Volume 2, 2019
Advances in Researches of Quaternion Algebras
Article Number 22
Number of page(s) 9
Section Mathematics - Applied Mathematics
Published online 05 July 2019
  1. Baker Lawrence W (2002), Math and mathematicians series math and mathematicians: the history of math discoveries around the world, UXL, Detroit, MI, p. 207, ISBN 0787638137. [Google Scholar]
  2. Do Carmo MP (1976), Differential geometry of curves and surfaces, Prentice Hall, Englewood Cliffs, NJ. [Google Scholar]
  3. Lewis Albert (2004), “Hamilton, William Rowan (1805–1865)”. Oxford Dictionary of National Biography (online ed.). Oxford University Press. doi: 10.1093/ref:odnb/12148, [Google Scholar]
  4. Bekar M, Yaylı Y (2013), Involutions of complexified quaternions and split quaternions. Adv Appl Clifford Alg 23, 2, 283–299. [CrossRef] [Google Scholar]
  5. Bekar M, Yaylı Y (2016), Involution matrices of real quaternions. Caspian J Math Sci 5, 1, 7–16. [Google Scholar]
  6. Kyrchei II (2012), The theory of the column and row determinants in a quaternion linear algebra, in: AR Baswell (Eds.), Advances in Mathematics Research 15, Nova Sci. Publ, New York, pp. 301–359. [Google Scholar]
  7. Griffin S (Ed.) (2017), Quaternions: theory and applications, Nova Sci. Publ., New York. ISBN 978-1-53610-768-5. [Google Scholar]
  8. Zhang F (1997), Quaternions and matrices of quaternions. Linear Alg Appl 251, 21–57. [CrossRef] [Google Scholar]
  9. Bekar M, Yaylı Y (2013), Dual quaternion involutions and anti-involutions. Adv Appl Clifford Alg 23, 3, 577–592. [CrossRef] [Google Scholar]
  10. Shoemake K (1985), Animating rotation with quaternion curves. ACM Siggraph 19, 3, 245–254. [Google Scholar]
  11. Inoguchi J (1998), Timelike surfaces of constant mean curvature in Minkowski 3-space. Tokyo J Math 21, 1, 140–152. [CrossRef] [Google Scholar]
  12. Ghadami R, Rahebi J, Yaylı Y (2012), Linear interpolation in Minkowski space. Int J Pure Appl Math 77, 4, 469–484. [Google Scholar]
  13. Ghadami R, Rahebi J, Yaylı Y (2013), Spline split quaternion interpolation in Minkowski space. Adv Appl Clifford Alg 23, 4, 849–862. [CrossRef] [Google Scholar]
  14. Aslan S, Yaylı Y (2016), Canal surfaces with quaternions. Adv Appl Clifford Alg 26, 31–38. [CrossRef] [Google Scholar]
  15. Munteanu MI (2010), From golden spirals to constant slope surfaces. AIP J Math Phys 51, 7, 9. [Google Scholar]
  16. Tuncer OO, Çanakc Z, Gök I, Yaylı Y (2018), Circular surfaces with split quaternionic representations in Minkowski 3-space. Adv Appl Clifford Alg, 28–63, published online June 20, 2018, [Google Scholar]
  17. Kocakusakl E, Tuncer OO, Gök I, Yaylı Y (2017), A new representation of canal surfaces with split quaternions in Minkowski 3-space. Adv Appl Clifford Alg 27, 1387–1409. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.