinear signal classification. Methods Inf Med 41, 1, 64–75. PMID: 11933767. [CrossRef] [PubMed] [Google Scholar]
  31. Papavlasopoulos S, Poulos M, Evangelou A (2006), Feature extraction from interictal epileptic and non-epileptic pathological EEG events for diagnostic purposes using LVQ1 neural network, in: Mathematical Methods in Scattering Theory and Biomedical Engineering, World Scientific, pp. 390–398. https://doi.org/10.1142/9789812773197_0038. [CrossRef] [Google Scholar]
  32. Ding CH, Dubchak I (2001), Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17, 4, 349–358. PMID: 11301304. [CrossRef] [PubMed] [Google Scholar]
  33. Kim BK, Roh J, Dong SY, Lee SY (2016), Hierarchical committee of deep convolutional neural networks for robust facial expression recognition. J Multimodal User Interfaces 10, 2, 173–189. https://doi.org/10.1007/s12193-015-0209-0. [CrossRef] [Google Scholar]
  34. Viera AJ, Garrett JM (2005), Understanding interobserver agreement: The kappa statistic. Fam Med 37, 5, 360–363. PMID: 15883903. [PubMed] [Google Scholar]
  35. Sim J, Wright CC (2005), The kappa statistic in reliability studies: Use, interpretation, and sample size requirements. Phys Ther 85, 3, 257–268. PMID: 15733050. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.