Mathematical Models
Open Access
Review
Issue
4open
Volume 2, 2019
Mathematical Models
Article Number 21
Number of page(s) 19
Section Mathematics - Applied Mathematics
DOI https://doi.org/10.1051/fopen/2019017
Published online 02 July 2019
  1. Faybusovich L (1997), Linear systems in Jordan algebras and primal-dual interior-point algorithms. J Comput Appl Math 86, 149–175. [Google Scholar]
  2. Faybusovich L (1997), Euclidean Jordan algebras and Interior-point Algorithms. Positivity 1, 331–357. [Google Scholar]
  3. Faybusovich L (2002), A jordan algebraic approach to potential reduction algorithms. Math Zeitschr 239, 117–129. [CrossRef] [Google Scholar]
  4. Faybusovich L, Tsuchiya T (2003), Primal-dual algorithms and infinite-dimensional Jordan algebras of finite rank. Math Program 97, 3, 471–493. [Google Scholar]
  5. Schmieta SH, Alizadeh F (2001), Associative and Jordan algebras and polynomial time Interior point alghoritms for symmetric cones. Math Oper Res 26, 3, 543–564. [CrossRef] [Google Scholar]
  6. Schmieta SH, Alizadeh F (2003), Extension of commutative class of primal dual interior point algorithms to symmetric cones. Math Program 96, 409–438. [Google Scholar]
  7. Alizadeh F, Goldfarb D (2003), Second order cone programming. Math Program 95, 1, 3–51. [Google Scholar]
  8. Cardoso DM, Vieira LA (2006), On the optimal parameter of a self-concordant barrier over a symmetric cone. Eur J Oper Res 169, 1148–11157. [Google Scholar]
  9. Chang YL, Yang CY (2014), Some useful inequalities via trace function method in Euclidean Jordan algebras. Numer Algebra Control Optim 4, 1, 39–48. [Google Scholar]
  10. Monteiro RDC, Tsuchiya T (2000), Polynomial convergence of primal-dual algorithms for the second-order cone programs based on the MZ-family of directions. Math Program Ser A 88, 61–83. [CrossRef] [Google Scholar]
  11. Vieira LA, Mano VM (2015), Generalized Krein parameters of a strongly regular graph. Appl Math 6, 37–45. [Google Scholar]
  12. Mano VM, Martins EA, Vieira LA (2013), On generalized binomial series and strongly regular graphs. Proyecciones J Math 4, 393–408. [CrossRef] [Google Scholar]
  13. Mano VM, Vieira LA (2011), Admissibility conditions and asymptotic behavior of strongly regular graphs. Int J Math Models Methods Appl Sci Methods 6, 1027–1033. [Google Scholar]
  14. Mano VM, Vieira LA (2014), Alternating Schur series and necessary conditions for the existence of strongly regular graphs. Int J Math Models Methods Appl Sci Methods 8, 256–261. [Google Scholar]
  15. Letac G, Wesolowski J (2011), Why Jordan algebras are natural in statistics:quadratic regression implies whishart distribuitions. Bull Soc Math France 139, 129–144. [CrossRef] [Google Scholar]
  16. Massan H, Neher E (1998), Estimation and testing for lattice condicional independence models on Euclidean Jordan algebras. Ann Stat 1, 1051–1081. [Google Scholar]
  17. Malley JD (1994), Statistical applications of Jordan algebras, Springer-Verlag, Berlin. [CrossRef] [Google Scholar]
  18. Gowda MS, Tao J (2011), Some inequalities involving determinants, eigenvalues, and Schur complements in Euclidean Jordan algebras. Positivity 15, 381–399. [Google Scholar]
  19. Gowda MS, Tao J (2011), The Cauchy interlacing theorem in simple Euclidean Jordan algebras and some consequences. Linear Multilinear Algebra 59, 1563–5139. [CrossRef] [Google Scholar]
  20. Sznadjer R, Gowda MS, Moldovan MM (2012), More results on Schur complements in Euclidean Jordan algebras. J Global Optim 53, 121–134. [CrossRef] [Google Scholar]
  21. Moldovan MM, Gowda MS (2009), Strict diagonal dominance and a Gersgorin type theorem in Euclidean Jordan algebras. Linear Algebra Appl 431, 148–161. [Google Scholar]
  22. Gowda MS, Tao J (2011), Some inequalities involving determinants, eigenvalues, and Schur complements in Euclidean Jordan algebras. Positivity 15, 381–399. [Google Scholar]
  23. Lim Y, Kim J, Faybusovich L (2003), Simultaneous diagobalization on simple Euclidean Jordan algebras and its applications. Forum Math 15, 4, 639. [Google Scholar]
  24. Tao J, Kong L, Luo Z, Xiu N (2014), Some majorization inequalities in Euclidean jordan algebras. Linear Algebra Appl 461, 92–122. [Google Scholar]
  25. McCrimmon K (2003), A taste of Jordan algebras, Springer-Verlag, Berlin. [Google Scholar]
  26. Jacobson N (2008), Structure and representations of Jordan algebras, American Mathematical Society, Providence. [Google Scholar]
  27. Baes M (2006), Spectral functions and smoothing techniques on Jordan Algebras, PhD thesis, Universitaté Catholic de Louvain. [Google Scholar]
  28. Faraut J, Korányi A (1994), Analysis on symmetric cones, Oxford Science Publications, Oxford. [Google Scholar]
  29. Vieira MVC (2007), Jordan algebraic approach to symmetric optimization, PhD thesis, University Nova de Lisboa. [Google Scholar]
  30. Moldovan MM (2009), A Gershgorin type theorem, special inequalities and simultaneous stability in Euclidean jordan algebras, PhD thesis, University of Maryland, Baltimore County. [Google Scholar]
  31. Alizadeh F, Schmieta SH (2000), Symmetric cones, potential reduction methods and word-by-word extensions, in: R Saigal, L Vandenberghe, H Wolkowicz (Eds.), Handbook of semidefinite programming, Theory, Algorithms and Applications, Kluwer Academic Publishers, Massachusetts, pp. 195–259. [CrossRef] [Google Scholar]
  32. Alizadeh F (2012), An introduction to formally real Jordan algebras and their applications in optimization, in: MF Anjos, JB Lasserre (Eds.), The handbook on semidefinite, conic and polynomial optimization, Springer, Boston, pp. 229–337. [Google Scholar]
  33. Bose RC (1963), Strongly regular graphs, partial geometries and partially balanced designs. Pacific J Math 13, 384–419. [Google Scholar]
  34. Brouwer AE, Haemers WH (2010), Spectra of graphs, Springer, Amsterdam. [Google Scholar]
  35. Lint JHV, Wilson RM (1992), A course in combinatorics, University Press, Cambridge. [Google Scholar]
  36. Scott LL (1973), A condition on Higman’s parameters. Notices Am Math Soc 20, A-7. [Google Scholar]
  37. Ghatei D (2003), The octonions, PhD thesis, School of Mathematics of The University of Birmingham, Birmingham. [Google Scholar]
  38. Conway JH, Smith DA (2003), On quaternions and octonions, Their geometry, arithmetic and symmetry, CRC Press, New York. [CrossRef] [Google Scholar]