Open Access
Issue
4open
Volume 1, 2018
Article Number 5
Number of page(s) 11
Section Chemistry - Applied Chemistry
DOI https://doi.org/10.1051/fopen/2018005
Published online 12 November 2018
  1. Mulder M (1997) Basic Principles of Membrane Technology, 2nd ed., Kluwer Academic Publishers, Netherlands. [Google Scholar]
  2. Rosa MJ, de Pinho MN (1994) Separation of organic solutes by membrane pressure-driven processes. J Membr Sci 89, 235–243. [CrossRef] [Google Scholar]
  3. Nystrom M, Kaipia L, Luque S (1995), Fouling and retention of nanofiltration membranes. J Membr Sci 98, 249–262. [CrossRef] [Google Scholar]
  4. Rosa MJ (1995), Separaçao Selectiva de Compostos Organicos de Correntes Aquosas por Ultrafiltraçao e Nanofiltraçao, PhD Thesis, Universidade Tecnica de Lisboa, Instituto Superior Tecnico, Lisboa. [Google Scholar]
  5. Chaufer B, Baudry-Rabiller M, Guihard L, Daufin G (1996) Retention of ions in nanofiltration at various ionic strength. Desalination 104, 37–46. [CrossRef] [Google Scholar]
  6. Schaep J, Van der Bruggen B, Vandecasteele C, Wilms D (1998), Influence of ion size and charge in nanofiltration. Separ Purif Technol 14, 155–162. [CrossRef] [Google Scholar]
  7. Peeters JMM, Mulder MHV, Strathmann H (1999) Streaming potential measurements as a characterization method for nanofiltration membranes. Colloids Surf A: Physicochem Eng Aspects 150, 247–259. [CrossRef] [Google Scholar]
  8. Childress AE, Elimelech M (2000) Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics. Environ Sci Technol 34, 3710–3716. [CrossRef] [Google Scholar]
  9. Costa AR, de Pinho MN (2006), Performance and cost estimation of nanofiltration for surface water treatment in drinking water production. Desalination 196, 55–65. [CrossRef] [Google Scholar]
  10. Paugam L, Taha S, Cabon J, Dorange G (2003), Elimination of nitrate ions in drinking waters by nanofiltration. Desalination 152, 271–274. [CrossRef] [Google Scholar]
  11. Hilal N, Al-Zoubi H, Mohammad AW, Darwish NA (2005) Nanofiltration of highly concentrated salt solutions up to seawater salinity. Desalination 184, 315–326. [CrossRef] [Google Scholar]
  12. Lhassani A, Rumeau M, Benjelloun D, Pontie M (2001) Selective demineralization of water by nanofiltration application to the defluorination of brackish water. Water Res 35, 3260–3264. [CrossRef] [PubMed] [Google Scholar]
  13. Van der Bruggen B, Vandecasteele C (2003), Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 122, 435–445. [CrossRef] [Google Scholar]
  14. Hilal N, Al-Zoubi H, Darwish NA, Mohammad AW, Abu Arabi M (2004), A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy. Desalination 170, 281–308. [CrossRef] [Google Scholar]
  15. Ahmadzadech S, Dolatabadi M (2018) Modeling and kinetics study of electrochemical peroxidation process for mineralization of bisphenol A; a new paradigm for groundwater treatment. J Mol Liquids 254, 76–82. [CrossRef] [Google Scholar]
  16. Ahmadzadech S, Dolatabadi M (2018) In situ generation of hydroxyl radical for efficient degradation of 2,4-dichlorophenol from aqueous solutions. Environ Monit Assess 190, 340. [CrossRef] [PubMed] [Google Scholar]
  17. Ahmadzadech S, Asadipour A, Yoosefian M, Dolatabadi M (2017) Improved electrocoagulation process using chitosan for efficient removal of cefazolin antibiotic from hospital wastewater through sweep flocculation and adsorption : kinetic and isotherm study. Desalin Water Treat 92, 160–171. [CrossRef] [Google Scholar]
  18. Van der Bruggen B, Manttari M, Nystrom M (2008), Drawbacks of applying nanofiltration and how to avoid them: a review. Sep Purif Technol 63, 251–263. [CrossRef] [Google Scholar]
  19. Krishna R, Wesselingh JA (1997) The Maxwell-Stefan approach to mass transfert. Chem Eng Sci 52, 861–911. [CrossRef] [Google Scholar]
  20. Spiegler KS, Kedem O (1966) Thermodynamics of hyperfiltration (reverse osmosis): criteria for coefficient membranes. Desalination 1, 311–326. [CrossRef] [Google Scholar]
  21. Wang XL, Tsuru T, Nakao S, Kimura S (1995) Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell-Meyer-Sievers model. J Membr Sci 103, 117–133. [CrossRef] [Google Scholar]
  22. Shang W-J, Wang X-L, Yu Y-X (2006), Theoretical calculation on the membrane potential of charged porous membranes in 1-1, 1-2, 2-1 and 2-2 electrolyte solutions. J Membr Sci 285, 362–375. [CrossRef] [Google Scholar]
  23. Donnan F (1995), Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. J Membr Sci 100, 45–55. [CrossRef] [Google Scholar]
  24. Eriksson P (1988), Nanofiltration extends the range of membrane filtration. Environ Prog 7, 58–62. [CrossRef] [Google Scholar]
  25. Tsuru T, Urairi M, Nakao SI, Kimura S (1991) Negative rejection of anions in the loose reverse osmosis separation of mono-and divalent ion mixtures. Desalination 81, 219–227. [CrossRef] [Google Scholar]
  26. Chaabane T, Taha S, Ahmed TM, Maachi R, Dorange G (2007) Coupled model of film theory and the Nernst-Planck equation in nanofiltration. Desalination 206, 424–432. [CrossRef] [Google Scholar]
  27. Déon S, E scoda A, Fievet P (2011) A transport model considering charge adsorption inside pores to describe salts rejections by nanofiltration membranes. Chem Eng Sci 66, 2823–2832. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.