Issue
4open
Volume 2, 2019
Advances in Researches of Quaternion Algebras
Article Number 24
Number of page(s) 15
Section Mathematics - Applied Mathematics
DOI https://doi.org/10.1051/fopen/2019021
Published online 09 July 2019
  1. Handson A, Hui H (1995), Quaternion frame approach to streamline visualization. IEEE Trans Vis Computer Graph 1, 2, 164–172. [CrossRef] [Google Scholar]
  2. Sangwine SJ (1996), Fourier transforms of colour images using quaternion or hypercomplex number. Electr Lett 32, 21, 1979–1980. [CrossRef] [Google Scholar]
  3. Ell TA, Sangwine SJ (2007), Hypercomplex Fourier transforms of color images. IEEE Trans Image Process 16, 1, 22–35. [CrossRef] [PubMed] [Google Scholar]
  4. Wang J, Li T, Shi YQ, Lian S, Ye J (2016), Forensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphics. Multimedia Tools Appl 76, 22, 23712–23737. [Google Scholar]
  5. Chen B, Shu H, Coatrieux G, Chen G, Sun X, Coatrieux JL (2015), Color image analysis by quaternion-type moments. J Math Imaging Vision 51, 1, 124–144. [CrossRef] [Google Scholar]
  6. Gibbon JD, Holm DD, Kerr RM, Roulstone I (2006), Quaternions and particle dynamics in the Euler fluid equations. Nonlinearity 19, 1969–1983. [Google Scholar]
  7. Roubtsov VN, Roulstone I (2001), Holomorphic structures in hydrodynamical models of nearly geostrophic flow. Proc R Society London Ser A 457, 1519–1531. [CrossRef] [Google Scholar]
  8. Adler SL (1995), Quaternionic quantum mechanics and quantum fields, Oxford University Press, New York. [Google Scholar]
  9. Leo S, Ducati G (2012), Delay time in quaternionic quantum mechanics. J Math Phys 53, 2, Article ID 022102, 8 p. [PubMed] [Google Scholar]
  10. Gupta S (1998), Linear quaternion equations with application to spacecraft attitude propagation. IEEE Aerospace Conf Proc 1, 69–76. [Google Scholar]
  11. Song C, Sang J, Seung H, Nam HS (2006), Robust control of the missile attitude based on quaternion feedback. Control Eng Pract 14, 7, 811–818. [Google Scholar]
  12. Wie B, Weiss H, Arapostathis A (1989), Quaternion feedback regulator for spacecraft eigenaxis rotations. J Guidance Control Dyn 12, 375–380. [CrossRef] [Google Scholar]
  13. Took CC, Mandic DP (2009), The quaternion LMS algorithm for adaptive filtering of hypercomplex real world processes. IEEE Trans Signal Process 57, 4, 1316–1327. [Google Scholar]
  14. Took CC, Mandic DP (2010), A quaternion widely linear adaptive filter. IEEE Trans Signal Process 58, 8, 4427–4431. [Google Scholar]
  15. Took CC, Mandic DP (2011), Augmented second-order statistics of quaternion random signals. Signal Process 91, 214–224. [CrossRef] [Google Scholar]
  16. Mitra SK (1973), A pair of simultaneous linear matrix A1XB1 = C1 and A2XB2 = C2. Proc Camb Philos Soc 74, 213–216. [Google Scholar]
  17. Mitra SK (1990), A pair of simultaneous linear matrix equations and a matrix programming problem. Linear Algebra Its Appl 131, 97–123. [CrossRef] [Google Scholar]
  18. Shinozaki N, Sibuya M (1974), Consistency of a pair of matrix equations with an application. Keio Eng Rep 27, 141–146. [Google Scholar]
  19. Özgüler AB, Akar N (1991), A common solution to a pair of linear matrix equations over a principal domain. Linear Algebra Its Appl 144, 85–99. [CrossRef] [Google Scholar]
  20. Navarra A, Odell PL, Young DM (2001), A representation of the general common solution to the matrix equations A1XB1 = C1 and A2XB2 = C2 with applications. Comput Math Appl 41, 929–935. [Google Scholar]
  21. Wang QW (2005), The general solution to a system of real quaternion matrix equations. Comput Math Appl 49, 665–675. [Google Scholar]
  22. Horn RA, Zhang F (2012), A generalization of the complex Autonne-Takagi factorization to quaternion matrices. Linear Multilinear Algebra 60, 11–12, 1239–1244. [CrossRef] [Google Scholar]
  23. Took CC, Mandic DP, Zhang FZ (2011), On the unitary diagonalization of a special class of quaternion matrices. Appl Math Lett 24, 1806–1809. [Google Scholar]
  24. Yuan SF, Wang QW (2012), Two special kinds of least squares solutions for the quaternion matrix equation AXB + CXD = E. Electr J Linear Algebra 23, 257–274. [Google Scholar]
