Issue
4open
Volume 2, 2019
Advances in Researches of Quaternion Algebras
Article Number 22
Number of page(s) 9
Section Mathematics - Applied Mathematics
DOI https://doi.org/10.1051/fopen/2019019
Published online 05 July 2019
  1. Baker Lawrence W (2002), Math and mathematicians series math and mathematicians: the history of math discoveries around the world, UXL, Detroit, MI, p. 207, ISBN 0787638137. [Google Scholar]
  2. Do Carmo MP (1976), Differential geometry of curves and surfaces, Prentice Hall, Englewood Cliffs, NJ. [Google Scholar]
  3. Lewis Albert (2004), “Hamilton, William Rowan (1805–1865)”. Oxford Dictionary of National Biography (online ed.). Oxford University Press. doi: 10.1093/ref:odnb/12148, https://en.wikipedia.org/wiki/WilliamRowanHamilton. [Google Scholar]
  4. Bekar M, Yaylı Y (2013), Involutions of complexified quaternions and split quaternions. Adv Appl Clifford Alg 23, 2, 283–299. [CrossRef] [Google Scholar]
  5. Bekar M, Yaylı Y (2016), Involution matrices of real quaternions. Caspian J Math Sci 5, 1, 7–16. [Google Scholar]
  6. Kyrchei II (2012), The theory of the column and row determinants in a quaternion linear algebra, in: AR Baswell (Eds.), Advances in Mathematics Research 15, Nova Sci. Publ, New York, pp. 301–359. [Google Scholar]
  7. Griffin S (Ed.) (2017), Quaternions: theory and applications, Nova Sci. Publ., New York. ISBN 978-1-53610-768-5. [Google Scholar]
  8. Zhang F (1997), Quaternions and matrices of quaternions. Linear Alg Appl 251, 21–57. [CrossRef] [Google Scholar]
  9. Bekar M, Yaylı Y (2013), Dual quaternion involutions and anti-involutions. Adv Appl Clifford Alg 23, 3, 577–592. [CrossRef] [Google Scholar]
  10. Shoemake K (1985), Animating rotation with quaternion curves. ACM Siggraph 19, 3, 245–254. [Google Scholar]
  11. Inoguchi J (1998), Timelike surfaces of constant mean curvature in Minkowski 3-space. Tokyo J Math 21, 1, 140–152. [CrossRef] [Google Scholar]
  12. Ghadami R, Rahebi J, Yaylı Y (2012), Linear interpolation in Minkowski space. Int J Pure Appl Math 77, 4, 469–484. [Google Scholar]
  13. Ghadami R, Rahebi J, Yaylı Y (2013), Spline split quaternion interpolation in Minkowski space. Adv Appl Clifford Alg 23, 4, 849–862. [CrossRef] [Google Scholar]
  14. Aslan S, Yaylı Y (2016), Canal surfaces with quaternions. Adv Appl Clifford Alg 26, 31–38. [CrossRef] [Google Scholar]
  15. Munteanu MI (2010), From golden spirals to constant slope surfaces. AIP J Math Phys 51, 7, 9. [Google Scholar]
  16. Tuncer OO, Çanakc Z, Gök I, Yaylı Y (2018), Circular surfaces with split quaternionic representations in Minkowski 3-space. Adv Appl Clifford Alg, 28–63, published online June 20, 2018, https://doi.org/10.1007/s00006-018-0883-6. [Google Scholar]
  17. Kocakusakl E, Tuncer OO, Gök I, Yaylı Y (2017), A new representation of canal surfaces with split quaternions in Minkowski 3-space. Adv Appl Clifford Alg 27, 1387–1409. [CrossRef] [Google Scholar]