  25. Liu X (2018), The η-anti-Hermitian solution to some classic matrix equations. Appl Math Comput 320, 264–270. [Google Scholar]
  26. He ZH, Wang QW (2013), A real quaternion matrix equation with applications. Linear Multilinear Algebra 61, 6, 725–740. [CrossRef] [Google Scholar]
  27. Beik FPA, Ahmadi-As S (2015), An iterative algorithm for η-(anti)-Hermitian least-squares solutions of quaternion matrix equations. Electr J Linear Algebra 30, 372–401. [Google Scholar]
  28. Futorny V, Klymchuk T, Sergeichuk VV (2016), Roth’s solvability criteria for the matrix equations AX-Formula B = C and X-AFormula B = C over the skew field of quaternions with an involutive automorphism qFormula . Linear Algebra Appl 510, 246–258. [Google Scholar]
  29. He ZH, Wang QW (2014), The η-bihermitian solution to a system of real quaternion matrix equations. Linear Multilinear Algebra 62, 11, 1509–1528. [CrossRef] [Google Scholar]
  30. He ZH, Wang QW, Zhang Y (2017), Simultaneous decomposition of quaternion matrices involving η-Hermicity with applications. Applied Math Comput 298, 13–35. [Google Scholar]
  31. He ZH, Liu J, Tam TY (2017), The general ϕ-Hermitian solution to mixed pairs of quaternion matrix Sylvester equations. Electr J Linear Algebra 32, 475–499. [CrossRef] [Google Scholar]
  32. He ZH (2019), Structure, properties and applications of some simultaneous decompositions for quaternion matrices involving ϕ-skew-Hermicity. Adv Appl Clifford Algebras 29, 6. [CrossRef] [Google Scholar]
  33. Klimchuk T, Sergeichuk VV (2014), Consimilarity and quaternion matrix equations AX-Formula B = C and X-AFormula B = C. Special Matrices 2, 180–186. [CrossRef] [Google Scholar]
  34. Rodman L (2014), Topics in Quaternion Linear Algebra, Princeton University Press, Princeton. [Google Scholar]
  35. Rehman A, Wang QW, He ZH (2015), Solution to a system of real quaternion matrix equations encompassing η-Hermicity. Appl Math Comput 265, 945–957. [Google Scholar]
  36. Rehman A, Wang QW, Ali I, Akram M, Ahmad MO (2017), A constraint system of generalized Sylvester quaternion matrix equations. Adv Appl Clifford Algebras 27, 4, 3183–3196. [CrossRef] [Google Scholar]
  37. Zhang Y, Wang RH (2013), The exact solution of a system of quaternion matrix equations involving η-Hermicity. Appl Math Comput 222, 201–209. [Google Scholar]
  38. Yuan SF, Wang QW, Xiong ZP (2014), The least squares eta-Hermitian problems of quaternion matrix equation. Filomat 28, 6, 1153–1165. [CrossRef] [Google Scholar]
  39. Bapat RB, Bhaskara KPS, Prasad KM (1990), Generalized inverses over integral domains. Linear Algebra Appl 140, 181–196. [Google Scholar]
  40. Stanimirovic PS (1996), General determinantal representation of pseudoinverses of matrices. Matematički Vesnik 48, 1–9. [Google Scholar]
  41. Kyrchei I (2015), Cramer’s rule for generalized inverse solutions, in: I Kyrchei (Ed.), Advances in Linear Algebra Research, Nova Science Publishers, New York, pp. 79–132. [Google Scholar]
  42. Kyrchei I (2008), Cramer’s rule for quaternion systems of linear equations. J Math Sci 155, 6, 839–858. [CrossRef] [Google Scholar]
  43. Kyrchei I (2012), The theory of the column and row determinants in a quaternion linear algebra, in: AR Baswell (Ed.), Advances in Mathematics Research, 15, Nova Science Publishers, New York, pp. 301–359. [Google Scholar]
  44. Kyrchei I (2011), Determinantal representations of the Moore-Penrose inverse over the quaternion skew field and corresponding Cramer’s rules. Linear Multilinear Algebra 59, 4, 413–431. [CrossRef] [Google Scholar]
  45. Kyrchei I (2013), Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations. Linear Algebra Appl 438, 1, 136–152. [Google Scholar]
  46. Kyrchei I (2014), Determinantal representations of the Drazin inverse over the quaternion skew field with applications to some matrix equations. Appl Math Comput 238, 193–207. [Google Scholar]
  47. Kyrchei I (2015), Determinantal representations of the W-weighted Drazin inverse over the quaternion skew field. Appl Math Comput 264, 453–465. [Google Scholar]
  48. Kyrchei I (2016), Explicit determinantal representation formulas of W-weighted Drazin inverse solutions of some matrix equations over the quaternion skew field. Math Probl Eng 2016, Article ID 8673809, 13 p. [Google Scholar]
  49. Kyrchei I (2017), Determinantal representations of the Drazin and W-weighted Drazin inverses over the quaternion skew field with applications, in: S. Griffin (Ed.), Quaternions: Theory and Applications, Nova Science Publishers, New York, pp. 201–275. [Google Scholar]
  50. Kyrchei I (2017), Weighted singular value decomposition and determinantal representations of the quaternion weighted Moore-Penrose inverse. Appl Math Comput 309, 1–16. [Google Scholar]
  51. Kyrchei I (2017), Determinantal representations of the quaternion weighted Moore-Penrose inverse and its applications, in: AR Baswell (Ed.), Advances in Mathematics Research, 23, Nova Science Publications, New York, pp. 35–96. [Google Scholar]
  52. Kyrchei I (2018), Explicit determinantal representation formulas for the solution of the two-sided restricted quaternionic matrix equation. J Appl Math Comput 58, 1–2, 335–365. [Google Scholar]
  53. Kyrchei I (2018), Determinantal representations of solutions to systems of quaternion matrix equations. Adv Appl Clifford Algebras 28, 1, 23. [CrossRef] [Google Scholar]
  54. Kyrchei I (2018), Cramer’s rules for Sylvester quaternion matrix equation and its special cases. Adv Appl Clifford Algebras 28, 5, 90. [CrossRef] [Google Scholar]
  55. Kyrchei I (2018), Determinantal representations of solutions and Hermitian solutions to some system of two-sided quaternion matrix equations. J Math 2018, ID 6294672, 12 p. [CrossRef] [Google Scholar]
  56. Kyrchei I (2018), Cramer’s rules for the system of two-sided matrix equations and of its special cases, in: HA Yasser (Ed.), Matrix Theory-Applications and Theorems, IntechOpen, London, pp. 3–20. [Google Scholar]
  57. Kyrchei I (2019), Determinantal representations of general and (skew-)Hermitian solutions to the generalized Sylvester-type quaternion matrix equation. Abstract Appl Anal 2019, Article ID 5926832, 14 p. [CrossRef] [Google Scholar]
  58. Song GJ, Wang QW, Chang HX (2011), Cramer rule for the unique solution of restricted matrix equations over the quaternion skew field. Comput Math Appl 61, 1576–1589. [Google Scholar]
  59. Song G (2013), Characterization of the W-weighted Drazin inverse over the quaternion skew field with applications. Electr J Linear Algebra 26, 1–14. [Google Scholar]
  60. Song GJ, Dong CZ (2017), New results on condensed Cramer’s rule for the general solution to some restricted quaternion matrix equations. J Appl Math Comput 53, 321–341. [Google Scholar]
  61. Song GJ, Wang QW, Yu SW (2018), Cramer’s rule for a system of quaternion matrix equations with applications. Appl Math Comput 336, 490–499. [Google Scholar]
  62. Aslaksen H (1996), Quaternionic determinants. Math Intell 18, 3, 57–65. [CrossRef] [Google Scholar]
  63. Cohen N, De Leo S (2000), The quaternionic determinant. Electr J Linear Algebra 7, 100–111. [Google Scholar]
  64. Chen L (1991), Definition of determinant and Cramer solutions over quaternion field. Acta Math Sin (N.S.) 7, 171–180. [CrossRef] [Google Scholar]
  65. Dieudonné J (1943), Les determinantes sur un corps non-commutatif. Bull Soc Math France 71, 27–45. [CrossRef] [Google Scholar]
  66. Dyson FJ (1972), Quaternion determinants. Helvetica Phys Acta 45, 289–302. [Google Scholar]
  67. Gelfand I, Gelfand S, Retakh V, Wilson RL (2005), Quasideterminants. Adv Math 193, 56–141. [CrossRef] [Google Scholar]
  68. Moore EH (1922), On the determinant of an Hermitian matrix of quaternionic elements. Bull Am Math Soc 28, 161–162. [Google Scholar]
  69. Study E (1920), Zur Theorie der linearen Gleichungen. Acta Math 42, 1–61. [CrossRef] [Google Scholar]
  70. Fan J (2003), Determinants and multiplicative functionals on quaternion matrices. Linear Algebra Appl 369, 193–201. [Google Scholar]
  71. Wang QW, Li CK (2009), Ranks and the least-norm of the general solution to a system of quaternion matrix equations. Linear Algebra Appl 430, 1626–1640. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.